
Behavioral Software Contracts

Robert Bruce Findler
Northwestern University & PLT

robby@eecs.northwestern.edu

Programmers embrace contracts. They can use the language they
know and love to formulate logical assertions about the behavior of
their programs. They can use the existing IDE infrastructure to log
contracts, to test, to debug, and to profile their programs.
The keynote presents the challenges and rewards of supporting
contracts in a modern, full-spectrum programming language. It
covers technical challenges of contracts while demonstrating the
non-technical motivation for contract system design choices and
showing how contracts and contract research can serve practicing
programmers.

a a
The remainder of this article is a literature survey of contract re-
search, with an emphasis on recent work about higher-order con-
tracts and blame.

E
arly Contracts. Parnas (1972) suggested
the use of logical assertions to describe
software components. Meyer (1991; 1992)
implemented the first full-fledged con-
tract system and developed a matching
software engineering philosophy, design
by contract.

Findler and Felleisen (2002) introduced contracts to the functional
programming world, generalizing them to higher-order languages,
and introduced the ideas of blame and boundaries as independent
concepts worthy of study.

S
emantics. Findler and Felleisen used an
operational model for contracts and did
not define a notion of contract satisfac-
tion. Blume and McAllester (2006) rec-
ognized this lack and responded with a
quotient model, shedding light on the
special status of the contract that does
no checking. In parallel, Findler and

Blume (2006) investigated contracts as Scott projections, thanks
to a timely question from Bob Harper in 2002. Dimoulas and

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee. Copyrights for third-party components of this
work must be honored. For all other uses, contact the owner/author(s).
ICFP ’14, September 1–6, 2014, Gothenburg, Sweden.
Copyright is held by the owner/author(s).
ACM 978-1-4503-2873-9/14/09.
http://dx.doi.org/10.1145/2628136.2632855

Felleisen (2011) countered from an observational equivalence per-
spective and pointed out that software engineering and formal
methods naturally deal with different satisfaction relations.
Greenberg et al. (2010) studied dependent contracts, showing how
there are natural variations hiding in Blume and McAllester’s
model. Dimoulas et al. (2011) designed a new combinator to moni-
tor dependent contracts that assigns blame correctly when a depen-
dent contract violates part of itself. Dimoulas et al. (2012) extended
this model to introduce a notion of contract system completeness,
i.e., a contract system that accounts for all possible violations.

L
aziness. Contracts in lazy languages lead
to complex and interesting semantic ques-
tions. As a hint at the complexity, con-
sider a function that does not explore all
of its argument, but where the unexplored
part is rejected by the contract. Should
this be a violation? Chitil et al. (2003)
take the negative answer and show how

to delay checks until the program observes the values that trigger
the violation. Chitil and Huch (2006) later refine their technique
to eliminate accidental sequentiality in the contract specification it-
self. Degen et al. (2012) tackle this question head on, showing that
a contract system cannot report contract violations for all of the
values that influence the program’s final result without introducing
unwanted strictness.

F
eatures. Sophisticated language features
demand sophisticated contract systems
and more nuanced ways to assign blame.
Data structures require care to avoid ex-
cessive performance overhead (Findler et
al. 2007).
Delimited and composable control opera-
tors provide new ways for values to flow

and thus require special contract support (Takikawa et al. 2013).
Classes and object systems also lead to new concerns for contracts,
from behavioral subtyping (Findler and Felleisen 2001; Findler et
al. 2001) to support for first-class classes (Strickland and Felleisen
2010; Strickland et al. 2013).

Categories and Subject Descriptors D.3.3 [Programming Lan-
guages]: Language Constructs and Features; D.2.4 [Software En-
gineering]: Programming by contract
Keywords Contracts



P
ragmatics. Strickland and Felleisen (2009)
explore the crucial pragmatic question of
how to draw boundaries between compo-
nents.
A number of researchers have also ex-
plored parametric polymorphic contracts
(Guha et al. 2007; Matthews and Ahmed
2008; Ahmed et al. 2011), using the idea

that runtime sealing is the dynamic analog of polymorphic type
checking.

I
mplementation. Herman et al. (2007)
demonstrate how contract implementa-
tions break tail-recursion and design a
virtual machine that recovers it.
Strickland et al. (2012) show how to add
primitive interposition support to a run-
time system that is strong enough to sup-
port contracts, but weak enough to avoid

breaking guarantees of the underlying programming language.
Dimoulas et al. (2013) demonstrate how to give programmatic con-
trol for enabling and disabling contract checks to balance checking
with performance.

G
radual Typing. The most active applica-
tion of contracts is gradual typing (Flana-
gan 2006; Tobin-Hochstadt and Felleisen
2006; Siek and Taha 2006), which ex-
ploits dynamic contract checking so pro-
grammers can incrementally add types to
untyped programs. Gronski and Flana-
gan (2007) clarified the relationship be-

tween gradual types and contracts.
Findler et al. (2004) gave an early instance of gradual typing,
showing how structural and nominal OO type systems can coexist.
Gradual typing can be viewed as an interoperability problem, based
on Matthews and Findler (2007)’s notion of a boundary. Tov and
Pucella (2010) use this perspective to connect a language with
an affine type systems to a simply-typed one using contracts that
exploit mutable references to track how often resources are used.
Wadler and Findler (2009) and Dimoulas et al. (2012) refined
the proof techniques for the Blame Theorem for gradually typed
calculi, which ensures that either blame for a contract violation lies
on the side with the weak type system or that the type is too strong.

References
A. Ahmed, R. B. Findler, J. Matthews, and P. Wadler. Blame for All. In

Proc. ACM Sym. Principles of Programming Languages, 2011.
M. Blume and D. McAllester. Sound and Complete Models of Contracts. J.

Functional Programming 16(4-5), 2006.
O. Chitil and F. Huch. A Pattern Logic for Prompt Lazy Assertions in

Haskell. In Proc. Implementation and Application of Functional Lan-
guages, 2006.

O. Chitil, D. McNeill, and C. Runciman. Lazy Assertions. In Proc. Imple-
mentation and Application of Functional Languages, 2003.

M. Degen, P. Thiemann, and S. Wehr. The Interaction of Contracts and
Laziness. In Proc. Partial Evaluation and Program Manipulation, 2012.

C. Dimoulas and M. Felleisen. On Contract Satisfaction in a Higher-Order
World. Trans. Programming Languages and Systems 33(5), 2011.

C. Dimoulas, R. B. Findler, and M. Felleisen. Option Contracts. In Proc.
ACM Conf. Object-Oriented Programming, Systems, Languages and
Applications, 2013.

C. Dimoulas, R. B. Findler, C. Flanagan, and M. Felleisen. Correct Blame
for Contracts: No More Scapegoating. In Proc. ACM Sym. Principles of
Programming Languages, 2011.

C. Dimoulas, S. Tobin-Hochstadt, and M. Felleisen. Complete Monitors for
Behavioral Contracts. In Proc. Europ. Sym. on Programming, 2012.

R. B. Findler and M. Blume. Contracts as Pairs of Projections. In Proc.
Sym. Functional and Logic Programming, 2006.

R. B. Findler and M. Felleisen. Contract Soundness for Object-Oriented
Languages. In Proc. ACM Conf. Object-Oriented Programming, Sys-
tems, Languages and Applications, 2001.

R. B. Findler and M. Felleisen. Contracts for Higher-order Functions. In
Proc. ACM Intl. Conf. Functional Programming, 2002.

R. B. Findler, M. Flatt, and M. Felleisen. Semantic Casts: Contracts and
Structural Subtyping in a Nominal World. In Proc. Europ. Conf. Object-
Oriented Programming, 2004.

R. B. Findler, S. Guo, and A. Rogers. Lazy Contract Checking for Im-
mutable Data Structures. In Proc. Implementation and Application of
Functional Languages, 2007.

R. B. Findler, M. Latendresse, and M. Felleisen. Behavioral Contracts and
Behavioral Subtyping. In Proc. ACM Conf. Object-Oriented Program-
ming, Systems, Languages and Applications, 2001.

C. Flanagan. Hybrid Type Checking. In Proc. ACM Sym. Principles of
Programming Languages, 2006.

M. Greenberg, B. C. Pierce, and S. Weirich. Contracts Made Manifest. In
Proc. ACM Sym. Principles of Programming Languages, 2010.

J. Gronski and C. Flanagan. Unifying Hybrid Types and Contracts. In Proc.
Sym. Trends in Functional Programming, 2007.

A. Guha, J. Matthews, R. B. Findler, and S. Krishnamurthi. Relationally-
Parametric Polymorphic Contracts. In Proc. Dynamic Languages Sym-
posium, 2007.

D. Herman, A. Tomb, and C. Flanagan. Space-Efficient Gradual Typing. In
Proc. Sym. Trends in Functional Programming, 2007.

J. Matthews and A. Ahmed. Parametric Polymorphism Through Run-Time
Sealing or, Theorems for Low, Low Prices! In Proc. Europ. Sym. on
Programming, 2008.

J. Matthews and R. B. Findler. Operational Semantics for Multi-Language
Programs. In Proc. ACM Sym. Principles of Programming Languages,
2007.

B. Meyer. Eiffel: The Language. Prentice Hall, 1991.
B. Meyer. Applying “Design by Contract”. IEEE Computer 25(10), 1992.
D. L. Parnas. A Technique for Software Module Specification with Exam-

ples. Communications of the ACM 15(5), 1972.
J. G. Siek and W. Taha. Gradual Typing for Functional Languages. In Proc.

Scheme and Functional Programming, 2006.
T. S. Strickland, C. Dimoulas, A. Takikawa, and M. Felleisen. Contracts for

First-Class Classes. Trans. Programming Languages and Systems 35(3),
2013.

T. S. Strickland and M. Felleisen. Nested and Dynamic Contract Bound-
aries. In Proc. Implementation and Application of Functional Lan-
guages, 2009.

T. S. Strickland and M. Felleisen. Contracts for First-Class Classes. In Proc.
Dynamic Languages Symposium, 2010.

T. S. Strickland, S. Tobin-Hochstadt, R. B. Findler, and M. Flatt. Chaper-
ones and Impersonators: Run-Time Support for Reasonable Interposi-
tion. In Proc. ACM Conf. Object-Oriented Programming, Systems, Lan-
guages and Applications, 2012.

A. Takikawa, T. S. Strickland, and S. Tobin-Hochstadt. Constraining De-
limited Control with Contracts. In Proc. Europ. Sym. on Programming,
2013.

S. Tobin-Hochstadt and M. Felleisen. Interlanguage Migration: from
Scripts to Programs. In Proc. Dynamic Languages Symposium, 2006.

J. A. Tov and R. Pucella. Stateful Contracts for Affine Types. In Proc.
Europ. Sym. on Programming, 2010.

P. Wadler and R. B. Findler. Well-typed Programs Can’t Be Blamed. In
Proc. Europ. Sym. on Programming, 2009.


