
FULLY ABSTRACT SEMANTICS

FOR

OBSERVABLY SEQUENTIAL LANGUAGES

Robert Cartwright Pierre-Louis Curien Matthias Felleisen
Department of Computer Science

Rice University
Houston, TX 77251-1892

Also appeared in Information and Computation 1994
Rice University Technical Report # 93-219

Minor revisions: October 2004

FULLY ABSTRACT SEMANTICS FOR

OBSERVABLY SEQUENTIAL LANGUAGES

Robert Cartwright∗
Department of Computer Science, Rice University, Houston, TX 77005

Pierre-Louis Curien†
Ecole Normale Supérieure, LIENS-CNRS, 45 rue d’Ulm, 75230 Paris, France

Matthias Felleisen‡
Department of Computer Science, Rice University, Houston, TX 77005

Abstract

One of the major challenges in denotational semantics is the construction of a fully
abstract semantics for a higher-order sequential programming language. For the past
fifteen years, research on this problem has focused on developing a semantics for PCF,
an idealized functional programming language based on the typed λ-calculus. Unlike
most practical languages, PCF has no facilities for observing and exploiting the evalu-
ation order of arguments to procedures. Since we believe that these facilities play a
crucial role in sequential computation, this paper focuses on a sequential extension
of PCF, called SPCF, that includes two classes of control operators: a possibly empty
set of error generators and a collection of catch and throw constructs. For each set of
error generators, the paper presents a fully abstract semantics for SPCF. If the set of er-
ror generators is empty, the semantics interprets all procedures—including catch and
throw—as Berry-Curien sequential algorithms. If the language contains error generators,
procedures denote manifestly sequential functions. The manifestly sequential functions
form a Scott domain that is isomorphic to a domain of decision trees, which is the nat-
ural extension of the Berry-Curien domain of sequential algorithms in the presence of
errors.

1 Full Abstraction and Sequentiality

A denotational semantics for a programming language determines two natural equiva-
lence relations on program phrases. The first relation, denotational equivalence, equates two
phrases if and only if they have the same meaning (denotation). The second relation, ob-
servational equivalence, equates two phrases if and only if they have the same “observable

∗Supported in part by NSF grant CCR 91-22518.
†Supported in part by Esprit BRA CLICS, and a visit at DEC SRC, Palo-Alto.
‡Supported in part by NSF grants CCR 89-17022, CCR 91-22518, and a visit at Carnegie Mellon University.

1

2 R. Cartwright, P.-L. Curien, M. Felleisen

behavior”. In the denotational framework, observable behavior refers to the output pro-
duced by entire programs. Thus, two phrases are observationally equivalent if and only if
they can be interchanged in an arbitrary program without affecting the output.

Observational equivalence is the fundamental constraint governing program optimiza-
tion. Since the users of a program are primarily interested in its input-output behavior, a
compiler can optimize a program by interchanging observationally equivalent phrases.
Unfortunately, it is difficult to prove that two phrases are observationally equivalent be-
cause the proof must address all possible program contexts. Denotational equivalence is
more tractable because it can be analyzed using the algebraic and topological structure of
denotations.

As a result, one of the primary goals of programming language theory is the construc-
tion of denotational semantics for practical languages where denotational equivalence and
observational equivalence coincide. A semantics with this property is called fully abstract.

Denotational equivalence implies observational equivalence because a denotational se-
mantics is compositional. But the converse rarely holds for practical programming lan-
guages; some observationally equivalent phrases inevitably have different meanings. The
following example shows why a conventional continuous function semantics is not fully
abstract for higher-order sequential languages. Consider the family of procedures1 pi de-
fined in a sequential, call-by-name functional language L:

pi(f) = if f (Ω,false) then Ω
else if f (false,Ω) then Ω
else if f (true,true) then i else Ω .

In this equation, Ω denotes any divergent phrase and i denotes an arbitrary natural num-
ber. By a proof technique due to Plotkin [24], pi is observationally equivalent to the pro-
cedure p defined by p(f) = Ω. In essence, the procedures pi diverge for all inputs because
the only possible inputs f are sequential procedures.

Nevertheless, the conventional semantics for language L includes functions that eval-
uate their arguments in parallel. A simple example of a parallel function is parallel-and,
which returns false if either input is false and returns true if both inputs are true. The appli-
cation of pi to parallel-and yields the answer i instead of ⊥ because divergent subcomputa-
tions are ignored by parallel-and. Consequently, the conventional semantics for language L
fails to identify pi and p.

Essentially the same example can be constructed in any practical deterministic pro-
gramming language where procedures can be passed as parameters [21, 30]. For exam-
ple, in call-by-value languages, the procedures pi can be rewritten so that the parameter
f takes constant procedures as arguments and uses these procedures to simulate call-by-
name boolean arguments [30, 29]. Indeed, all commonly used deterministic languages are
sequential.

In rough terms, a language is sequential if it can be implemented without time-slicing
among multiple threads of control. The technical usage of the term sequential in this paper
should not be confused with the informal uses of term in the context of parallel process-
ing. In informal usage, languages are classified as “sequential” or “parallel” based on the

1We use the term procedure rather than function to refer to the primitive operators in a functional program-
ming language because procedures are not necessarily interpreted as functions by a semantics.

Fully Abstract Semantics for Observably Sequential Languages 3

intended implementation strategy rather than the semantic properties of the language. In
fact, practical parallel languages are either sequential in the technical sense or they are non-
deterministic. Deterministic parallel languages like C*, *Lisp, and some parallel dialects
of Fortran support parallelism in program execution through “data-parallel” operations
or “hierarchical” parallelism where every task executed in parallel must terminate for the
entire computation to terminate. The functions computable using these two forms of par-
allelism are sequential.

Parallel functions like parallel-and add to the expressiveness of deterministic languages,
but the price paid in execution efficiency for using these operations is exorbitant. More-
over, the additional expressiveness is not useful in practice, because it applies only to com-
putations that are unbounded. For this reason, parallel functions have not been included
in any practical language.

1.1 History of Previous Work

Milner [22], Plotkin [24], and Sazonov [26] were the first researchers to study the full ab-
straction problem for sequential languages. They focused on constructing a fully abstract
semantics for PCF, a call-by-name functional language based on the typed λ-calculus.
Plotkin and Sazonov observed that the continuous function semantics for PCF is not fully
abstract using essentially the same counterexample as given above. Milner and Plotkin de-
veloped different strategies for eliminating the discrepancy between the continuous func-
tion semantics and the observable behavior of PCF.

Milner eliminated parallel functions from the semantics by constructing Scott domains
from equivalence classes of observationally equivalent terms. Milner showed that his se-
mantics is fully abstract, and that it is unique up to isomorphism among fully abstract,
extensional semantics. But Milner’s construction of a semantics is not regarded as “de-
notational” because it fails to identify any algebraic structure within programs. Plotkin
extended PCF by adding parallel deterministic operations, eliminating the discrepancy be-
tween the continuous function semantics and the procedures definable in the language.
Unfortunately, neither Milner’s nor Plotkin’s result showed how to construct a fully ab-
stract denotational semantics for a sequential language like PCF.

In a subsequent investigation of sequential languages, Berry and Curien [3, 4, 6, 8]
constructed a semantics for PCF with more restrictive domains for procedure denotations.
Berry introduced the stable function space construction, which eliminated many—but not
all—parallel functions.2 To address this problem and to produce a semantic characteriza-
tion of sequentiality, Berry and Curien [4, 5] proposed interpreting procedures as sequential
algorithms over concrete domains [18]. Roughly speaking, a concrete domain is a domain that
is isomorphic to a domain consisting of potentially infinite trees. A sequential algorithm
is a continuous function plus a strategy for evaluating its arguments. While this approach
eliminates all parallel functions, the resulting semantics is not extensional because it con-
tains different sequential algorithms that compute the same function. In addition, PCF
cannot express all of the observations that characterize sequential algorithms, such as the

2Indeed, it even introduces new distinctions, which are impossible in the continuous function space con-
struction. This observation is due to Jim and Meyer [16]; for details on this observation, we refer to their
paper.

4 R. Cartwright, P.-L. Curien, M. Felleisen

order of argument evaluation. As a result, the sequential algorithm semantics for PCF is
not fully abstract.

Berry and Curien did show, however, that the concrete domains and sequential algo-
rithms form a Cartesian-closed category and they developed a language called CDS0 for
which the sequential algorithm semantics is fully abstract. CDS0 differs from conventional
functional languages like PCF because it uses sequential algorithms—represented as de-
cision trees—rather than PCF-like procedures as higher order data objects. Hence, higher
order data objects in CDS0 are not extensional.

Mulmuley [23] generalized Milner’s work by showing how to construct a fully abstract
semantics for PCF as a quotient of a conventional semantics based on lattices instead of cpos.
He defined a retraction on the conventional semantics that equates all parallel functions
with the “overdefined” element top (>). Jung and Stoughton [17] recently extended Mul-
muley’s work by directly constructing a projection from the inductively reachable subalge-
bra of the continuous function semantics to the fully abstract semantics for PCF. However,
like Milner’s original fully abstract semantics, both Mulmuley’s and Jung and Stoughton’s
semantics are “syntactic” in flavor because they rely on a quotient construction based on
observational equivalence and definability. For more details on the history of the full ab-
straction problem for sequential languages, we refer the reader to three extensive surveys
[6, 9, 32].

1.2 Summary of Results

This paper integrates recent work by Cartwright and Felleisen [7] and by Curien [10] on
fully abstract semantics for simple, sequential extensions of PCF. It solves an important
form of the full abstraction problem, namely the construction of a fully abstract seman-
tics for a realistic functional language extending PCF. The key insight underlying this
work is the invention of a new form of function space: the domain of manifestly sequen-
tial functions. The manifestly sequential functions form a projective subspace [19] of the
continuous functions—provided that the domain and codomain meet certain topological
constraints.

By drawing on their intuitions as programmers, Cartwright and Felleisen [7] invented
the manifestly sequential functions to construct a fully abstract denotational semantics
for a sequential extension of PCF called SPCF. Curien [10] recognized that the manifestly
sequential functions were an extensional refinement of the sequential algorithms that he and
Berry had developed in an attempt to construct a fully abstract semantics for PCF. His
paper showed that the framework of “concrete data structure” (cds) domains can easily be
extended to accommodate manifestly sequential functions without invalidating any of the
framework’s important properties.3

This paper presents a new framework for defining the category of manifestly sequential
domains and functions called sequential data structures. The paper subsumes both original
presentations by the authors. In the framework of sequential data structures, manifestly

3The term manifestly sequential was coined by the authors in the process of writing this paper. Cartwright
and Felleisen [7] defined the manifestly sequential functions in the context of two error elements. They called
these functions error-sensitive functions. Manifest sequentiality is a generalization of the original notion of error-
sensitivity that is applicable to domains with a single error element.

Fully Abstract Semantics for Observably Sequential Languages 5

sequential functions are represented as decision trees, formalized as sets of paths. Sequen-
tial data structures are similar to the concrete data structures that Berry and Curien used to
define sequential algorithms, but they are simpler and make the tree structure of elements
explicit.

The paper is organized as follows. Section 2 contains the mathematical preliminaries
for the remainder of the paper. Section 3 describes the syntax and semantics of PCF. In
Section 4, we compare PCF to realistic functional languages. Unlike practical functional
languages (Common Lisp, Scheme), PCF lacks control operators for generating errors and
performing non-local exits, which makes it impossible to observe the order in which pro-
cedures evaluate their arguments. Extending PCF to include these facilities naturally leads
to a fully abstract semantics using manifestly sequential functions represented by decision
trees. Section 5 introduces suitable domains and functions for constructing such a seman-
tics and Section 6 contains the proof that this collection of domains and functions forms
an appropriate category. Section 7 is devoted to the proof of full abstraction for SPCF. Fi-
nally, Section 8 presents an operational semantics and an adequacy theorem for SPCF. The
adequacy proof uses a strong normalization argument for bounded recursion, simplifying
Curien’s original proof [10]. The appendix relates the sequential data structures presented
in this paper to the original concrete data structures used by Berry and Curien.

2 Mathematical Preliminaries

Before we present the syntax and semantics of PCF and SPCF, we need to introduce some
definitions and notation.

Sets. We use standard mathematical notation and terminology for sets and functions.
In particular, N denotes the set of natural numbers. The indices i, . . . , n range over a
(subset of) N. The expression λx. · · ·x · · · denotes the mathematical function f defined by
the equation f(x) = · · ·x · · ·, where the domain and codomain (range) of f are determined
by context. If A and B are sets, then the equations

A \B = {a | a ∈ A, a 6∈ B}
A]B = {〈a, 1〉, 〈b, 2〉 | a ∈ A, b ∈ B}

define the set difference A \B between A and B and the discriminated union A]B of the sets
A and B.

Partial Orders and Domains. A partial order is a pair (D,v) where D is a set and v is a
binary relation on D that is reflexive, transitive, and antisymmetric. In contexts where no
confusion can arise, we abuse notation and use the symbol D to refer to the partial order.
If x v y, we say x approximates y or y dominates x. If x v y and x 6= y, then we write x @ y
and say x is strictly below y.

An upper bound of X ⊆ D is an element of D that dominates all elements x ∈ X . A least
upper bound of X is an upper bound that approximates all other upper bounds. Since the
partial order D is antisymmetric, a least upper bound of X is unique; it is denoted

⊔
X .

6 R. Cartwright, P.-L. Curien, M. Felleisen

The least upper bound of a pair x, y of elements in D is denoted x t y. The notions of
lower bound and greatest lower bound are defined similarly; uX is the greatest lower bound
of X ⊆ D and x u y is the greatest lower bound of the pair x, y ∈ D. A subset X ⊆ D is
bounded if it has an upper bound. If a pair x, y ∈ D is bounded, we say it is consistent and
write x ↑ y. A non-empty subset X of a partial order D is directed if every pair of elements
from X has an upper bound in X .

A complete partial order (cpo) is a partial order (D,v) such that D has a least element
⊥ and every directed subset X of D has a least upper bound. An element y of a cpo D is
finite if for every directed X ⊆ D such that y v

⊔
X , there exists an element x ∈ X such

that y v x.
A cpo is flat if x v y if and only if x =⊥ or x = y. A cpo is consistently-complete if every

bounded pair of elements has a least upper bound. A cpo D is algebraic if for every x ∈ D
the set of finite elements below x is directed and its least upper bound is x:

x =
⊔
{d v x | d is finite }.

It is ω-algebraic if it is algebraic and the set of finite elements is countable.
A function f : D −→ D′ for cpos (D,v) and (D′,v′) is continuous if it preserves limits

of directed sets:
f(

⊔
X) =

⊔
{f(x) |x ∈ X}

for any directed set X . A function f : D1 × . . .×Dn −→ D is strict in argument position k,
1 ≤ k ≤ n, if for all x1 ∈ D1, . . ., xk−1 ∈ Dk−1, xk+1 ∈ Dk+1, . . ., xn ∈ Dn:

f(x1, . . . , xk−1,⊥k, xk+1, . . . , xn) =⊥ .

A Scott domain (or simply domain) is an ω-algebraic, consistently-complete cpo. N⊥ is
the flat domain of natural numbers with least element ⊥.

Paths. If Σ is an arbitrary set, called the alphabet, then Σ∗ denotes the set of finite paths
over Σ.4 The empty path is denoted ε.

Every path p ∈ Σ∗ can be interpreted as a partial function from N to Σ that satisfies the
following two conditions:

• There exists n ∈ N such that p(n) is undefined.

• If p(i+ 1) is defined, then p(i) is defined.

We often write p@i instead of p(i); this notation corresponds to interpreting p as a sequence
of tokens

p@0 · p@1 · . . . · p@n

where · is a separator delimiting the boundaries between tokens. The notation |p| denotes
the length of a path, i.e., |p| = n+ 1 if p@n is defined and p@(n+ 1) is undefined. It is also
convenient to identify the elements of Σ with the paths of length 1.

4In the literature, a path is usually called a word or a list, but the reader will see that for our purposes it is
more appropriate to use the terminology “path”.

Fully Abstract Semantics for Observably Sequential Languages 7

Σ∗ forms a partial order under prefix ordering v defined by the rule: q v p if q ⊆ p as
partial functions. In other words, q v p when p and q satisfy the following condition: if
q(n) is defined, then p(n) is defined and p(n) = q(n).

If p ∈ Σ∗ is a path and a a member of the alphabet, then p · a is the path that extends p
with a: (p · a)@|p| = a. Similarly, a · p is the path that shifts p to the right and places a at the
beginning: (a · p)@i+ 1 = p@i for all i > 0 and (a · p)@0 = a. The symbol · also stands for
path concatenation. Since paths over Σ are not tokens, this convention does not cause any
ambiguity.

Given two subsets, Φ and Υ, of an alphabet Σ, such that Φ∪Υ = Σ, the set of alternating
paths, denoted by (Φ,Υ)∗, is the set of paths p in Σ∗ that satisfy the following conditions:

1. if p@(2n+ 1) is defined, then p@(2n+ 1) ∈ Υ; and

2. if p@2n is defined, then p@2n ∈ Φ.

In particular, ε ∈ (Φ,Υ)∗. An alternating path p is called non-repetitive in Φ if it satisfies
the following additional condition:

3. if p@i, p@j are in Φ and p@i = p@j then i = j.

It is non-repetitive in Υ if it satisfies the same condition relative to Υ.

Categories. A category C is 4-tuple 〈Obj C ,−→C , ◦, idC〉 where

1. Obj C is a collection of objects;

2. −→C is a family of collections A −→C B of arrows called homsets, one for each pair of
objects A,B ∈ Obj c;

3. ◦ is a composition operation on arrows (
⋃
−→C) such that (i) f ◦ g is an arrow in

A −→C C if f is inB −→C C and g is inA −→C B; and (ii) the operation is associative:

(f ◦ g) ◦ h = f ◦ (g ◦ h) ;

4. idC is a collection of arrows idA ∈ A −→C A, one for each object A ∈ Obj C such that
idA is the identity with respect to the composition operation:

idA ◦ f = f ◦ idA = f.

When no confusion can arise, subscripts and superscripts are dropped in the notation for
categories.

An object 1 in a category C is terminal if there exists exactly one arrow 1A in A −→ 1 for
each object A. The object A1 ×A2 is a product of the two objects A1, A2 if

1. there exist arrows πi in A1 ×A2 −→ Ai for i = 1, 2; and

8 R. Cartwright, P.-L. Curien, M. Felleisen

2. for any object B and any arrows f1 in B −→ A1, f2 in B −→ A2, there exists an arrow
〈f1, f2〉 in B −→ A1 ×A2, the pair of f1 and f2, such that

π1 ◦ 〈f1, f2〉 = f1

π2 ◦ 〈f1, f2〉 = f2

〈π1 ◦ f, π2 ◦ f〉 = f .

The last equation forces the arrow 〈f1, f2〉 to be unique.

In the sequel, we will work with multiple products of the shape 1 × An × . . . × A1, n > 0,
with corresponding arrows πn

i ∈ 1×An × . . .×A1 −→ Ai, 1 ≤ i ≤ n such that:

1×An × . . .×A2 ×A1 = (. . . (1×An)× . . .)×A1

πn
i = π2 ◦ π1 ◦ . . . ◦ π1︸ ︷︷ ︸

i−1

.

A category C is cartesian if (i) it has a terminal object and (ii) a product object for any two
objects.

An object [A⇒ B] in a cartesian category C is the exponent of the objects A and B if for
any object C:

1. there is a bijection Λ from C ×A −→ B to C −→ [A⇒ B] with inverse Λ−1 such that
for all f in C ×A −→ B and g in C −→ [A⇒ B]:

Λ−1(Λ(f)) = f

Λ(Λ−1(g)) = g

2. for any object D and any two arrows f in C ×A −→ B and g in D −→ C:

Λ(f) ◦ g = Λ(f ◦ 〈g ◦ π1, π2〉) .

The bijection Λ is called the currying operator. The Λ-inverse of the identity arrow for the
exponent object A⇒ B is called the application arrow:

App = Λ−1(idA⇒B).

It is easy to show that the preceding conditions on Λ are equivalent to the following two
equations:

f = Λ−1(id) ◦ 〈Λ(f) ◦ π1, π2〉 = App ◦ 〈Λ(f) ◦ π1, π2〉
f = Λ(Λ−1(id) ◦ 〈f ◦ π1, π2〉) = Λ(App ◦ 〈f ◦ π1, π2〉) .

A cartesian category is cartesian-closed if it has exponents for any two objects. The
categoryDom , consisting of (Scott) domains as objects and continuous functions as arrows,
is cartesian-closed.

A cartesian-closed category is cpo-enriched if:

Fully Abstract Semantics for Observably Sequential Languages 9

• the collection of arrows (homset) A −→ B between every two objects A and B forms
a cpo with respect to a supplementary approximation ordering vA−→B ;

• arrow composition ◦ is continuous with respect to the approximation ordering on
arrows; and

• the currying constructor Λ(·) and the pairing constructor 〈·, ·〉 are monotonic with
respect to the approximation ordering on arrows.

The continuity of function composition implies the continuity of the pairing constructor
and currying operator. The category Dom is cpo-enriched.

3 PCF: Syntax and Semantics

PCF is a functional language consisting of the typed λ-calculus augmented by numerals,
procedures to increment and decrement numbers, a conditional procedure, and a family
of fixed-point operators. The first two subsections of this section introduce the syntax
and semantics of PCF. The last subsection introduces the notions of full abstraction and
sequentiality.

3.1 PCF Syntax

The set of PCF types consists of a single ground type (o), denoting the set of observable
values, and an infinite collection of procedure types (σ → τ), denoting sets of procedural
values.

Definition 3.1 (PCF Types) The following grammar generates the set of PCF types:5

τ ::= o | (τ → τ) .

The meta-variables τ, τ1, τ ′, ν, σ, . . . range over PCF types; τ1 → τ2 → . . .→ τn abbreviates
τ1 → (τ2 → . . .→ τn). It is easy to show that all types τ have the shape

τ1 → τ2 → . . .→ τn → o

for some types τ1, . . . , τn. The arity of a type τ with shape

τ1 → τ2 → . . .→ τn → o

is n.

An unchecked PCF phrase M is either a numeral (dne for n ≥ 0), a typed variable (xτ),
a λ-abstraction, or one of two types of applications.

5We follow the usual practice of using meta-variables for sets as if they were members of a set and vice
versa.

10 R. Cartwright, P.-L. Curien, M. Felleisen

Definition 3.2 (Unchecked PCF Phrases) The following grammar generates the unchecked
PCF phrases:

M ::= c | x | (λx.M) | (M M) | (f M)
c ::= Ω | d0e | d1e | . . .
f ::= add1 | sub1 | if0 | Yτ

x ::= xτ | yτ |

The meta-variables L,M,N,L′,M ′, N ′, L1,M1, N1, . . . range over phrases.

As is customary in functional languages, λ-abstraction is the only binding form in PCF:
λx.M binds x in M . A variable that is not bound by a surrounding λ-abstraction is free. A
phrase in which all variables are bound is closed. Phrases are identified if they are intercon-
vertible by consistent renaming of bound variables, e.g., λx.x ≡ λy.y. Thus, an assertion
stating that λx.M has the property “x is not a member of some finite set of variables” means
that λx.M is an appropriate member of the equivalence class. The description of the opera-
tional semantics requires the standard notion of capture-free substitution: M [N/x] denotes
the substitution of all free occurrences of x in M by N. Finally, the standard syntactic con-
ventions of the λ-calculus apply, e.g., λxyz.M abbreviates λx.(λy.(λz.M)) and (M N L)
abbreviates ((M N) L).

Many important semantic properties of languages rely on notion of a context, which
is a program phrase with holes. The set of contexts is generated by an extension of the
grammar for unchecked PCF phrases.

Definition 3.3 (Contexts) The language of PCF contexts is generated by the grammar for
the set of unchecked PCF phrases augmented by the production:

M ::= []0 | []1 . . .

where the symbol []i, i ∈ N is called a hole.
The notation C[] designates an arbitrary context with a single hole []. Filling all

occurrences of the hole [] in the context C[] with a phrase M yields the phrase C[M] in
which λ-abstractions in C may capture free variables in M. A context with m disjoint sets
of holes, written:

C [], . . . , []︸ ︷︷ ︸
m

,

can be filled with m terms: C[M1, . . . ,Mm].
Filling a context with a context, written as C[C ′[]] yields another context.

A (typed) PCF phrase is an unchecked PCF phrase that also conforms to the type con-
straints imposed by the typed λ-calculus. Every (typed) PCF phrase M has a unique type
τ . Each variable xσ has type σ. Similarly, each constant c in the language has a designated
type τc. Within a (typed) PCF phrase, the types of the phrases in each application (M N)
must match: M must have a procedure type σ → τ and N must have type σ. The type of
the application (M N) is τ . Each λ-abstraction (λxσ.M) has type σ → τ where τ is the type
of M .

Fully Abstract Semantics for Observably Sequential Languages 11

Definition 3.4 (PCF Phrases, Programs, Program Contexts) Let M be an unchecked PCF
phrase and let A be a list of typed variables, called a type environment, that contains the free
variables of M. The relation “A proves that M is a PCF phrase of type τ ,” written A `M : τ ,
is the least relation generated by the following axioms and inference rules:

A ` xτ : τ
A, xτ `M : τ ′

A ` λxτ .M : τ → τ ′

A `M : τ ′ → τ ; A `M ′ : τ ′

A ` (MM ′) : τ

A ` dne : o
A `M : o

A ` (add1 M) : o

A `M : o

A ` (sub1 M) : o

A ` Ω : o
A `M : o

A ` (if0 M) : o→ o→ o

A `M : τ → τ

A ` (Yτ M) : τ

.

If A ` M : τ holds, it is called a typing for M . Since the choice of A does not affect
the type inference process, we often just say M has type τ . The significance of the type
environment A is explained in the definition of the semantics of PCF.

A (typed) PCF phrase is an unchecked PCF phrase that has some type τ . A PCF program
is a closed PCF phrase of type o. The hole of a context C[] has type τ if C[xτ] is a typed
phrase. Given the PCF phrases M and N of type τ , a program context C[] for M and N is
a context such that C[M] and C[N] are programs.

A PCF phrase M of type τ has arity n if τ has arity n.

The semantics of PCF phrases is easy to explain informally. Numerals denote num-
bers, Ω represents a diverging computation of type o, λ-abstractions denote call-by-name
procedures, juxtapositions denote procedure applications, and the procedural constants
add1, sub1, if0, and Yσ have their usual meanings. Hence, the procedures add1 and sub1
increment and decrement their integer inputs, respectively; the latter diverges on 0. The
procedure if0 evaluates its first argument: if the result is 0, it evaluates the second argument
and returns it; otherwise it evaluates the third argument and returns it. The Yσ operator
computes the fixed-points of procedures of type σ → σ.

The following phrases frequently appear in the analysis of PCF and warrant special
notation:

Ωo = Ω
Ωσ→τ = λxσ .Ωτ

Yσ
0 = λxσ−→σ .Ωσ

Yσ
n+1 = λfσ−→σ . (f (Yσ

n f)) .

The phrase Ωτ is a divergent phrase of type o. The phrase Yσ
i approximates the Yσ combi-

nator: for f of type σ → σ, Yσ
i f is the i-fold application of f to Ωσ. Roughly speaking, Yσ

is the least upper bound of {Yσ
i | i ∈ N}.

12 R. Cartwright, P.-L. Curien, M. Felleisen

3.2 PCF Semantics

A denotational semantics for a language based on the typed λ-calculus assigns meaning to
types and phrases by mapping them to appropriate mathematical entities. These entities
form a cartesian-closed cpo-enriched category that interprets the divergent term Ωσ as
the least element in the corresponding domain of arrows and interprets the fixed-point
combinator Yσ as the least upper bound of the approximations Yσ

i .

Definition 3.5 (Semantics for languages based on the typed λ-calculus) Let L be a language
consisting of the typed λ-calculus augmented by a set of constants including the divergent
constant Ω, and the Yσ-combinator for each type σ. A semantics for L is determined by a
triple 〈C, Co, C[[·]]〉 where C is cartesian-closed cpo-enriched category, Co is an object in C,
and C[[·]] is a function mapping each constant c of type τ in L, except Yτ , to an arrow in
1 −→ Cτ such that the following conditions are satisfied:

• The homset ⊥1−→Co
is a flat Scott domain.

• Ω is interpreted as the least element ⊥1−→Co
in the Scott domain 1 −→ Co:

C[[Ω]] =⊥1−→Co
.

• For any three objects A, B and C:

Λ(⊥C×A−→B) = ⊥C−→[A⇒B]

〈⊥A−→B,⊥A−→C〉 = ⊥A−→B×C .

Given Co, the family of objects Cτ in the category C is inductively defined by the equa-
tion:

Cσ→τ = Cσ ⇒ Cτ .

The meaning function C[[·]] is extended from constants to typed phrases excluding Yτ

as follows. Let A ` N : τ be (the conclusion of) a proof that N is a typed phrase for some
type environment A = xτn

n , . . . , x
τ1
1 , n ≥ 0. Then the meaning of N is an arrow in

1× Cτn × . . .× Cτ1 −→ Cτ

inductively defined by the following equations:

C[[A ` c : τ]] = C[[c]] ◦ 11×Cτn×...×Cτ1

C[[A ` xτ
i : τ]] = πn

i

C[[A ` λxτ .M : τ ′]] = Λ(C[[A, xτ `M : τ ′]]) xτ is not in A
C[[A ` (M1 M2) : τ ′]] = App ◦ 〈C[[A `M1 : τ → τ ′]] , C[[A `M2 : τ]]〉 .

The type environment A plays a crucial role in the extension of C[[·]] to typed phrases
containing free variables, because it determines which projection function is used to select
each variable xτ

i .
Given the meaning function C[[·]] for typed phrases excluding Yτ , let the extension of

C[[·]] to Yτ be defined by:

C[[A ` Yτ : (τ → τ) → τ]] =
⊔
{C[[A ` Yτ

n : (τ → τ) → τ]] |n ∈ N} .

Fully Abstract Semantics for Observably Sequential Languages 13

For the sake of notational economy, we refer to the semantics determined by the triple
〈C, Co, C[[·]]〉 simply by the symbol C. For closed typed terms M , we often abbreviate
C[[A `M : τ]] by C[[A `M]] or by C[[`M]], since the type of M can be reconstructed from
the types of the constants that appear in M .

The semantics of a program P is C[[` P]], an arrow in 1 −→ Co.

A semantics validates the (β) and (fix) axioms of the typed λ-calculus with Y as well
as its inference rules [8].

Lemma 3.6 Let C be a semantics for PCF. Then for all PCF phrases M and N, contexts C[] ,
appropriate type environments A, and variables xτ :

C[[A ` C[((λxτ .M) N)]]] = C[[A ` C[M [N/xτ]]]]

and
C[[A ` C[(Y M)]]] = C[[A ` C[(M (YM))]]] .

The conventional semantics for PCF based on continuous functions is an instance of the
general definition. It is based on the cpo-enriched category Dom whose objects are Scott
domains and whose arrow sets A −→ B are the sets of continuous functions from domain
A to domain B.

Definition 3.7 (Dom Semantics of PCF, Adequate Semantics, PCF-like Languages) The cpo-
enriched cartesian-closed category of the conventional semantics for PCF is Dom . The
ground type o is interpreted as N⊥:

Domo = N⊥.

The semantics assigns the following meaning to constants:

Dom[[Ωo]] = λρ : 1 . ⊥

Dom[[dne]] = λρ : 1 . n

Dom[[add1]] = λρ : 1 . λm .

{
m+ 1 m ∈ N
⊥ m = ⊥

Dom[[sub1]] = λρ : 1 . λm .

{
m− 1 m > 0
⊥ m ∈ {⊥, 0}

Dom[[if0]] = λρ : 1 . λl . λm . λn .

m l = 0
n l > 0
⊥ l = ⊥

where 1 in Dom is the trivial, one-element domain.
A semantics for PCF that assigns the same meaning as theDom semantics to the ground

type o and to all PCF programs is called adequate.

14 R. Cartwright, P.-L. Curien, M. Felleisen

For any language L based on typed λ-calculus that extends PCF (differs from PCF only
by extending the set of constants), a semantics for L is PCF-like if it assigns a flat super-
domain of N⊥ to the base type and the same meaning as the Dom semantics to PCF pro-
grams.

3.3 Full Abstraction and Sequentiality

Given the preceding definition of a PCF-like language, we are finally ready to give a rig-
orous definition of denotational and observational equivalence, the two equivalence rela-
tions on typed phrases discussed at the beginning of the paper.

Definition 3.8 (Denotational and Observational Equivalence and Approximation, Full Abstrac-
tion) In a PCF-like programming language with semantics C, letM andM ′ be phrases that
have the same type (i.e., A `M : τ and A `M ′ : τ for some list of typed variables A). Then

• M denotationally approximates M ′, written M vM ′ if

C[[A `M : τ]] v C[[A `M ′ : τ]].

• M is denotationally equivalent to M ′, written M ≡M ′, if

C[[A `M : τ]] = C[[A `M ′ : τ]].

• M observationally approximatesM ′, writtenM @∼M
′, if C assigns approximating mean-

ings to the programs C[M] and C[M ′] for all program contexts C[] for M and M ′:

C[[` C[M]]] v C[[` C[M ′]]] .

• M is observationally equivalent to M ′, written M ' M ′, if C assigns the same meaning
to the programs C[M] and C[M ′] for all program contexts C[] for M and M ′:

C[[` C[M]]] = C[[` C[M ′]]].

A semantics C is (equationally) fully abstract if for all pairs of typed phrasesM andM ′ of the
same type, M ' M ′ iff M ≡ M ′; it is inequationally fully abstract if the proposition also
holds for approximations: M @∼M

′ iff M vM ′.
In the presence of two different semantics C and C′ for a language, we attach identifying

subscripts to the denotational equivalence and approximation relations, e.g., ≡C , vC′ .

Denotational and observational equivalence are different in character. While the for-
mer relation depends on the choice of the semantics, the latter does not as long as the
semantics is adequate. More precisely, if C′ is an adequate semantics for PCF distinct from
C, it still determines the same observational equivalence relation ' but possibly a different
denotational equivalence relation. The two relations are distinct in the Dom semantics of
PCF.

Fully Abstract Semantics for Observably Sequential Languages 15

The lack of full abstraction for the Dom semantics of PCF is due to the presence of
parallel functions in the domain of continuous functions, e.g., parallel-and. Yet, PCF can
only define sequential functions, which evaluate their arguments in some specified order
and diverge when they begin to evaluate a diverging argument. The procedures pi defined
in the introduction exploit this discrepancy: they behave differently only on inputs that are
not sequential. Hence they are denotationally distinct and observationally equivalent.

Finally, we can precisely define what it means for the language to be sequential.

Definition 3.9 (Sequential Language) A PCF-like language with semantics C is sequential if
the following condition holds. Let C be a context with k holes of ground type and no
free variables and M1, . . . ,Mk be closed phrases such that C[[C[M1, . . . ,Mk]]] 6=⊥ and
C[[C[Ω, . . . ,Ω]]] =⊥. Then there exists j ∈ N, 1 ≤ j ≤ k, called a (syntactic) sequentiality
index of C, such that

C[[C[M ′
1, . . . ,M

′
j−1,Ω,M

′
j+1, . . . ,M

′
k]]] =⊥

for all phrases M ′
i (of correct type).

This definition is based on Vuillemin’s definition [33] of sequentiality for first-order
functions. Plotkin [24:Activity Lemma] and Berry [6:Theorem 3.6.4] proved that PCF is
sequential, using an adequate6 operational semantics for PCF. Plotkin’s proof is direct,
while Berry’s proof is obtained as a corollary of a general syntactic sequentiality theorem
[2, 6 : Theorem 3.6.2, 1 : Theorem 14.4.8].

We conclude the section with two useful examples of PCF procedures. The following
two equations specify two versions of the binary addition procedure:

+l = Y(λfo→o→o . (λxy . if0 x y (add1 (f (sub1 x) y))))
+r = Y(λfo→o→o . (λxy . if0 y x (add1 (f x (sub1 y)))))

The first version +l recurs on the first argument x; the second version recurs on the second
argument y. In the Dom semantics of PCF, these two procedures denote exactly the same
function, namely, binary addition. However, the two procedures clearly employ distinct
strategies to inspect their arguments. Although this difference is not observable in PCF,
it is observable in many practical languages. In the context of PCF, these two procedures
can be distinguished only by inspecting the program text. But in more practical languages,
control operators can be used to determine the evaluation order of procedures without in-
specting their text. The next section focuses on the conflict between PCF and more practical
languages.

4 Observing Sequentiality

As a pedagogic language, PCF lacks several constructs that are essential in practice. For
example, PCF does not have any provision for generating run-time errors or handling ex-
ceptions. Although this design choice simplifies the definition of the language, we believe

6An operational semantics of a PCF-like language is adequate if the evaluator diverges on a program pre-
cisely when the program denotes bottom (see Definition 3.7).

16 R. Cartwright, P.-L. Curien, M. Felleisen

that it has diverted people from discovering fully abstract semantics for simple, sequential
extensions of PCF. In the following subsections, we explain why the addition of two sim-
ple control mechanisms to PCF is important from the perspective of language design and
how their presence facilitates the construction of a fully abstract semantics.

4.1 Using Errors, Programmers Can Observe the Order of Evaluation

Since PCF excludes negative numbers, the predecessor operation for numbers diverges
when applied to zero. While this design decision avoids the complication of generating
and propagating error values in the semantics, it withholds important information from
the programmer that is readily available in real implementations. A programmer who
mistakenly tries to take the predecessor of zero would like to be informed of this fact
instead of seeing his program diverge for the sake of a “simpler” semantics. The inclusion
of error values in the language has a dramatic impact on the underlying semantics because
it permits programmers to observe the evaluation order of subexpressions in programs by
conducting simple experiments.

To report run-time errors in PCF, we can add error constants, e1, e2, . . . , en, n > 1, of
ground type to the language and demand that all procedures in the extended language be
manifestly sequential. An operation is manifestly sequential if it propagates any errors that
it encounters in evaluating its arguments. In PCF with errors, a programmer can observe
the evaluation order among subexpressions by exploiting the manifest sequentiality of all
program operations. Specifically, let C[M1, . . . ,Mm] be a terminating PCF program such
that C[Ω, . . . ,Ω] diverges. To find out which of the m distinguished subexpressions is eval-
uated first, the programmer can evaluate the expression C[e1, . . . , em] assuming m errors
are available. The result ei indicates which expression Mi was evaluated first. The same
observation can be made with only two errors at the cost of conducting m experiments.
Experiment i replaces Mj for j 6= i by e1 and Mi by e2. The index of the experiment that
yields the answer e2 identifies which subexpression is evaluated first.

Using this form of experimentation, a programmer can distinguish procedures that
denote the same function over N⊥ such as the addition procedures +l and +r defined in
Section 3. The expression (+l e1 e2) produces e1 because +l evaluates its left argument
first; (+r e1 e2) returns e2 because +r evaluates its right argument first.

4.2 Using Control Operators, Programs Can Observe the Order of Evaluation

In PCF with errors, the sequential behavior of procedures is observable externally by the
programmer but this information is not accessible internally within programs. Conse-
quently, a program cannot exploit the order of evaluation among the arguments in a pro-
cedure application. Since knowledge of the evaluation order can lead to shorter, more
expressive, and faster programs, many practical languages include a non-local control op-
erator that can propagate ordinary data values along the evaluation path that an error
value would take.

The original version of Scheme [31], for example, contained a lexically-scoped CATCH

construct for implementing non-local exits from expressions. Thus, the evaluation of the

Fully Abstract Semantics for Observably Sequential Languages 17

product = (λl . (CATCH e (Y(λπ . (λl .
(if0 (null? l) d1e

(if0 (car l) (e d0e)
(∗ (car l) (π (cdr l)))))))

l)))

Figure 1: The Function product in PCF with Lists

expression
(CATCH e (add1 (e d0e)))

returns d0e by popping the control stack back through the lexical binding of e in the form
(CATCH e . . .) after encountering the subexpression (e d0e). With such a CATCH construct,
a procedure that multiplies the elements of a list of numbers can escape from the recursive
traversal of the list if it determines that the list contains d0e; see Figure 1 for the code.
More importantly for our purposes, a program can use CATCH to determine the order of
evaluation of a procedure’s arguments. For example, the procedure

G = (λf . (CATCH x (f (x d0e) (x d1e))))

maps +l to d0e and +r to d1e.
To equip PCF with non-local control, we add a family of procedures catchτ of type

τ → o to PCF where τ = τ1 → . . . τk → o.7 If f is a procedure of type τ , then (catchτ f)
returns di− 1e if f evaluates the ith argument first and returns dk + ne if f is a constant
procedure with result dne. Equivalently, (catchτ f) is di− 1e if, for an appropriate list of
variables, yσ1

1 . . . yσm
m ,

(f Ω . . . Ω︸ ︷︷ ︸
i−1

λyσ1
1 . . . yσm

m .ej Ω . . . Ω︸ ︷︷ ︸
k−i

)

returns ej for j = 1, 2. If τ = o, catchτ is degenerate: it always returns the value of its
argument (dne).

In the context of PCF, the family of catch procedures has the same expressive power
as Scheme’s CATCH construct [7:39–40], which is equivalent to call/cc restricted to contin-
uations of type o → τ for some τ . We use the catch procedures in our extension of PCF
because the catch procedures have a simpler definition and they facilitate proving the rep-
resentability lemma (see Section 7). We designate our sequential extension of PCF by the
name SPCF.

Definition 4.1 (SPCF) Let E be a set of error constants. The language SPCF(E) is PCF
augmented by the set of constants E ∪ {catchτ}:

c ::= e (e ∈ E)
f ::= catchτ .

7Indeed, we only need catch of type (o → . . . → o) → o for the purpose of this paper.

18 R. Cartwright, P.-L. Curien, M. Felleisen

The typing rules for the new constants are

A ` e : o for all constants e ∈ E
A ` catchτ : τ → o

SPCF is an abbreviation for SPCF(E) when the set E of error constants can be deduced from
context.

Since the behavior of the procedure catchτ depends only on the arity (see Definition 3.1)
of the type τ , it suffices to decorate catch with the arity k instead of its complete type. We
will frequently exchange the type superscript τ in favor of its arity k, using catchk to denote
any procedure catchτ where τ has the form (τ1 → . . . τk → o).

4.3 Observably Sequential Programming Languages

Once we accept the idea that PCF should be extended to include error values and con-
trol operators like catch, we need to identify the technical properties that distinguish the
extension from PCF. To this end, we introduce the notions of manifest sequentiality and
observable sequentiality.

Definition 4.2 (Manifestly Sequential and Observably Sequential Languages) A sequential PCF-
like language L (see Definition 3.7) with semantics C is manifestly sequential8 if there exists
a non-empty set of error elements E ⊆ Co \ {⊥} denoted by a corresponding set of closed
expressions LE such that for any context C[]1 . . . []k with sequentiality index j and any
E ∈ LE,

C[[` C[M ′
1, . . . ,M

′
j−1, E,M

′
j+1, . . . ,M

′
k]]] = C[[` E]] .

A sequential PCF-like language L is observably sequential if for any context C[]1 . . . []k
with sequentiality index j, j is unique and there exists a program context D[] such that

C[[` D[λx1 . . . xk.C[x1, . . . , xk]]]] = C[[` dje]] .

SPCF is observably sequential and manifestly sequential (assuming E is non-empty).
We will prove this fact after we define the semantics of SPCF in Section 7 (Theorem 7.5).

4.4 Procedure Denotations Have Explicit Computational Structure

Conventional semantic definitions for languages like SPCF rely on passing continuations,
which are functions representing control contexts. In a continuation-passing semantics,
the meaning of a phrase is a functions of it free variables and its control context. In essence,
the function denoted by a phrase takes a “hidden” argument not manifest in the program

8If E contains at least two elements, a weaker property of languages called error-sensitivity is equivalent to
manifest sequentiality. A PCF-like language L with semantics C is error-sensitive if there exists a non-empty
set of error elements E ⊆ Co denoted by a corresponding set of closed expressions LE such that if ⊥= C[[`
C[Ω]]] @ C[[` C[M]]] for any M then for all E ∈ LE, C[[` C[E]]] = C[[` E]]. In the presence of at least
two errors, error-sensitivity implies sequentiality. We use the stronger notion of manifest sequentiality in this
paper to address the case where there is only one element.

Fully Abstract Semantics for Observably Sequential Languages 19

syntax, namely a continuation representing the control context. In a continuation seman-
tics, control operators like CATCH are interpreted as functions that “grab” the continu-
ation argument and pass it to other higher order arguments. For sequential languages,
continuation-passing semantics are not fully abstract because they rely on continuous
function spaces containing parallel functions (as well as control delimiters) [30]. Conse-
quently, to construct a fully abstract semantics for SPCF, we must devise a more restrictive
collection of domains that exclude parallel functions. The domains used in continuation
semantics contain too many elements.

The informal operational semantics of SPCF, notably the behavior of the catchk opera-
tors, suggests that procedure denotations should have more internal structure than func-
tion graphs. In particular, they should reflect the order in which arguments are evaluated.
Consider the procedure

p = λwxyz . (if0 x (y + d1e) (z − d2e)). (1)

It has type o→ (o→ (o→ (o→ o))), i.e., it is a procedure mapping quadruples of integers
to integers. The procedure p evaluates its second argument x first, but the subsequent
evaluation order depends on the value of x. If x is 0, p evaluates its third argument y next;
otherwise it evaluates its fourth argument z.

By supplying error values as arguments, a programmer can determine the schedule
that p uses to evaluate its arguments. The results of these experiments can be expressed in
the form of equations as follows:

(p Ω ei Ω Ω) = ei

(p Ω d0e ei Ω) = ei

(p Ω dn+ 1e Ω ei) = ei.

The equations demonstrate that p evaluates its arguments in a specific order and that the
graph of the function denoted by p contains the schedule information.

The presence of error elements forces a function to follow a unique schedule. In the
presence of errors, no function is strict in more than one piece of accessible, unexplored
information. Consequently, we can represent functions by decision-trees (schedules) with-
out sacrificing extensionality! For example, p can be represented as the index 2 paired with
a “branching” function that maps the value of the second argument to appropriate infor-
mation. The rest of the denotation is described in the same manner: if the second argument
is 0, p maps the third argument y to y + 1; otherwise, it skips that argument and decreases

20 R. Cartwright, P.-L. Curien, M. Felleisen

the value of the fourth argument by 2:

〈2,

⊥7→⊥
e1 7→ e1

. . .

0 7→ 〈3,

⊥7→⊥
e1 7→ e1

. . .
0 7→ 1
1 7→ 2
. . .

〉

1 7→ 〈4,

⊥7→⊥
e1 7→ e1

. . .
0 7→⊥
1 7→⊥
2 7→ 0
3 7→ 1
. . .

〉

. . .

〉

Since p must be manifestly sequential, its branching functions map ⊥ to ⊥ and ei to ei.
Rotating the preceding picture produces a tree with decision points as internal nodes

and alternative outcomes as branches:

r?2
PPPPPPPPP

���������

0 r1 r2 . . .r?3

@
@

@

�
�

�r1
0 r2

1 r32 . . .

r?4

@
@

@

�
�

�r⊥ 0 r⊥1 r02 . . .

For readability, each argument index i has been replaced by the symbol ?i in the rotated
picture. A node with the label ?i represents the querying of the ith argument. This notation
emphasizes that the respective indices are queries about an argument; it will be general-
ized in the next subsection to a representation where procedures can play the role of ar-
guments. The edges below a node with label ?i are labeled with the possible values of the
ith argument. The target node for each edge specifies what action the procedure performs
next. If it is a leaf (an element of N ∪ {⊥, e1, . . .}), then p has completed its computation;
otherwise, it continues to query its argument(s).

The most important property of these trees is that they are extensional when the set
of errors is non-empty. Every manifestly sequential function has a unique decision-tree
representation.

Fully Abstract Semantics for Observably Sequential Languages 21

4.5 Higher-order Procedures Explore and Output Trees Sequentially

Given that we want procedures to denote decision trees, our next task is to explain how
higher-order procedures gather information about procedural inputs. Since trees resemble
LISP S-expressions, we interpret higher-order procedures as processes that examine deci-
sion trees in essentially the same fashion as LISP procedures traverse S-expressions. Like
a LISP procedure, a higher-order procedure can inspect a node in an input tree only after
inspecting its predecessors. We express queries about procedural inputs as patterns that
identify nodes in decision trees. Thus, a query is a pair consisting of a path-pattern and an
argument index. A path-pattern is a rooted finite path of nodes and edges in a decision tree
terminated by the marker “?”. The marker identifies the node that the procedure wants to
inspect.9 If g is the actual argument under inspection, the response to a query is the label of
the specified node in g.

The crucial semantic restriction on the process is that it is sequential and propagates
error values: it cannot ignore infinite loops or errors in inputs. If computing an output
node requires inspecting an input node that is ⊥ or ei, the computed output node must be
⊥ or ei, respectively.

To illustrate what happens when a function explores a higher order input (a tree), let
us examine the behavior of the procedure

F = λg.(add1 (g Ω d0e d2e e1)) : (o→ o→ o→ o→ o) → o.

Since this procedure has only one argument, all the queries in the denotation of F have the
form 〈Q, 1〉. When (the denotation of) F is applied to an argument tree g, it knows nothing
about the value of g. Since F must determine how g behaves on certain arguments, F’s
initial query is Q1 =? to determine the root of g. If the value of g is the procedure p
described in the preceding subsection, g answers this question with the response ?2, which
is just the label of the root of p. Now F knows that g initially demands information about its
second argument. To find out more about g, the procedure F must provide the information
that g has requested, which is 0. This information determines the subtree within g that F
wants to inspect. So F asks the question 〈Q2, 1〉 where

Q2 =
r?2

���������

0r?

As with Q1, Q2 is a pattern identifying the node of g that F wants to inspect; it lies just
below the root of g on the edge labeled 0. Matching the pattern Q2 against p yields the
label ?3, which is a query about p’s third argument. Thus, as long as the input demands
more information about its arguments, its responses will simply answer the queries (about
g) with queries (about the arguments of g).

The procedure F passes the value 2 as the third argument to g. Consequently, F’s next
question to g is 〈Q3, 1〉 where:

9According to this convention, the queries ?1, ?2, . . . should be written as 〈1, ?〉, 〈2, ?〉, . . ., respectively. To
make our examples more readable, we elected to use the more compact notation ?i instead of 〈i, ?〉.

22 R. Cartwright, P.-L. Curien, M. Felleisen

Q3 =

r?2
���������

0r?3

@
@

@r?2

Matching this pattern against p yields the leaf value 3, which is the final answer of p along
this path. This response from p completes the subcomputation (g Ω 0 2 e1). F subsequently
adds 1 to the result of the subcomputation, yielding the final answer 4.

Q2 =
r?2

���������

0r?

Q3 =

r?2
���������

0r?3

@
@

@r?2

r?1

?3

@
@

@r
. . .

?4 . . .

PPPPPPPPPr
e1

?1

���������r
⊥

?2

�
�

�r〈Q2, 1〉
?3r〈Q3, 1〉
3r

4

Figure 2: A Fragment of Procedure F

If F were a black box, a programmer could determine the schedule for F by applying F
to error-laden arguments. A portion of the schedule for F (which is infinite), including the
cases discussed above, is captured by the following equations:

(F (λwxyz . e1)) = e1

(F (λwxyz . e2)) = e2

(F (λwxyz . (if0 x e1 e2)) = e1

(F (λwxyz . (if0 x (if0 (sub1 (sub1 y)) e1 e2) e3)) = e1

(F (λwxyz . (if0 x (if0 (sub1 (sub1 y)) 3 e2) e3)) = 4

(F (λwxyz . (if0 z e1 e2))) = e1

(F (λwxyz . (if0 z e2 e3))) = e1

The last pair of experiments shows that F produces the constant output e1 for a procedure
argument that is strict in its fourth position. It also shows why it is necessary in some cases
to repeat an experiment using different errors.

In a domain of decision trees representing schedules, we must be able to represent the
schedule for F by a tree with queries to inputs as internal nodes, final answers as leaves,
and possible answers from inputs as edges. Figure 2 shows the portion of tree denoted by
F, captured in the equations above. It also includes a leaf showing that F diverges if its
procedure argument g immediately demands its fourth argument. The other branches in
the tree representing F have been omitted.

Fully Abstract Semantics for Observably Sequential Languages 23

Finally, when procedures are represented as trees, it is easy to see that higher-order pro-
cedures can extract apparently intensional information from procedural arguments. For
example, the following tree represents a procedure that maps constant unary procedures
to 1 and strict unary procedures to 0:

r?1

?1

�
�

�r
0

. . .1
PPPPPPPPPr

1

0
@

@
@r
1

As we will see in Section 6 below, the catch procedure denotes a similar tree or manifestly
sequential function.

4.6 SPCF Defines Manifestly Sequential Functions

In summary, the analysis of PCF from the perspective of language design shows that
adding control operators to PCF produces a more general form of computation in which
functions have a natural representation as decision trees. Moreover, if the domain of com-
putation includes error elements, the decision tree representation is extensional. The re-
mainder of the paper is devoted to constructing a fully abstract semantics for the family
of languages SPCF(E), which extend PCF by the control operators catchτ and the error
elements E.

This work expands and generalizes the work by Berry and Curien [4] on semantics for
sequential languages based on sequential algorithms over concrete data structures. The next
section presents a new framework derived from concrete data structures—called sequential
data structures—suitable for defining both Berry and Curien’s sequential algorithms and
our manifestly sequential functions. This construction yields a cartesian-closed category
of manifestly sequential domains and manifestly sequential functions, which forms the
basis for defining fully abstract semantics for the languages SPCF(E).

5 Sequential Data Structures with Errors

The definition of a suitable semantics for SPCF presumes the existence of a category of
domains where the arrows are functions represented by decision-trees as described in
the preceding section. In denotational semantics, domains are usually constructed as the
ideal completions of finitary bases. The completion process adds infinite elements as limit
points for directed sets of finite elements[27]. Our construction of domains of trees fol-
lows the same general pattern, but relies on smaller bases consisting exclusively of prime
elements.10 This construction is less general than the usual one, but it yields a simpler
representation for domain elements in terms of the original basis.

To formulate decision trees as a Scott domain, we need to identify the finite pieces of
information used to build decision trees. For reasons that will become clear later, we have
elected to represent trees as sets of paths. Each path consists of an alternating sequence of

10Kanneganti, Cartwright, and Felleisen [19] developed an alternate characterization of the same categorical
framework using a topological formulation of the function space construction.

24 R. Cartwright, P.-L. Curien, M. Felleisen

addresses and data items. Every path begins with an address.11 Each address on a path
identifies which son below the current tree node is being selected. A tree is a set of paths
ending in data items that satisfies two constraints. First, the set is closed under the prefix
ordering on paths ending in data items. Second, all common prefixes between paths end
in data items. Hence, the first point of disagreement between any two incomparable paths
is an address.

A framework of addresses, data items, and paths governing the construction of trees is
called a sequential data structure. We will subsequently show that the set of trees determined
by a sequential data structure form a Scott domain.

Definition 5.1 (Sequential Data Structure, Path, Query, Response) A sequential data structure
(sds) M is a 3-tuple (A,D,P) consisting of three countable sets:

• a set A of addresses;

• a set D of data; and

• a prefix-closed set P of non-empty, alternating paths in (A,D)*, i.e.,

1. P ⊆ (A,D)∗ (see Section 2 (Paths));

2. ε 6∈ P ;

3. (prefix-closure) if p ∈ P , p′ ∈ (A,D)∗, p′ 6= ε, and p′ v p (where v is the prefix-
ordering on paths) implies p′ ∈ P .

A path ending in an address is also called query, and a path ending in a datum is called
response; QueM and ResM denote the sets of queries and responses for a sequential data
structure M, respectively.

A simple example that illustrates the concept of an sds is the following structure, which
generates the natural numbers as “trees”:

N = ({?},N, {?, ? · n | n ∈ N}).

N uses a single address, ?. At this address a path of N contains a single number, if it
contains any datum at all. Similarly, an sds T for truth values has the following definition:

T = ({?}, {tt ,ff }, {?, ? · tt , ? · ff }).

A slightly more interesting example is the sds N × T, which represents the cartesian
product of N and T:

N×T = ({?1, ?2},N ∪ {tt ,ff }, {?1, ?2, ?1 · n, ?2 · tt , ?2 · ff | n ∈ N}).

Depending on the first address, a path in N × T indicates the presence of a truth value
or the presence of a number in a pair. Since a path contains exactly one address and since

11To construct a cartesian-closed category, we must construct a collection of objects that is closed under
cartesian products. Hence, we need to construct a domain of tuples of decision trees, which are forests. Par
abus de langage we continue to speak of trees.

Fully Abstract Semantics for Observably Sequential Languages 25

one address is associated with truth values and the other with numbers, a path never
represents a complete pair but one of the two components. In contrast, the following sds
N⊗T is the basis for the strict product of the two sds’s:

N⊗T = ({?},N× {tt ,ff }, {?, ? · (n, tt), ? · (n,ff) |n ∈ N}).

Here a path has an address for a pair of data components, namely, a truth value and a
number.

As a last example, consider the sds N4 → N whose trees are the denotations of proce-
dures of type o → o → o → o → o like the procedure p defined in equation (1). In general
such a procedure may just output a result or it may inspect its input. In the first case, the
procedure’s representation is basically a single datum (n ∈ N) but, to formulate this de-
scription as an sds-path, it is prefixed with an address (?). Intuitively, a path of the shape
? · n represents a procedure that “fills” the only output address (?) with a natural number
(n). In the second case, the procedure’s paths must include a strategy for exploring the ar-
guments. A straightforward representation of a strategy is a series of query-response pairs,
where the query indicates which part of the argument is inspected and the response indi-
cates the anticipated response. In the sds N4 → N, the argument is a four-tuple of numbers
and hence provides four possible choices for inspection, all of which have numbers as the
only possible responses. The symbols ?1, ?2, ?3, and ?4 denote queries and numbers specify
responses.

The representation of a non-constant procedure is a set of paths that all start with the
address ?. Each path describes a strategy for exploring the input addresses ?1, ?2, ?3, and
?4, which are data items in the representation of the procedure. The path returns an “an-
swer” in N when it has gathered sufficient information about the contents of the input
addresses. The paths are identical to the paths in the tree representation for p sketched in
Subsection 4.4, except that they are preceded by the address ?. Thus, some paths in the
denotation of the procedure p are ?·?2 · 0·?3 · 1 · 2 and ?·?2 · 1·?4 · 2 · 0.

The formal specification of the sds N4 → N = (A→, D→, P→) for representations of
procedures like p is as follows:

A→ = {?} ∪ N
D→ = {?1, ?2, ?3, ?4} ∪ N

26 R. Cartwright, P.-L. Curien, M. Felleisen

P→ =

?,
? · n,
?·?i1 ,
?·?i1 · n1,
?·?i1 · n1 · n,
?·?i1 · n1·?i2 ,
?·?i1 · n1·?i2 · n2,
?·?i1 · n1·?i2 · n2 · n,
?·?i1 · n1·?i2 · n2·?i3 ,
?·?i1 · n1·?i2 · n2·?i3 · n3,
?·?i1 · n1·?i2 · n2·?i3 · n3 · n,
?·?i1 · n1·?i2 · n2·?i3 · n3·?i4 ,
?·?i1 · n1·?i2 · n2·?i3 · n3·?i4 · n4

?·?i1 · n1·?i2 · n2·?i3 · n3·?i4 · n4 · n

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

n, n1, n2, n3, n4 ∈ N,
{i1, i2, i3, i4} = {1, 2, 3, 4}

Equivalently, a path is a member of the context-free language (specified in extended BNF):

p ::= r | q
r ::= ? · [?i · n]∗ ·m | ? · [?i · n]∗·?j

q ::= ? · [?i · n]∗

where m,n ∈ N, i, j ∈ {1, 2, 3, 4} and no address (?, ?i) occurs more than once in a path.
The formal definition of N4 → N also clarifies how a query of the sds N becomes

a datum in the specification of a procedure space, and, conversely, how a datum in N
becomes an address in the procedure space.

Given the preceding definition of sds’s, we can restate our informal definition of a tree
as follows. A tree is a set of responses such that all the response predecessors of a re-
sponse are included and such that all non-empty intersections of elements are responses
(and hence included). In the domain of trees determined by an sds, the finite elements are
precisely the finite trees, including the empty one.

To accommodate error values in computations involving trees, we need to include error
elements in the domain of trees determined by an sds. The following definition formalizes
the definition of trees and tree domains that possibly contain error values.

Definition 5.2 ((Manifestly) Sequential Domain, Tree) Let M = (A,D,P) be an sds, and let

E = {e1, e2, . . .}

be a possibly empty set of error values, or errors for short, disjoint fromD. An error response
is a path r = q · e consisting of a query q ∈ QueM extended with an element e ∈ E. Since
E ∩ D = ∅, error responses and responses are disjoint. An observable response r is either a
response or an error response:

Rese
M = ResM ∪ {q : e | q ∈ QueM, e ∈ E}.

A tree x over M relative to E is a set of observable responses closed under the prefix order-
ing and greatest lower bounds:

Fully Abstract Semantics for Observably Sequential Languages 27

prefix-closed: x ⊆ Rese
M such that if r ∈ x and r′ v r for some r′ ∈ ResM, then r′ ∈ x;

glb-closed: if r, r′ ∈ x, then r u r′ = ε or r u r′ ∈ Rese
M (and, by prefix-closure, is therefore

in x).

A tree that does not contain error responses is called error-free. The set of trees over M
relative to E is denoted by D(M), and is ordered by set-inclusion. A partial order that is
isomorphic to D(M) for some M is called the sequential domain generated by M. D0(M) is
the set of finite sets of paths (finite trees). We call these domains manifestly sequential if the
underlying set of errors is non-empty.

Convention The symbol⊥ is used interchangeably with ∅ for the least element in domains.

To provide some intuition about sequential domains, let us describe the domains gen-
erated by the example sds’s presented earlier in this section. Unless noted otherwise, this
discussion of examples assumes that the set E of errors is empty.

The domain D(N) generated by N has as its universe the set {⊥, {? · n} |n ∈ N}. It is
clearly isomorphic to the flat domain N⊥ of natural numbers. If the set of errors is non-
empty, D(N) contains all the error elements, which are incomparable to numbers and each
other but dominate bottom. The composite symbol Ne

⊥ denotes the domain generated by
N when errors are present.

The domain D(T) is flat like D(N); it is isomorphic to T⊥, the flat domain of truth
values. Again, if there are errors, each of them dominates ⊥ and is incomparable to all
other elements.

The domain D(N×T) consists of the set

{⊥, {?1 · n}, {?2 · t}, {?1 · n, ?2 · t} |n ∈ N, t ∈ {tt ,ff }}

under the relation ⊆. It is isomorphic to the cartesian product domain N⊥ × T⊥. This
example illustrates how independent information appears on distinct paths in a tree and
how a missing path in a tree signifies lack of information (bottom). Consider the trees
{?1 · 1, ?2 · tt} and {?2 · tt}; the former represents the pair (1, tt) and the latter corresponds
to the pair (⊥, tt).

The domain D(N ⊗ T) over the sds N ⊗ T is clearly isomorphic to the strict product
domain N⊥ ⊗ T⊥. The elements of D(N ⊗ T) are {⊥, {? · (n, t)} |n ∈ N, t ∈ {tt ,ff }}. In
other words, every element of D(N ⊗ T) other than ⊥ is the single query ? followed by a
pair (n, t) where n ∈ N and and t ∈ {tt,ff}.

In the absence of errors, the domain D(N4 → N) does not correspond to a standard
function domain construction. It is isomorphic to Berry and Curien’s domain of sequential
algorithms [8:ch. 2]. As we have already pointed out, sets of paths in N4 → N are most
easily understood as trees (technically forests). Unlike the trees of the preceding examples
whose maximal depth was two, the elements of D(N4 → N) may be up to ten levels deep.
Two examples of error-free trees over this structure are

Π1
l = {?·?1, ?·?1 · n · n |n ∈ N}

Π1
s = {?·?1}

28 R. Cartwright, P.-L. Curien, M. Felleisen

Both “algorithms” attempt to provide a datum for their single output address ? and, for
this purpose, inspect the first component of their argument. The first algorithm returns
the response it gets for its query and thus computes the projection function of four-tuples
for the first position. The second one is an approximation to the first: it diverges after
the inspection of the argument yields an error-free response. These examples serve to
illustrate some concepts in the following discussion. While D(N4 → N) is not isomorphic
to a traditional domain construction, it is nevertheless a Scott domain as are all domains
over an sds.

Proposition 5.3 The (observably) sequential domain D(M) over an sds M is a Scott domain; the
corresponding set of finite trees D0(M) comprises the finite elements of D(M).

Proof. It is easy to verify that the union of a bounded set of trees is a tree, that is, that the
union is also prefix- and glb-closed. Hence, the proof of the proposition is a variation of
the proof for the standard meta-theorem on ideal constructions [27].

After establishing what the domains for the semantics of SPCF are, we turn to func-
tions between domains. Specifically, we must formalize the notion of a manifestly sequen-
tial function, which we sketched in the previous section. We begin by introducing some
auxiliary terminology and notation.

Definition 5.4 (Open and Answered Query) Let M = (A,D,P) be an sds. Given a tree x in
the domain D(M), a query q ∈ QueM is:

• answered in x, written q ∈ Answered(x), if q v r for some r ∈ x;

• open in x, written q ∈ Open(x), if q is not answered in x and q = r · a, for some r ∈ x
and a ∈ A.

To illustrate this terminology, consider the domain elements Π1
l ,Π

1
s in D(N4 → N):

Open(Π1
l) = ∅ Answered(Π1

l) = {?, ?·?1 · n |n ∈ N}
Open(Π1

s) = {?·?1 · n |n ∈ N} Answered(Π1
s) = {?}.

Next we turn to the definition of the sequential and manifestly sequential functions
between domains determined by sds’s. Our definitions of these terms are motivated by
constraints on the meaning of contexts imposed by sequential and manifestly sequential
languages.

Definition 5.5 (Sequential and Manifestly Sequential Functions) Let M1, M2 be sds’s and
let D(M1),D(M2) be the corresponding domains relative to an error set E. A function
f : D(M1) −→ D(M2) is:

• monotonic if x v y implies f(x) v f(y);

• continuous if r ∈ f(x) implies r ∈ f(y) for some finite y v x.12

12This notion of continuity is weaker than the usual definition based on directed sets, but in tandem with
monotonicity it is equivalent to the usual definition (which implies monotonicity).

Fully Abstract Semantics for Observably Sequential Languages 29

A monotonic, continuous function f : D(M1) −→ D(M2) is:

• sequential if q′ ∈ Open(f(x)) and q′ ∈ Answered(f(z)) for some finite z w x implies
that there exists q ∈ Open(x), called a sequentiality index of f at (x, q′), such that for
all y w x, q′ ∈ Answered(f(y)) implies q ∈ Answered(y);

• manifestly sequential if f is sequential, E is non-empty, and for any sequentiality index
q at (x, q′), f(x ∪ {q · e}) = f(x) ∪ {q′ · e} for e ∈ E;13

For E 6= ∅, we let F(M1 ⇒ M2) denote the collection of manifestly sequential functions
from D(M1) to D(M2). If E = ∅, then no function f : D(M1) −→ D(M2) is manifestly
sequential because manifest sequentiality requires E 6= ∅. In this case we let F(M1 ⇒ M2)
denote the collection of sequential functions from D(M1) to D(M2).

To explain the concept of manifest sequentiality and its relationship to sequentiality, let
us examine a series of examples. First, we observe that a continuous, monotonic function
may not have a sequentiality index for a given pair of input value and output query. Let
f : D(N×T) −→ D(T) be defined as follows:

f({?1 · 0} ∪X) = {? · tt}
f({?2 · tt} ∪X) = {? · tt}

f({?1 ·m, ?2 · ff }) = {? · ff } for m ≥ 1
f(⊥) = ⊥

where X ⊇ ∅ is any set such that the input is a proper tree. The function is not sequential
because f does not have a sequentiality index at (⊥, ?): f can produce output by looking at
either ?1 or ?2 and thus neither of them is a sequentiality index. A uniprocessor implemen-
tation of non-sequential function must rely on time-slicing to prevent a diverging input
from forcing the implementation to diverge.

The identity function id : D(N) −→ D(N) (relative to E = {e}) is manifestly sequential.
The query ? is the sequentiality index for (⊥, ?). No other pair can have a sequential-
ity index, and thus id is sequential. The sequentiality index of the identity function from
D(N4 −→ N) to itself (over the empty set of errors) for (⊥, ?) is ?. For (x, ?·?1 · n) (with
?·?1 · n ∈ Open(x)), it is ?·?1 · n. Again, the function is sequential. Indeed, all identity func-
tions are manifestly sequential functions. Moreover, the composition of two manifestly
sequential functions is manifestly sequential.

Proposition 5.6 Let M, M1, M2 and M3 be sds’s and let D(M), D(M1), D(M2), and D(M3)
be the corresponding domains relative to E. Then

13If E contains at least two elements, then the weaker notion of error-sensitivity is equivalent to manifest
sequentiality. Given a monotonic, continuous function f : D(M1) −→ D(M2), the input z ∈ D(M1) is a threshold
for query q′ if q′ ∈ Answered(f(z)) yet q′ ∈ Open(f(y)) for all y @ z. For ei ∈ E, an ei-variant of z ∈ D(M1) is
an element of the form y ∪ {q · ei} such that y v z, Open(y) ⊆ Open(z) ∪ {q}. The function f is error-sensitive
if for all finite x, y, z ∈ D(M1) such that x @ z ∈ D(M1), z is threshold for q′, and y is an ei-variant of z:

q′ : ei ∈ f(y).

30 R. Cartwright, P.-L. Curien, M. Felleisen

1. the identity function idD(M) : D(M) −→ D(M) is (manifestly) sequential: sequential for all
E and manifestly sequential for E 6= ∅;

2. if f : D(M1) −→ D(M2) and g : D(M2) −→ D(M3) are (manifestly) sequential functions,
then the composite function h(x) = g(f(x)) is (manifestly) sequential.

Proof. The first part of the proposition follows from a generalization of the argument just
given for the id function on the domain D(N4 −→ N). To verify the second part, we
must prove that g ◦ f is monotonic, continuous, and (manifestly) sequential. The first
two properties are easy to verify. To prove sequentiality, assume q′ ∈ Open(g(f(x)))
and q′ ∈ Answered(g(f(z))) for some z w x. Then, by the (manifest) sequentiality of
g, there is a (unique) sequentiality index q∗ for (f(x), q′). Clearly, q∗ ∈ Open(f(x)) and
q∗ ∈ Answered(f(z)). Hence, by the (manifest) sequentiality of f , there is a (unique) se-
quentiality index q for (x, q∗). It is easy to check that q is a (unique) sequentiality index of
g ◦ f for (x, q′). Finally, to verify manifest sequentiality, observe that

g(f(x ∪ {q · e})) = g(f(x) ∪ {q∗ · e}) by the manifest sequentiality of f
= g(f(x)) ∪ {q′ · e} by manifest sequentiality of g

which concludes the proof.

A more interesting example of a sequential function is the addition function from
D(N×N) to D(N) relative to the empty error set:

+ :

D(N×N) −→ D(N) for E = ∅
{?1 · n1, ?2 · n2} 7→ {? · n |n = n1 + n2}
{?1 · n} 7→ ⊥
{?2 · n} 7→ ⊥
⊥ 7→ ⊥

for n ∈ N. At the input⊥ and the output query ?, the function has two sequentiality indices,
namely, ?1 and ?2. Only if both addresses of the input tree contain a datum will + produce
a response distinct from ⊥.

In contrast, a manifestly sequential function f has unique sequentiality indices and a
non-empty error set E.

Proposition 5.7 Let M1, M2 be sds’s and let D(M1) and D(M2) be the respective domains rela-
tive to E. Let f : D(M1) −→ D(M2) be an manifestly sequential function. Then all sequentiality
indices are unique.

Proof. Let x ∈ D(M1) be a tree such that q′ is open for f(x) and answered in f(z) for some
z w x. Assume q1 and q2 are sequentiality indices. Then, by manifest sequentiality,

f(x ∪ {q1 : e}) = f(x) ∪ {q′ : e}

for e ∈ E. Since q′ is answered in f(x) ∪ {q′ : e} and x ∪ {q1 : e} w x, sequentiality implies
that q2 is answered in x∪ {q1 : e}. But given that q2 was open in x, this means that q1 = q2,
as desired.

Fully Abstract Semantics for Observably Sequential Languages 31

Notation: Based on this lemma, it makes sense to introduce the notation sif (x, q′) for the
sequentiality index of an observably sequential function f at (x, q′).

As a result, the evaluation strategy for f is uniquely determined by the graph of the
function. Moreover, that strategy can be effectively extracted from the graph by inspecting
the behavior of f on inputs containing errors. There are two manifestly sequential addition
functions. Left addition is defined by the graph:

+l :

D(N×N) −→ D(N) for E 6= ∅
{?1 · n1, ?2 · n2} 7→ {? · n |n = n1 + n2}
{?1 · n} 7→ ⊥
{?1 · ei} 7→ {? · ei}
{?1 · ei, ?2 · x} 7→ {? · ei}
{?2 · x} 7→ ⊥
{?1 · n, ?2 · ei} 7→ {? · ei}
⊥ 7→ ⊥

where n ∈ N, ei ∈ E, and x ∈ N ∪ E. When +l inspects its input it always inspects the first
component of the pair first. If the first component is ei, manifest sequentiality forces +l to
return ei. If the first component is a number, then +l inspects the second component and
returns the appropriate result when the value of the second component is determined. The
reader may want to construct the graph of “right addition”, +r, and compare it with the
graph of +l.

The preceding definitions of manifestly sequential domains and functions and Proposi-
tion 5.6 have laid the groundwork for constructing a category SEQ(E) suitable for defining
the semantics of of SPCF.

6 The Manifestly Sequential Cartesian-Closed Category

In this section we show that manifestly sequential domains and functions form a cpo-
enriched cartesian-closed category SEQ(E) provided E 6= ∅. We begin by defining the
category SEQ(E) consisting of (manifestly) sequential domains and functions relative to an
error set E.

Definition 6.1 (SEQ(E)) The category of (manifestly) sequential objects and functions over
an error set E is defined as follows:

1. the collection of objects is {D(M) |M is an sds}, the set of (manifestly) sequential
domains over sds’s relative to E;

2. the collection of arrows between the objects D(M1) and D(M2) is F(M1 ⇒ M2),14

the set of (manifestly) sequential functions relative to E;

3. the composition operation for arrows is the usual function composition;

14This definition of homset is independent of the choice of the sds’s M1 and M2 representing D1 and D2,
where D1 = D(M1) and D2 = D(M2).

32 R. Cartwright, P.-L. Curien, M. Felleisen

4. for each object the identity arrow is the identity function.

We use the notation SEQ(E) to refer to this category.

By Proposition 5.6, the preceding definition formalizes a category. More importantly,
most of these categories, specifically, all those generated over non-empty error sets, are
cartesian-closed categories.

Theorem 6.2 1. If E 6= ∅, then SEQ(E) is a cartesian-closed category.

2. SEQ(∅) is not cartesian-closed.

Proof. For non-empty sets of error values E, we prove in the following two subsections
that the category is cartesian (Lemma 6.6) and cartesian-closed (Lemma 6.22). Berry and
Curien [4: Theorem 3.4.6] showed that the category of concrete domains and sequential
functions is not cartesian-closed. In the Appendix, we prove that SEQ(∅) is equivalent
to the Berry and Curien’s original category of (filiform) concrete domains and sequential
functions, which implies the second part of the theorem.

An alternative way of defining a cpo-enriched cartesian-closed category for SPCF ex-
ploits the bijection between an exponent object D(M1 ⇒ M2) in SEQ(E) (see Defini-
tion 6.21) and the corresponding manifestly sequential function space F(M1 ⇒ M2) when
E 6= ∅. The category Seq(E) has the same objects as SEQ(E) but it uses the set D(M1 ⇒ M2)
instead of F(M1 ⇒ M2) as the homset D(M1) −→ D(M2) where the composition of such al-
gorithms is defined in terms of Berry and Curien’s abstract algorithms (see Definition A.3).
This category is important because it relates our work to the original work of Berry and
Curien on sequential algorithms. When E = ∅, Seq(E) contains more arrows than SEQ(E)
because many functions are represented by more than one decision tree. The additional
arrows make Seq(E) cartesian-closed at the cost of sacrificing extensionality. Appendix A
defines the category Seq(E) and discusses its relationship to both SEQ(E) and Berry and
Curien’s original category.

Theorem 6.3 Seq(E) is cartesian-closed for all sets of error values E.

Proof. Appendix A contains the equivalence proof between Seq(∅) and the Berry-Curien
cartesian-closed category of filiform concrete data structures. The rest follows from Theo-
rem 6.2.

The rest of this section is dedicated to proving the two lemmas cited in the proof of The-
orem 6.2. The first subsection shows that the category SEQ(E) is cartesian. The second sub-
section defines the exponent of two sds’s, proves an extensionality theorem for elements
of the exponent, and uses this result to prove that the category SEQ(E) is cartesian-closed
if E is non-empty. In these two subsections, E is a fixed but unspecified, non-empty set of
error values. The results of the first subsection hold for all possible error sets, but those of
the second subsection are sensitive to the cardinality of E.

Fully Abstract Semantics for Observably Sequential Languages 33

6.1 SEQ(E) is Cartesian

We begin by identifying the terminal object in SEQ(E) and defining the product construc-
tion on objects of SEQ(E).

Definition 6.4 (Terminal sds, Object, Arrow) The terminal sds is the triple (∅, ∅, ∅). The termi-
nal object 1 is the domain containing the single element ⊥ (∅). If A is an object in SEQ(E),
then the arrow 1A : A −→ 1 is the constant function whose graph is {(x,⊥) |x ∈ A}.

The construction of a product in SEQ(E) relies on the notion of a product sds, which is
basically a “disjoint union” of two sds’s.

Definition 6.5 (Product sds, Object, Arrow) Let M1 = (A1, D1, P1) and M2 = (A2, D2, P2) be
two sds’s. The product sds of M1 and M2 is M1 ×M2 = (A,D,P) where

A = A1]A2

D = D1]D2

P = {〈b1, i〉 · . . . · 〈bn, i〉 | b1 · . . . · bn ∈ Pi for i ∈ {1, 2}}

The product object of D(M1) and D(M2) is the domain D(M1 ×M2). The projection func-
tions π×i : D(M1 ×M2) −→ D(M1) remove the disjoint union tag from each component of
a path from the respective domain and ignore other paths:

π×i (x) = {a1 · d1 · . . . · an · dn | 〈a1, i〉 · 〈d1, i〉 · . . . · 〈an, i〉 · 〈dn, i〉 ∈ x}
∪
{a1 · d1 · . . . · an · e | 〈a1, i〉 · 〈d1, i〉 · . . . · 〈an, i〉 · e ∈ x}.

If D(M) is an object and fi : D(M) −→ D(Mi), i ∈ {1, 2}, are functions, then the pair
〈f1, f2〉 is the function that combines the results of both functions:

〈f1, f2〉(x) = inj 1(f1(x)) ∪ inj 2(f2(x))

where the injection functions inj i : D(Mi) −→ D(M1 ×M2), i ∈ {1, 2}, put an appropriate
tag on each element of each path:

inj i(x) = {〈a1, i〉 · 〈d1, i〉 · . . . · 〈an, i〉 · 〈dn, i〉 | a1 · d1 · . . . · an · dn ∈ x}
∪
{〈a1, i〉 · 〈d1, i〉 · . . . · 〈an, i〉 · e | a1 · d1 · . . . · an · e ∈ x}.

The second components in the unions defining the projection and the injection functions
above are included to make the functions manifestly sequential.

It is easy to verify that the preceding definition constitutes a product construction for
SEQ(E). Specifically, the projection and pairing functions are manifestly sequential func-
tions and satisfy the required equations.

34 R. Cartwright, P.-L. Curien, M. Felleisen

Lemma 6.6 Let f1 : D(M) −→ D(M1) and f2 : D(M) −→ D(M2) be manifestly sequential
functions. Then π×1 , π×2 , and 〈f1, f2〉 are manifestly sequential functions that satisfy the following
equations:

π×1 ◦ 〈f1, f2〉 = f1

π×2 ◦ 〈f1, f2〉 = f2

〈π×1 ◦ f, π×2 ◦ f〉 = f

where f ranges over D(M) −→ D(M1 ×M2).

Proof. The functions π×1 , π×2 , and 〈f1, f2〉 for appropriate f1, f2 are clearly monotonic and
continuous. The sequentiality index of π×i for (x, a1 ·d1 · . . . ·an) is 〈a1, i〉 · 〈d1, i〉 · . . . · 〈an, i〉.
Similarly, the sequentiality index of the function 〈f1, f2〉 for (x, 〈a′1, i〉 · 〈d′1, i〉 · . . . · 〈a′n, i〉)
is the sequentiality index of fi for (x, ·a′1d′1 . . . a′n). The function is manifestly sequential
because f1 and f2 are manifestly sequential.

The rest of the proof is a straightforward calculation based on the preceding definitions.
For any x,

(π×1 ◦ 〈f1, f2〉)(x) = π×1 (inj 1(f1(x)) ∪ inj 2(f2(x)))
= π×1 (inj 1(f1(x))) ∪ π×1 (inj 2(f2(x)))
= π×1 (inj 1(f1(x)))
= f1(x).

Hence, π×1 ◦ 〈f1, f2〉 = f1. Similarly, for all x,

(〈π×1 ◦ f, π×2 ◦ f〉)(x) = inj 1(π
×
1 (f(x))) ∪ inj 2(π

×
2 (f(x)))

= (f(x) \ inj 2(f(x))) ∪ (f(x) \ inj 1(f(x)))
= f(x) ,

implying that 〈π×1 ◦ f, π×2 ◦ f〉 = f .

We have thus shown that SEQ(E) is a cartesian category.

6.2 SEQ(E) is Cartesian-Closed

The construction of exponent objects in SEQ(E) relies on the extensional representation of
manifestly sequential functions as trees. The first part of this section explains that rep-
resentation and identifies its important technical properties. The second part uses these
properties to prove that SEQ(E) is cartesian-closed provided E is non-empty. For a general
treatment of the case E = ∅ we refer to Curien’s monograph [8] and Appendix A.

6.2.1 An Extensional Representation of Functions as Trees

The informal description of the decision tree representation for functions in the preceding
two sections referred to the strategy that a function uses to explore its argument. Roughly
speaking, a strategy is a sequence of queries and responses between the function and its

Fully Abstract Semantics for Observably Sequential Languages 35

argument (which may be a tuple). The application of a function follows a particular strat-
egy as long the argument yields the anticipated responses. If the actual response differs
from the expected response, the function must use an alternate strategy (consistent with
the explored prefix of the previous strategy) or diverge.

Technically, a strategy for a (finite) argument value x is a non-repetitive, alternating
sequence of queries and responses, starting with a query, such that x is the collection of all
responses in the sequence. In such a sequence, each response q ·d is immediately preceded
by the query q. Conversely, each query p · a is preceded (but not necessarily immediately)
by the response p. These two properties capture the idea that a function can only explore
a path in its argument after it has explored all approximations to the path. In addition,
an observable response whose last element is an error value cannot appear in a strategy.
Otherwise, a function could check for the presence of error values in its input and output
a non-error value, violating the manifest sequentiality condition. If the exploration of the
argument x encounters an error value, the application process must place the same error
value in the output tree at the appropriate position. This part of the application process is
encoded into the application function (see Definition 6.10 below). The formal definition of
a strategy follows.15

Definition 6.7 (Path Sequences) Let M = (A,D,P) be an sds. A path sequence s over M is
a path p1 · . . . · pn over the alphabet (QueM ∪ ResM) such that:

1. s ∈ (QueM,ResM)∗, and s is non-repetitive in QueM (which implies that the path is
also non-repetitive in ResM);

2. for all i ≥ 1 such that 2i+1 ≤ |s|, there exists d ∈ D such that s@(2i+ 1) = s@(2i)·d;

3. s@0 ∈ A (that is, s@0 has length 1); and

4. for all i ≥ 1 such that 2i ≤ |s| there exists an j such that 2j + 1 < 2i and s@(2i) =
s@(2j + 1) · a for some a ∈ A.

A path sequence over M is a path constructed from tokens that are paths. For this reason,
a path sequence can be interpreted as the linearization of a tree. This idea is formalized in
the next lemma.

Lemma 6.8 If s is a path sequence over M, then {s@(2i+ 1) | 2i+ 1 ≤ |s|} ∈ D(M).

Proof. Let T stand for the set in question. We must show that T is prefix-closed and glb-
closed. By conditions 2 and 4 in the preceding definition, and by induction on the position

15The set of path sequences over M can be formulated as an sds with QueM and ResM as the sets of ad-
dresses and responses. This observation is the basis for a factorization of the function space construction into
a construction of path sequences and an affine function space. One can show that the two ways of constructing
the function space yield isomorphic results, an idea that naturally leads to the construction of a model of affine
and possibly linear logic. This decomposition is explored in forthcoming papers by Lamarche [20] and by the
second author [11].

36 R. Cartwright, P.-L. Curien, M. Felleisen

in s, T contains all response predecessors of its elements, i.e., T is prefix-closed. Next as-
sume that q · d, q · d′ ∈ T . Then q · d = s@(2i+ 1) for some i and q · d′ = s@(2j + 1) for
some j. By condition 2, q = s@(2i) = s@(2j), and i = j by condition 1. This implies that
d = d′. Hence, T is also glb-closed, proving the lemma.

Notation Given the preceding lemma, it makes sense to introduce the notation ||s|| (pro-
nounced “tree of s”) to denote the tree {s@(2i+ 1) | 2i+ 1 ≤ |s|}.

After a successful (possibly void) exploration of its argument based on some strategy,
the function may construct a path in its output. Thus, a path in an element of an exponent
object alternates between pieces of a strategy and pieces of output information. Since an
output path, like any other path, is an alternating path of addresses and data, a path in
a “functional tree” is a sequence starting with an address a on an output path, continued
with a strategy, eventually followed by a datum that could be associated with a on the
output path. The path can then continue with a new output address, followed by a (portion
of a) strategy eventually followed by an output datum, and so on. This representation of
functions is formalized in the following construction.

Definition 6.9 (Exponent sds) Let M1 = (A1, D1, P1) and M2 = (A2, D2, P2) be sds’s. Let
Res1 = ResM1 , Que1 = QueM1

, and S1 be the set of path sequences over M1. The exponent
sds M1 ⇒ M2 is (A,D,P) where

A = Res1]A2

D = Que1]D2

P = {p ∈ (A,D)∗ | π⇒1 (p) ∈ S1, π
⇒
2 (p) ∈ P2 or π⇒2 (p) = ε

p@0 = 〈a, 2〉, a ∈ A2,
if p@(i+ 1) = 〈a, 2〉, a ∈ A2 then p@ i = 〈d, 2〉, d ∈ D2,
if p@(i+ 1) = 〈r, 1〉, r ∈ Res1 then p@ i = 〈q, 1〉, q ∈ Que1}

.

The corresponding recursive functions π⇒1 : P −→ (Que1 ∪ Res1)∗ and π⇒2 : P −→ (A2 ∪
D2)∗ are defined as follows:

π⇒i (ε) = ε; π⇒i (p · 〈x, i〉) = π⇒i (p) · x; π⇒i (p · 〈x, j〉) = π⇒i (p) if i 6= j

for x ∈ A2 ∪D2 ∪ Res1 ∪Que1 and i, j ∈ {1, 2}. The extensions of these functions to paths
in domain elements propagate errors:

π⇒i (p · e) = π⇒i (p) · e.

Note: In the set comprehension defining P , the two last conditions imply each other; they
are both mentioned for clarity.

To ensure that the exponent construction is well-defined, we need to confirm that P is
a valid set of paths. First, it does not contain the empty path since π⇒2 (p) ∈ P2 forces p 6= ε.
Second, it is prefix-closed because S1 and P2 are prefix-closed. Note that the construction
precisely captures the idea that a procedure cannot examine a node in a decision tree unless
it has already examined its ancestors. Technically, if p · 〈q, 1〉 is a response in the exponent,
then q ∈ Open(||π⇒1 (p)||).

Fully Abstract Semantics for Observably Sequential Languages 37

A simple example of an exponent sds is N ⇒ N :

A = {〈?, 2〉, 〈? · n, 1〉 |n ∈ N}
D = {〈n, 2〉, 〈?, 1〉 |n ∈ N}

P =
{

〈?, 2〉, 〈?, 2〉 · 〈n, 2〉, 〈?, 2〉 · 〈?, 1〉
〈?, 2〉 · 〈?, 1〉 · 〈? · n, 1〉, 〈?, 2〉 · 〈?, 1〉 · 〈? · n, 1〉 · 〈m, 2〉

∣∣∣∣m,n ∈ N
}
.

Similarly, the sds N4 → N described in the previous section is an exponent modulo the
renaming of addresses and data.

The shape of a tree over an exponent sds satisfies three simple constraints, which we
exploit in drawing trees schematically:

〈a0, 2〉

〈q0, 1〉/〈d0, 2〉r
Top of a tree

〈q, 1〉r
�

�
�

�

A
A
A
A

. . .〈r1, 1〉 〈rn, 1〉rr
Query and Responses

〈d, 2〉r
�

�
�

�

A
A
A
A

. . .〈a1, 2〉 〈an, 2〉rr
Datum and Addresses

The top of the tree is always an initial address from M2 followed by a either a datum from
M2 or a one-element query from M1. The root of a proper subtree may be labeled with
a query q. It may then have as many sons as there are legal responses r1 through rn; the
responses are used as labels for the outgoing edges from a query node. Similarly, a node
may be labeled with a datum d from M2 and the outgoing edges may then be labeled with
as many addresses a1 through an from M2 as can possibly follow on a legal path in M2.
The trees in Section 4 omit the top part, which can always be restored, and do not require
the datum/address shape because the corresponding functions are always fully uncurried.

Figure 3 shows left-addition as an example of a tree in N ⇒ N ⇒ N. A more interesting
example of a function tree over (N ⇒ N) ⇒ N ⇒ N, including its SPCF text, is displayed
in Figure 4. The tree tests whether its input is a strict function, and if so returns the function
sub1 when the argument maps 0 to 1 and 1 to 2. For non-strict inputs, the function returns
whatever the input returns.

A path p in a decision tree of an exponent sds has a natural interpretation as a piece of
an algorithm. Such a path has the shape:

〈a1, 2〉 · s∗1 · 〈d1, 2〉 · 〈a2, 2〉 · . . . · 〈dn−1, 2〉 · 〈an, 2〉 · s∗n · 〈dn, 2〉 · 〈an+1, 2〉 · s∗n+1

where each segment s∗i , for 1 ≤ i ≤ n, is a tagged portion of a strategy:

s∗i = 〈qi,1, 1〉 · 〈ri,1, 1〉 · . . . · 〈qi,mi , 1〉 · 〈ri,mi , 1〉

for some mi ≥ 0. When stripped of its tags, each s∗i is a portion

si = qi,1 · ri,1 · . . . · qi,mi · ri,mi

of a path sequence such that for all i, 1 ≤ i ≤ n + 1, the composite sequence s1 . . . si is
a path sequence (over M1). For example the right-most path in the tree of Figure 4, the

38 R. Cartwright, P.-L. Curien, M. Felleisen

〈〈?, 2〉, 2〉

〈?, 1〉r
�

�
�

�
�

�
�

�
�

〈? · 0, 1〉

r
�

�
�

A
A
A

�
�

�
�

�
�

〈? · 1, 1〉

r
�

�
�

A
A
A.

. . .

Q
Q

Q
Q

Q
Q

Q
Q

Q 〈〈?, 1〉, 2〉

〈? · n, 1〉 . . .

r
�

�
�

�
�

�

〈n, 2〉

〈〈? · 0, 1〉, 2〉

r
�

�
�

�
�

��

〈n+ 1, 2〉

〈〈? · 1, 1〉, 2〉r
. . .

@
@

@
@

@
@

〈m+ n, 2〉

〈〈? ·m, 1〉, 2〉 . . .

r
Figure 3: Left Addition: +l

pieces are:

〈a1, 2〉 = 〈〈?, 2〉, 2〉
s∗1 = query response

〈〈?, 2〉, 1〉 〈〈?, 2〉 · 〈?, 1〉, 1〉
〈〈?, 2〉 · 〈?, 1〉 · 〈? · 0, 1〉, 1〉 〈〈?, 2〉 · 〈?, 1〉 · 〈? · 0, 1〉 · 〈1, 2〉, 1〉
〈〈?, 2〉 · 〈?, 1〉 · 〈? · 1, 1〉, 1〉 〈〈?, 2〉 · 〈?, 1〉 · 〈? · 1, 1〉 · 〈2, 2〉, 1〉

〈d1, 2〉 = 〈〈?, 1〉, 2〉
〈a2, 2〉 = 〈〈? · n, 1〉, 2〉

s∗2 = ε

〈d2, 2〉 = 〈〈(n− 1), 2〉, 2〉
s∗3 = ε

With the initial address a1, the path p announces that the function attempts to construct
an output path starting with a1. If it can now successfully explore the argument according
to strategy s1, the function will add the datum d1 to the output path, finishing the first
possible approximation to the response. Then the process starts over with the announce-
ment that the function will place a datum at address a2 if the strategy s1s2 can be pursued
successfully, and so on. If at any point in the exploration of the argument a match yields no
value at all, the process stops. Similarly, if the match produces an error value, the function
must place the same error value on the output path behind the “announced” address and
then the process terminates. The following definition formalizes the idea of “applying” a
tree from the domain over an exponent sds to an argument tree.

Fully Abstract Semantics for Observably Sequential Languages 39

〈〈?, 2〉, 2〉

〈〈?, 2〉, 1〉r
. . .

�
�

�
�

�
�

�
�

�

〈〈0, 2〉, 2〉

〈〈?, 2〉〈0, 2〉, 1〉

r
�

�
�

�
�

��

〈〈n, 2〉, 2〉

〈〈?, 2〉〈n, 2〉, 1〉r
. . .

Q
Q

Q
Q

Q
Q

Q
Q

Q 〈〈?, 2〉〈?, 1〉〈? · 0, 1〉, 1〉

〈〈?, 2〉〈?, 1〉, 1〉

r

〈〈?, 2〉〈?, 1〉〈? · 1, 1〉, 1〉

〈〈?, 2〉〈?, 1〉〈? · 0, 1〉〈1, 2〉, 1〉

r

〈〈?, 1〉, 2〉

〈〈?, 2〉〈?, 1〉〈? · 1, 1〉〈2, 2〉, 1〉

r
�

�
�

�
�

�
�

�
�

〈〈0, 2〉, 2〉

〈〈? · 1, 1〉, 2〉

r
�

�
�

�
�

�

〈〈1, 2〉, 2〉

〈〈? · 2, 1〉, 2〉r

Q
Q

Q
Q

Q
Q

Q
Q

Q

. . .

〈〈n− 1, 2〉, 2〉

〈〈? · n, 1〉, 2〉

r

λfx.(if0 (catch f)
(if0 (sub1 (f d0e))

(if0 (sub1 (sub1 (f d1e))) (sub1 x) Ω)
Ω)

(f Ω))

Figure 4: A Tree in ((N ⇒ N) ⇒ (N ⇒ N))

Definition 6.10 (Application) Let M1 ⇒ M2 be the exponent sds of M1 and M2. The appli-
cation of some tree t ∈ D(M1 ⇒ M2) to some tree x ∈ D(M1), written as t ? x, is defined as
follows:

t ? x = {π⇒2 (p) ∈ ResM2 | ||π⇒1 (p)|| v x, p ∈ t}
∪ {π⇒2 (p) · e ∈ Rese

M2
| ||π⇒1 (p)|| ∪ {q · e} v x, p · 〈q, 1〉 ∈ t}

∪ {π⇒2 (p) · e ∈ Rese
M2

| ||π⇒1 (p)|| v x, p · e ∈ t}.

The formal definition of application captures the intuitive ideas presented in the pre-
ceding sections about manifestly sequential functions. When a decision tree is interpreted
as a function, it inspects the argument tree one step at a time, with missing information
resulting in a bottom output and erroneous information being propagated. It constructs
distinct paths in the output tree independently, but each path is constructed sequentially.
If a path occurs in the output, it is due to precisely one path.

40 R. Cartwright, P.-L. Curien, M. Felleisen

Lemma 6.11 If t ∈ D(M1 ⇒ M2) and x ∈ D(M1), then t ? x ∈ D(M2).

Proof. Each element of t ? x is clearly an observable response over M2 by the definition
of the application operator. Based on the fact that t is prefix- and glb-closed, it is easy to
verify that t ? x satisfies the same properties.

We can now show that application is “functional”, i.e., for fixed t and varying x, t ? x
uniquely determines t. This extensionality property holds only when the set of errors E is
non-empty.

Theorem 6.12 (Extensionality) Let t, t′ ∈ D(M1 ⇒ M2). Then:

1. if E = ∅, t ? x = t′ ? x for all x ∈ D(M1) does not imply that t = t′;

2. if E contains a single element, t = t′ iff t ? x = t′ ? x for all x ∈ D(M1);

3. if E contains more than one element, t v t′ iff t ? x v t′ ? x for all x ∈ D(M1).

Proof. Part 1 is obvious: the trees for the two addition procedures +l and +r introduced
in Section 3 are distinct but they compute the same sequential function over the natural
numbers. The tree for +l is given in Figure 3 in Subsection 6.2.1. In contrast, the tree for
+r has the following form:

〈〈?, 2〉, 2〉

〈?, 2〉r
�

�
�

�

A
A
A
Arr . . .

For the remaining cases, the left to right direction is obvious. For the converse, we first
prove Part 3 by contra-position and return to Part 2 below. Assume t 6v t′, i.e., there
exists p such that p ∈ t and p 6∈ t′. Let p∗ be the maximal path approximating p that also
approximates some p′ ∈ t′. To prove the claim we will derive a witness x from p∗ such that
t ? x 6v t′ ? x. Clearly, the witness must dominate x0 = ||π⇒1 (p∗)||. To determine the rest of
the witness, we need to distinguish two cases:

1. p∗ is empty or is a response: Since p∗ is maximal in t′ in the direction of p, it suffices
to understand how p extends p∗ in order to construct the witness:

path in t witness x path in t ? x, not in t′ ? x

p∗ · 〈r, 1〉 · 〈q, 1〉 x = x0 ∪ {r, q · e} π⇒2 (p∗) · e
p∗ · 〈r, 1〉 · 〈d, 2〉 x = x0 ∪ {r} π⇒2 (p∗) · d
p∗ · 〈r, 1〉 · e x = x0 ∪ {r} π⇒2 (p∗) · e
p∗ · 〈a, 2〉 · 〈q, 1〉 x = x0 ∪ {q · e} π⇒2 (p∗) · a · e
p∗ · 〈a, 2〉 · 〈d, 2〉 x = x0 π⇒2 (p∗) · a · d
p∗ · 〈a, 2〉 · e x = x0 π⇒2 (p∗) · a · e

Fully Abstract Semantics for Observably Sequential Languages 41

Given a witness, it is easy to prove that the path in the last column is indeed in t ? x
but not in t′ ?x. For an example, consider the first line. If π⇒2 (p∗) ·e ∈ t′ ?x then either

• there exists a response r′ ∈ t′ such that π⇒2 (r′) = π⇒2 (p∗) · e and ||π⇒1 (r′)|| v x
(error generation); or

• there exists a response r′ = p′ · 〈q′, 1〉 ∈ t′ such that ||π⇒1 (p′)|| ∪ {q′ · e} v x and
π⇒2 (p∗) = π⇒2 (p′) (error propagation).

In either case, ||π⇒1 (p∗)|| ↑ ||π⇒1 (r′)|| and the outputs are comparable, so that p∗ and r′

are comparable as well by the following lemma (6.13). First, assume p∗ v r′. Since
||π⇒1 (r′)|| v x, it is moreover true that p∗ · 〈r, 1〉 v r′ because x can only respond in
one way to the question at the end of p∗. But this contradicts the maximality of p∗ in
t′ in the direction of p. Second, assume r′ v p∗, which is only possible in the error
propagation case since π⇒2 (p∗) @ π⇒2 (r′) in the error generation case. Now, for some
r ∈ ResM2 , r′ · 〈r, 1〉 v p∗, which implies that r ∈ ||π⇒1 (p∗)|| v x and thus contradicts
q′ : e ∈ x. — The proofs for other cases proceed in similar fashion.

2. p∗ is a query: Now p∗ has extensions in both t and t′ and the subcases accordingly
account for this fact:

path in t path in t′ witness x path in t ? x, not in t′ ? x

p∗ · 〈q, 1〉 p∗ · 〈q′, 1〉 x = x0 ∪ {q · e} π⇒2 (p∗) · e
where q 6= q′

p∗ · 〈q, 1〉 p∗ · 〈d′, 2〉 x = x0 ∪ {q · e} π⇒2 (p∗) · e
p∗ · 〈q, 1〉 p∗ · e′ x = x0 ∪ {q · e | e 6= e′} π⇒2 (p∗) · e (†)
p∗ · 〈d, 2〉 p∗ · 〈q′, 1〉 x = x0 π⇒2 (p∗) · d
p∗ · 〈d, 2〉 p∗ · 〈d′, 2〉 x = x0 π⇒2 (p∗) · d

where d 6= d′

p∗ · 〈d, 2〉 p∗ · e′ x = x0 π⇒2 (p∗) · d
p∗ · e p∗ · 〈q′, 1〉 x = x0 π⇒2 (p∗) · e
p∗ · e p∗ · 〈d′, 2〉 x = x0 π⇒2 (p∗) · e
p∗ · e p∗ · e′ x = x0 π⇒2 (p∗) · e

where e 6= e′

Again, we only illustrate with an example the kind of proofs that are required to
show that the path in the last column is not in t′ ? x. Consider the fourth line. For
t′?x to contain π⇒2 (p∗)·d, there must be a response r′ ∈ t′ such that π⇒2 (r′) = π⇒2 (p∗)·d
and ||π⇒1 (r′)|| v x. By Lemma 6.13, p∗ · 〈d, 2〉 v r′ since π⇒2 (p∗) @ π⇒2 (r′). Then we
should have that p∗ = p∗ · 〈q′, 1〉 u p∗ · 〈d, 2〉 is in t′. But p∗ is a query and thus cannot
be a member of the tree t′. Hence, π⇒2 (p∗) · d 6∈ t′ ? x.

The proof of Part 2 is similar to the proof of Part 3, except for the case marked with
(†) because there is no second element in E = {e′} that can be used to extend q. Thus, for
example, in N ⇒ N, 〈?, 2〉 · 〈?, 1〉 6v 〈?, 2〉 · e′ yet 〈?, 2〉 · 〈?, 1〉 ? x = ∅ v 〈?, 2〉 · e′ ? x for any
x. But the following equivalent formulation of part 2 holds:

2′. If E contains a single element, t 6v t′ implies t ? x 6= t′ ? x, for some x ∈ D(M1).

42 R. Cartwright, P.-L. Curien, M. Felleisen

With the exception of the case marked (†), all cases work as before. For case (†), π⇒2 (p∗)·e′ ∈
t′ ? x0 but π⇒2 (p∗) · e′ 6∈ t ? x0, i.e., t′ ? x0 6v t ? x0.

To complete the proof of the extensionality theorem, we need to verify the following
lemma, which we use again later.

Lemma 6.13 Let t ∈ D(M1 ⇒ M2) and let p, p′ ∈ t. If ||π⇒1 (p)|| ↑ ||π⇒1 (p′)|| and π⇒2 (p) v
π⇒2 (p′), then p v p′ or p′ v p. Moreover, if π⇒2 (p) @ π⇒2 (p′) then p @ p′.

Proof. Assume ||π⇒1 (p)|| and ||π⇒1 (p′)|| are consistent and π⇒2 (p) v π⇒2 (p′). Let s = p u p′.
Assume that neither s = p nor s = p′, i.e., p, p′ are incomparable, and consider the following
cases:

s = s′ · 〈q, 1〉· Then for some r and r′, s · 〈r, 1〉 v p and s · 〈r′, 1〉 v p′ with r 6= r′. But this
contradicts the consistency of ||π⇒1 (p)|| and ||π⇒1 (p′)||.

s = ε or s = s′ · 〈d, 2〉· Here, for some addresses a, a′, s · 〈a, 2〉 v p and s · 〈a′, 2〉 v p′ with
a 6= a′. But again, this leads to a contradiction: if this were true, π⇒2 (p) could not
possibly approximate π⇒2 (p′).

Since both cases turn out to be impossible, p and p′ must be comparable. If in addition
π⇒2 (p) @ π⇒2 (p′) then clearly, p @ p′ by the definition of the projection function.

The extensionality theorem confirms that each tree uniquely represents a function. It
gives rise to the definition of a mapping from the domain over the exponent sds to the set
of functions between the respective domains.

Definition 6.14 (Fun) Let t ∈ D(M1 ⇒ M2). Then Fun(t) = λx : D(M1) . t ? x.

In fact, for a tree t, Fun(t) is always a manifestly sequential function.

Lemma 6.15 Fun : D(M1 ⇒ M2) −→ F(M1 ⇒ M2)

Proof. Let t ∈ D(M1 ⇒ M2). Clearly, Fun(t) is a monotonic and continuous function.
As for sequentiality, assume that for some x and for some z w x, q′ ∈ Open(t ? x) and
q′ ∈ Answered(t ? z). Let q′ = r′ · a (where, possibly, r′ = ε) and let q′ · dz ∈ t ? z for some
dz from M2. By the definition of the application operator, there must be

1. pz ∈ t such that π⇒2 (pz) = r′ · a · dz and ||π⇒1 (pz)|| v z; or,

2. qz · 〈qe, 1〉 ∈ t such that π⇒2 (qz) · e = r′ · a · dz and ||π⇒1 (qz)|| ∪ {qe · e} v z.

The rest of the proof concentrates on the first case; the arguments can easily be modified
for the second one.

Choose p and qx such that

p · 〈a, 2〉 · . . . · 〈qx, 1〉 · . . . · 〈dz, 2〉 = pz,

where qx ∈ Open(x) is the first such open query. The path fragment between 〈a, 2〉 and
〈dz, 2〉 must contain a query qx ∈ Open(x). Otherwise, ||π⇒1 (p · 〈a, 2〉 · . . . · 〈dz, 2〉)|| v x and
π⇒2 (p · 〈a, 2〉 · . . . · 〈dz, 2〉) = q′ · dz ∈ t ? x, which contradicts q′ ∈ Open(t ? x).

Fully Abstract Semantics for Observably Sequential Languages 43

It is easy to show that ||π⇒1 (p)|| v x. If p 6= ε, then π⇒2 (p) = r′, and r′ 6= ε. Since r′ ∈ t?x,
there must be some path p′ such that π⇒2 (p′) = r′ and ||π⇒1 (p′)|| v x. By Lemma 6.13, p′ and
p are comparable. If p′ @ p, then π⇒2 (p′) @ r′ because p ends in 〈d, 2〉 when r′ ends in d;
otherwise, if p @ p′, then r′ · a v π⇒2 (p′). Thus, p′ = p. If p = ε, then ||π⇒1 (p)|| =⊥v x.

The query qx is the sequentiality index of Fun(t) for (x, q′). To prove this claim, let
y ∈ D(M1) be such that y w x and q′ ∈ Answered(t ? y). By the same arguments as for z, t
must contain some path py with

p · 〈a, 2〉 · . . . · 〈qy, 1〉 · . . . · 〈dy, 2〉 = py

for some first qy ∈ Open(x). The path p is the prefix for both pz and py because at most one
path in t can produce the output path r′. It follows from a simple inductive argument that
any query following 〈a, 2〉 in front of qy on py must be identical to the respective query on
pz due to the tree structure of t and that the following responses must be identical because
they are in x.

Since all queries between 〈a, 2〉 and qy are answered in x, all corresponding responses
are identical to the respective responses on pz . Since t is a tree, the queries must be identi-
cal, too. Hence, qy = qx, which proves that qx is the sequentiality index.

The manifest sequentiality of Fun(t) follows immediately from the preceding portion
of the proof and the definition of application.

The proof of the preceding lemma also indicates how to find a tree from a manifestly
sequential function f . Every path in the functional tree corresponding to f contributes
one path to an output, if any, by exploring some finite piece of the input according to the
strategy of f . The strategy is an alternating sequence of (unique) sequentiality indices and
their responses mixed with output addresses and data. Collecting all of the paths for a
function f in a set yields a tree.

Definition 6.16 (Tree, Pathf (x, p)) Let f : F(M1 ⇒ M2) be a sequential and manifestly
sequential function between the domains D(M1) and D(M2). Let x be in D0(M1), and let
p = a1d1 . . . andn be in f(x) with, possibly, dn ∈ E.

The finite element Pathf (x, p) = {p0, . . . , pm} is inductively defined as follows:

1. p0 =

〈a1, 2〉 · 〈d1, 2〉 if a1 · d1 ∈ f(⊥)
〈a1, 2〉 · e if a1 · e = p and p ∈ f(⊥)
〈a1, 2〉 · 〈sif (⊥, a1), 1〉 otherwise

2. if pi = qi · 〈q, 1〉, π⇒2 (pi) = a1 · d1 · . . . ·aj and there is an r = q · d from ResM2 in x then

pi+1 =

qi+1 · 〈dj , 2〉 if π⇒2 (pi) · dj ∈ f(||π⇒1 (qi+1)||)
qi+1 · e if π⇒2 (pi) · e ∈ f(||π⇒1 (qi+1)||)
qi+1 · 〈sif (||π⇒1 (qi+1)||, π⇒2 (qi+1)), 1〉 otherwise

where qi+1 = pi · 〈r, 1〉;

3. if pi = qi · 〈dj , 2〉, π⇒2 (pi) = a1 · d1 · . . . · aj · dj , and j < n then

pi+1 =

qi+1 · 〈dj+1, 2〉 if π⇒2 (qi+1) · dj+1 ∈ f(||π⇒1 (pi)||)
qi+1 · e if π⇒2 (qi+1) · e ∈ f(||π⇒1 (pi)||)
qi+1 · 〈sif (||π⇒1 (pi)||, π⇒2 (qi+1)), 1〉 otherwise

44 R. Cartwright, P.-L. Curien, M. Felleisen

where qi+1 = pi · 〈aj+1, 2〉.

The tree for f is the lub of all such finite elements:

Tree(f) =
⊔
{Pathf (x, p) |x ∈ D0(M1), p ∈ f(x)}.

The proof that Tree(f) is a well-defined element of D(M1 ⇒ M2) requires a simple
lemma about Pathf (x, p).

Lemma 6.17 Let f ∈ F(M1 ⇒ M2), let x ∈ D0(M1), and let p ∈ f(x). Then

1. Pathf (x, p) ∈ D0(M1 ⇒ M2);

2. ||π⇒1 (Pathf (x, p))|| is the minimal finite element x′ v x such that p ∈ f(x′), and hence,
p ∈ Pathf (x, p) ? x.

Proof. For Part 1, first note two invariants of the elements p0, . . . , pm in Pathf (x, p):

1. pi ∈ ResM1⇒M2 for all i;

2. if pi, pi+1 ∈ Pathf (x, p) then pi is the immediate predecessor of pi+1.

Hence, Pathf (x, p) is a prefix-closed chain of paths, and therefore is an element. By the
finiteness of p and x, Pathf (x, p) is finite.

Part 2 first claims that there is a unique input threshold for every output path. The
proof follows Berry’s proof that sequential functions are stable [8:Proposition 2.4.7]. If
x ↑ y then f(x u y) = f(x) u f(y): Assume x ↑ y. Clearly f(x u y) v f(x) u f(y). Thus,
assume that

f(x u y) @ f(x) u f(y).

This means that there exists a path p such that p ∈ f(x), p ∈ f(y), and p 6∈ f(x u y). Let q′

be the first open query for f(x u y) below p. By the sequentiality of f ,

q = sif (x u y, q′)

is defined. By assumption, there are dx and dy such that q · dx ∈ x and q · dy ∈ y. Since
x ↑ y, dx = dy. But therefore q · dx ∈ x u y, which contradicts q ∈ Open(x u y). Hence,
f(x u y) = f(x) u f(y).

“Stability” implies the existence of a unique threshold: By continuity there exists a
finite x0 v x such that p ∈ f(x0). Let x0, x1 be two minimal elements such that p ∈ f(x0)
and p ∈ f(x1). Then p ∈ f(x0 u x1), which can only mean x0 = x1 by minimality. Hence,
there is a least threshold for every p in f(x).

The proof that p ∈ f(π⇒1 (Pathf (x, p))) relies on further invariants of the construction of
the paths p1, . . . , pm:

1. ||π⇒1 (pi)|| v x for all i;

2. π⇒2 (pi) v p for all i;

Fully Abstract Semantics for Observably Sequential Languages 45

3. if π⇒2 (pi) ∈ ResM2 then ||π⇒1 (pi)|| is the minimal element x′ v x such that π⇒2 (pi) ∈
f(x′);

4. if π⇒2 (pi) ∈ QueM2
then pi = qi · 〈q, 1〉 and q = sif (||π⇒1 (qi)||, π⇒2 (qi)).

The first two invariants are obvious. The third and fourth follow from simple arguments:
First, if a1d1 6∈ f(⊥), then a1 ∈ Open(f(⊥)). Since a1d1 ∈ f(x) and ⊥v x, sif (⊥, a1)
is defined. If a1d1 ∈ f(⊥) then ⊥ is clearly the minimal element below x such that this
is the case. Second, if pi was constructed via clause 2 of Definition 6.16, and π⇒2 (pi) ·
dj 6∈ f(||π⇒1 (qi+1)||) then π⇒2 (pi) ∈ Open(f(||π⇒1 (qi+1)||)). Since π⇒2 (pi) · dj ∈ f(x) and
||π⇒1 (qi+1)|| v x, sif (||π⇒1 (qi+1)||, π⇒2 (qi+1)) is defined. But, if π⇒2 (pi) · dj ∈ f(||π⇒1 (qi+1)||)
then ||π⇒1 (qi+1)|| is a minimal element below x such that this is the case. The argument
below shows that there is only one minimal element. Finally, if pi was constructed via
clause 3, the arguments proceeds as for clause 2.

Now it suffices to show that pm outputs p. The lack of a successor for pm is due to one
of two reasons:

1. pm = qm · 〈q, 1〉 and q · e ∈ x (it is impossible that q ∈ Open(x)). But then π⇒2 (qm) · e ∈
f(||π⇒1 (qm)||), π⇒2 (qm) · e ∈ f(x), and hence, p = π⇒2 (qm) · e.

2. pm = qm · dj and j 6< n: immediately, π⇒2 (pm) = p.

In either case, p ∈ Pathf (x, p) ? x.

Two distinct paths Pathf (x, p) and Pathf (x′, p′) cannot interfere with each other. Thus,
the collection of all such finite elements forms a valid tree. Moreover, the tree “imple-
ments” f when interpreted as a “functional tree”.

Lemma 6.18 1. Tree : F(M1 ⇒ M2) −→ D(M1 ⇒ M2).

2. If f ∈ F(M1 ⇒ M2), let x ∈ D(M1), then f(x) = Tree(f) ? x.

Proof. Part 1 requires a proof that Tree(f) is not only prefix-closed, as shown in the preced-
ing lemma, but is also glb-closed. It suffices to show that two finite elements Pathf (x1, p1)
and Pathf (x2, p2) in the tree cannot contain paths whose glb is a query. Thus, assume that
there is a query q that has two incompatible completions to responses in Pathf (x1, p1) and
Pathf (x2, p2). There are nine possible cases, each of which falls into one of three classes
with d1 6= d2, q1 6= q2, e1 6= e2:

q · e2 q · 〈d2, 2〉 q · 〈q2, 1〉
q · e1 A A B

q · 〈d1, 2〉 A A B

q · 〈q1, 1〉 B B C

We concentrate on one example from each class:

46 R. Cartwright, P.-L. Curien, M. Felleisen

A: Let q · 〈d1, 2〉 ∈ Pathf (x1, p1) and q · 〈d2, 2〉 ∈ Pathf (x2, p2). By Lemma 6.17,

π⇒2 (q · 〈d1, 2〉) ∈ f(||π⇒1 (q · 〈d1, 2〉)||)
π⇒2 (q · 〈d2, 2〉) ∈ f(||π⇒1 (q · 〈d2, 2〉)||).

But by the definition of the projection functions,

f(||π⇒1 (q · 〈d1, 2〉)||) = f(||π⇒1 (q)||) = f(||π⇒1 (q · 〈d2, 2〉)||) .

Therefore,
π⇒2 (q) · d1 ∈ f(||π⇒1 (q)||)

and
π⇒2 (q) · d2 ∈ f(||π⇒1 (q)||) .

Hence, π⇒2 (q), a query, is in f(||π⇒1 (q · 〈d2, 2〉)||), which proves that the latter is not a
tree, contradicting the basic assumptions of the lemma.

B: Let q · 〈d1, 2〉 ∈ Pathf (x1, p1) and q · 〈q2, 1〉 ∈ Pathf (x2, p2). Then

π⇒2 (q) · d1 ∈ f(||π⇒1 (q · 〈d1, 2〉)||) = f(||π⇒1 (q)||),
q2 = sif (||π⇒1 (q)||, π⇒2 (q)).

But the two consequences simultaneously demand that

π⇒2 (q) · d1 ∈ Answered(f(||π⇒1 (q)||))

and
π⇒2 (q) ∈ Open(f(||π⇒1 (q · 〈q2, 1〉)||)) = Open(f(||π⇒1 (q)||)),

that is, we have a contradiction.

C: Let q · 〈q1, 1〉 ∈ Pathf (x1, p1) and q · 〈q2, 1〉 ∈ Pathf (x2, p2). Since sif is a function for
manifestly sequential functions

q1 = sif (||π⇒1 (q)||, π⇒2 (q)) = q2,

which contradicts the assumption.

The other cases in the three classes have similar proofs. In summary, a case analysis
shows that the intersection of two responses from distinct finite elements Pathf (x1, p1)
and Pathf (x2, p2) is a response, and that therefore, Tree(f) ∈ D(M1 ⇒ M2).

To prove part 2, we must show f(x) ⊆ Tree(f) ? x and Tree(f) ? x ⊆ f(x), and vice
versa. The proof of the first proposition is easy. Assume p ∈ f(x). By continuity, there
exists a finite x0 v x such that p ∈ f(x0). By Lemma 6.17, p ∈ Pathf (x0, p) ? x0 and, hence,
p ∈ Tree(f) ? x0. By monotonicity, p ∈ Tree(f) ? x.

To prove Tree(f) ? x ⊆ f(x), we must consider two cases. Let p ∈ Tree(f) ? x. In the
first case, r ∈ Tree(f), π⇒2 (r) = p, and ||π⇒1 (r)|| v x. By the construction of paths in Tree(f),

p = π⇒2 (r) ∈ f(||π⇒1 (r)||).

Fully Abstract Semantics for Observably Sequential Languages 47

By monotonicity, p ∈ f(x). In the second case, q · 〈q′, 1〉 ∈ Tree(f), π⇒2 (q) · e = p, and
||π⇒1 (q)|| ∪ {q′ · e} v x. Now the construction of q · 〈q′, 1〉 implies that

q′ = sif (||π⇒1 (q)||, π⇒2 (q)),

which means π⇒2 (q) ∈ Open(f(x)). But then

p = π⇒2 (q) · e ∈ f(||π⇒1 (q)|| ∪ {q′ · e})

by error propagation. The conclusion, p ∈ f(x), follows again by monotonicity. Together
the two cases imply Tree(f) ? x = f(x).

In summary, we have shown that there exists a bijection between the set F(M1 ⇒ M2)
of manifestly sequential functions and the (carrier of the) domain over the exponent sds
M1 ⇒ M2.

Theorem 6.19 1. For every manifestly sequential function f ∈ F(M1 ⇒ M2),

Fun(Tree(f)) = f.

2. For every domain element t ∈ D(M1 ⇒ M2),

Tree(Fun(t)) = t.

Proof. To prove part 1, we observe that for all x,

Fun(Tree(f))(x) = Tree(f) ? x = f(x)

by Lemma 6.18. By extensionality, Fun(Tree(f)) = f .
To prove part 2, we observe that for all x,

Tree(Fun(t)) ? x = Fun(t)(x) = t ? x

by Lemma 6.18 and Definition 6.14. By the Extensionality Theorem (6.12), Tree(Fun(t)) =
t.

Together with the third part of the Extensionality Theorem, the theorem implies that
the function space F(M1 ⇒ M2) itself with the usual, pointwise ordering is a Scott domain
provided the error set contains at least two elements.
Notation We write f ve g iff for all x, f(x) v g(x).

Corollary 6.20 If E contains at least two elements, then Fun : D(M1 ⇒ M2) −→ F(M1 ⇒ M2)
is an order-isomorphism. Hence, (F(M1 ⇒ M2),ve) is a Scott domain.16

Proof. By Theorem 6.19, Fun is a bijection. Under the additional assumption of the corol-
lary, t v t′ iff t ? x v t′ ? x for all x (by Extensionality) iff Fun(t)(x) v Fun(t′)(x) for all x (by
Lemma 6.18).

16Interestingly the Berry-Curien stable ordering for this space coincides with the pointwise ordering [11].

48 R. Cartwright, P.-L. Curien, M. Felleisen

6.2.2 The Exponent Object

The fact that the decision tree representation for manifestly sequential functions is exten-
sional and that the tree domain is isomorphic to the function space of manifestly sequential
functions provides the background for the definition of the exponent object and its related
arrows, Λ and Λ−1. The following definition is “operational” in that it defines currying
and uncurrying as renaming operations for paths in the trees.

Definition 6.21 (Exponent Object, Λ) Let Mi be sds’s, and let D(Mi) be their respective
domains for i ∈ {0, 1, 2}. D(M1 ⇒ M2) is the exponent object for D(M1) and D(M2). For
arbitrary D(M2), Λ : [D(M0 × M1) −→ D(M2)] −→ [D(M0) −→ D(M1 ⇒ M2)] and its
inverse Λ−1 are defined as follows:

Λ(f) = Fun(Λt(Tree(f)))
where Λt : D((M0 ×M1) ⇒ M2) −→ D(M0 ⇒ (M1 ⇒ M2))

Λt(x) = {Λt(p) | p ∈ x}
and Λt(p · 〈p0, 1〉) = Λt(p) · 〈π×1 (p0), 1〉

if for some a ∈ A0, p0 = 〈a, 1〉 . . .
Λt(p · 〈p1, 1〉) = Λt(p) · 〈〈π×2 (p1), 1〉, 2〉

if for some a ∈ A1, p1 = 〈a, 2〉 . . .
Λt(p · 〈y, 2〉) = Λt(p) · 〈〈y, 2〉, 2〉
Λt(p · e) = Λt(p) · e

Λ−1(g) = Fun(Λ−1
t (Tree(g)))

where Λ−1
t : D(M0 ⇒ (M1 ⇒ M2)) −→ D((M0 ×M1) ⇒ M2)

Λ−1
t (x) = {Λ−1

t (p) | p ∈ x}
and Λ−1

t (p · 〈p0, 1〉) = Λ−1
t (p) · 〈inj 1(p0), 1〉

Λ−1
t (p · 〈〈p1, 1〉, 2〉) = Λ−1

t (p) · 〈inj 2(p1), 1〉
Λ−1

t (p · 〈〈y, 2〉, 2〉) = Λ−1
t (p) · 〈y, 2〉

Λ−1
t (p · e) = Λ−1

t (p) · e

To verify that the definition is correct, it suffices to check the appropriate equations
with simple calculations.

Lemma 6.22 Let f ∈ D(M0 ×M1) −→ D(M2) and let g ∈ D(M0) −→ D(M1 ⇒ M2). Then
Λ(f) and Λ−1(g) are manifestly sequential functions, and

1. Λ−1(Λ(f)) = f ;

2. Λ(Λ−1(g)) = g;

3. Λ(f)(x0) ? x1 = f(inj 1(x0) ∪ inj 2(x1)) for all x0 ∈ D(M0) and x1 ∈ D(M1); and

4. Λ(f) ◦ g = Λ(f ◦ 〈g ◦ π1, π2〉), for any g of correct type.

Fully Abstract Semantics for Observably Sequential Languages 49

Proof. The validity of claims 1 and 2 clearly follows from the validity of analogous claims
about Λt(Tree(f)) and Λ−1

t (Tree(g)) due to Theorem 6.19, which, in turn, follow from the
respective claims for paths. Finally, Λt and Λ−1

t are obviously bijections for paths, i.e., for all
paths p over (M0×M1) ⇒ M2, Λ−1

t (Λt(p)) = p; and for all paths p over M0 ⇒ (M1 ⇒ M2),
Λt(Λ−1

t (p)) = p. The proof is by induction on the length of p.
The proof of claim 3 requires the verification of the following properties of a response

p over (M0 ×M1) ⇒ M2 and its curried version Λt(p):

π×1 (||π⇒1 (p)||) = ||π⇒1 (Λt(p))||
π×2 (||π⇒1 (p)||) = ||π⇒1 (π⇒2 (Λt(p)))||

π⇒2 (p) = π⇒2 (π⇒2 (Λt(p)))

Again, a proof by an induction on the length of the response p verifies the three claims.
The rest follows easily:

Λ(f)(x0) ? x1

= Fun(Λt(Tree(f)))(x0) ? x1

= Λt(Tree(f)) ? x0 ? x1

= ({π⇒2 (r) | r ∈ Λt(Tree(f)), ||π⇒1 (r)|| v x0}
∪ {π⇒2 (p) · e | p · 〈q, 1〉 ∈ Λt(Tree(f)), ||π⇒1 (p)|| ∪ {q · e} v x0}) ? x1

= {π⇒2 (π⇒2 (r)) | r ∈ Λt(Tree(f)), ||π⇒1 (r)|| v x0, ||π⇒1 (π⇒2 (r))|| v x1}
∪ {π⇒2 (π⇒2 (p)) · e |

p · 〈〈q, 1〉, 2〉 ∈ Λt(Tree(f)), ||π⇒1 (p)|| v x0, ||π⇒1 (π⇒2 (p))|| ∪ {q · e} v x1}
∪ {π⇒2 (π⇒2 (p)) · e |

p · 〈q, 1〉 ∈ Λt(Tree(f)), ||π⇒1 (p)|| ∪ {q · e} v x0, ||π⇒1 (π⇒2 (p))|| v x1}

= {π⇒2 (π⇒2 (Λt(r))) | r ∈ Tree(f), ||π⇒1 (Λt(r))|| v x0, ||π⇒1 (π⇒2 (Λt(r)))|| v x1}
∪ {π⇒2 (π⇒2 (Λt(p))) · e |

p · 〈q, 1〉 ∈ Tree(f), ||π⇒1 (Λt(p))|| v x0, ||π⇒1 (π⇒2 (Λt(p)))|| ∪ {π×2 (q) · e} v x1}
∪ {π⇒2 (π⇒2 (Λt(p))) · e |

p · 〈q, 1〉 ∈ Tree(f), ||π⇒1 (Λt(p))|| ∪ {π×1 (q) · e} v x0, ||π⇒1 (π⇒2 (Λt(p)))|| v x1}

= {π⇒2 (r) | r ∈ Tree(f), π×1 (||π⇒1 (r)||) v x0, π
×
2 (||π⇒1 (r)||) v x1}

∪ {π⇒2 (p) · e |
p · 〈q, 1〉 ∈ Tree(f), π×1 (||π⇒1 (p)||) v x0, π

×
2 (||π⇒1 (p)||) ∪ {π×2 (q) · e} v x1}

∪ {π⇒2 (p) · e |
p · 〈q, 1〉 ∈ Tree(f), π×1 (||π⇒1 (p)||) ∪ {π×1 (q) · e} v x0, π

×
2 (||π⇒1 (p)||) v x1}

= {π⇒2 (p) | p ∈ Tree(f), ||π⇒1 (r)|| v inj 1(x0) ∪ inj 2(x1)}
∪ {π⇒2 (p) · e | p · 〈q, 1〉 ∈ Tree(f), ||π⇒1 (p)|| ∪ {q · e} v inj 1(x0) ∪ inj 2(x1)}

50 R. Cartwright, P.-L. Curien, M. Felleisen

= Tree(f) ? (inj 1(x0) ∪ inj 2(x1))
= f(inj 1(x0) ∪ inj 2(x1))

By claim 3, currying and uncurrying as defined are just the set-theoretic currying and
uncurrying functions, hence the equation of claim 4 holds in SEQ since it holds in the
category of sets.

7 Full Abstraction for SPCF

Both SEQ(E) and Seq(E) can serve as the basis of a fully abstract semantics for SPCF. Un-
fortunately, working with the elements in the domains of either category imposes a heavy
notational overhead. To overcome this problem, we introduce some additional notation.

Consider the meaning of add1 in SEQ(E). It is the arrow f : 1 −→ D(N ⇒ N), and in
Seq(E) it is the arrow f ′ : 1 −→ D(N ⇒ N) where

f ′ ? x = f(x) = A = {〈?, 2〉 · 〈?, 1〉, 〈?, 2〉 · 〈?, 1〉 · 〈?n, 1〉 · 〈?m, 2〉 |m,n ∈ N,m = n+ 1}

for the unique element x in 1. Similarly, the procedure if0 is the arrow that produces the
following element

〈〈〈?, 2〉, 2〉, 2〉 · 〈?, 1〉,
〈〈〈?, 2〉, 2〉, 2〉 · 〈?, 1〉 · 〈? · 0, 1〉 · 〈〈?, 1〉, 2〉,
〈〈〈?, 2〉, 2〉, 2〉 · 〈?, 1〉 · 〈? · 0, 1〉 · 〈〈?, 1〉, 2〉 · 〈〈? ·m, 1〉, 2〉 · 〈〈〈m, 2〉, 2〉, 2〉,
〈〈〈?, 2〉, 2〉, 2〉 · 〈?, 1〉 · 〈? · n, 1〉 · 〈〈?, 1〉, 2〉,
〈〈〈?, 2〉, 2〉, 2〉 · 〈?, 1〉 · 〈? · n, 1〉 · 〈〈?, 1〉, 2〉 · 〈〈? ·m, 1〉, 2〉 · 〈〈〈m, 2〉, 2〉, 2〉

∣∣∣∣∣∣∣∣∣∣
n > 0

in D(N ⇒ N ⇒ N ⇒ N) upon application to the single element of 1. To simplify the
definition of SPCF’s semantics and the proofs about the semantics, we first introduce some
notational abbreviations before we specify some trees that are common to both semantics.

Since all SPCF types τ have the shape

τ = τ1 → . . .→ τk → o, for k ≥ 0,

the interesting domains are generated by sds’s of the shape

M = M1 ⇒ . . .Mk ⇒ N

where Mi is the sds that corresponds to τi and N is the sds that generates Ne
⊥, the flat

domain of natural numbers and errors (cmp. the examples following Definition 5.1). By the
definition of the exponent construction, all paths over D(M) start with the initial address

〈. . . 〈?, 2〉, . . . , 2〉︸ ︷︷ ︸
k

.

Fully Abstract Semantics for Observably Sequential Languages 51

D = D(M1 ⇒ . . .Mk ⇒ N) where Mi = Mi,1 ⇒ . . .Mi,ki
⇒ N

〈?〉 = 〈. . . 〈?, 2〉, . . . , 2〉︸ ︷︷ ︸
k

〈n〉 = 〈. . . 〈? · n, 2〉, . . . , 2〉︸ ︷︷ ︸
k

〈p, i〉 = 〈. . . 〈p, 1〉, 2〉, . . . , 2〉︸ ︷︷ ︸
i−1

πi(p) = π⇒1 (π⇒2 (. . . π⇒2︸ ︷︷ ︸
i−1

(p) . . .)

〈?, i〉 = 〈〈?〉, i〉

Figure 5: Abbreviations for domain elements in an SPCF domain

Below we use 〈?〉 as an abbreviation for this address, unless k = 0. Similarly, a maximal
path in D(M) ends in e ∈ E or in

〈. . . 〈n, 2〉, . . . , 2〉︸ ︷︷ ︸
k

,

for n ∈ N. We will use 〈n〉 to denote this datum. Finally, the intermediate queries and
responses of a path in D(M) are about elements in D(M1) through D(Mk) and, for domain
D(Mi) have the shape

〈. . . 〈p, 1〉, 2〉, . . . , 2〉︸ ︷︷ ︸
i−1

,

for 1 ≤ i ≤ k. The abbreviation 〈p, i〉 will stand for the above. For the very first query
about the ith argument, we use 〈?, i〉 instead of 〈〈?〉, i〉. To extract the path p from 〈p, i〉 we
use the function πi, which is the composition of π⇒1 with the (i − 1)-fold composition of
π⇒2 .

Warning: When encountering the abbreviations below, the reader should keep in mind
that the implicit parameter k is a context-sensitive entity.

Using the newly introduced abbreviations, we turn to the definition of trees that char-
acterize the denotations of add1, sub1, if0, and catch.

Definition 7.1 (A, S, I, C) Let M1, . . . ,Mk be arbitrary sds’s. Then the constants

A,S ∈ D(N ⇒ N)
I ∈ D(N ⇒ N ⇒ N ⇒ N)

Ck ∈ D((M1 ⇒ . . .⇒ Mk ⇒ N) ⇒ N)

are defined as follows:

A = { 〈?〉 · 〈?, 1〉, 〈?〉 · 〈?, 1〉 · 〈?n, 1〉 · 〈m〉 |m,n ∈ N,m = n+ 1 }

52 R. Cartwright, P.-L. Curien, M. Felleisen

S = { 〈?〉 · 〈?, 1〉, 〈?〉 · 〈?, 1〉 · 〈?n, 1〉 · 〈m〉 |m,n ∈ N,m+ 1 = n }

I =

〈?〉 · 〈?, 1〉,
〈?〉 · 〈?, 1〉 · 〈? · 0, 1〉 · 〈?, 2〉,
〈?〉 · 〈?, 1〉 · 〈? · 0, 1〉 · 〈?, 2〉 · 〈? ·m, 2〉 · 〈m〉,
〈?〉 · 〈?, 1〉 · 〈? · n, 1〉 · 〈?, 3〉,
〈?〉 · 〈?, 1〉 · 〈? · n, 1〉 · 〈?, 3〉 · 〈? ·m, 3〉 · 〈m〉

∣∣∣∣∣∣∣∣∣∣
n,m ∈ N, n > 0

Ck =

〈?〉 · 〈?, 1〉,
〈?〉 · 〈?, 1〉 · 〈〈?〉 · 〈?, i〉, 1〉 · 〈i− 1〉,
〈?〉 · 〈?, 1〉 · 〈〈n〉, 1〉 · 〈k + n〉

∣∣∣∣∣∣n, i ∈ N, 1 ≤ i ≤ k

While the definitions for A and S are obvious, those for I and Ck deserve some addi-
tional explanation. I represents a function that contains the following evaluation strategy.
First, it announces that it will fill the only address ? in the output space and then probes
its first argument. If it is 0, it probes the second argument and puts its answer at the end
of the output path; if not, it probes the third argument and continues as before. As for Ck,
it also probes its first argument. If the argument is a constant function that would return
n, Ck returns k + n. If the argument represents a function that is strict in its ith argument,
then Ck returns i− 1.

We are now ready to define the semantics of SPCF.

Definition 7.2 (Seq and SEQ Semantics of SPCF) Let E be a set of error values.
If E 6= ∅, the underlying cartesian-closed category of SPCF’s SEQ semantics is SEQ(E).

The ground type o is interpreted as the domain Ne
⊥:

Co = D(N).

The SEQ semantics assigns the following meaning to constants:

SEQ[[e]] = λρ : 1.e for e ∈ E
SEQ[[dne]] = λρ : 1.n

SEQ[[add1]] = λρ : 1.A

SEQ[[sub1]] = λρ : 1.S

SEQ[[if0]] = λρ : 1.I

SEQ[[catchk]] = λρ : 1.Ck

The meaning of terms in the SEQ semantics are functions that map n-tuples or environments
to elements in the appropriate domain. To avoid notational clutter, we use tuple notation
for environments: if M ’s free variables are among xτ1

1 . . . xτk
k , we write

SEQ[[xτ1
1 . . . xτk

k `M]]〈x1, . . . , xk〉

Fully Abstract Semantics for Observably Sequential Languages 53

for
SEQ[[xτ1

1 . . . xτk
k `M]]ρ

where xi = π×1 (π×2 (. . . π×2︸ ︷︷ ︸
i−1

(ρ) . . .)) for arbitrary xi ∈ SEQτi .

For arbitrary E, the underlying cartesian-closed category of SPCF’s Seq semantics is
Seq(E). The ground type o is interpreted as Ne

⊥:

Co = D(N).

The Seq semantics assigns the following meaning to constants:

Seq [[e]] = {〈?, 2〉 · e}
Seq [[dne]] = {〈?, 2〉 · 〈n, 2〉})

Seq [[add1]] = {〈b1, 2〉 · . . . · 〈bn, 2〉 | b1 · . . . · bn ∈ A}
Seq [[sub1]] = {〈b1, 2〉 · . . . · 〈bn, 2〉 | b1 · . . . · bn ∈ S}
Seq [[if0]] = {〈b1, 2〉 · . . . · 〈bn, 2〉 | b1 · . . . · bn ∈ I}

Seq [[catchk]] = {〈b1, 2〉 · . . . · 〈bn, 2〉 | b1 · . . . · bn ∈ I}

The meaning of terms in the Seq semantics are algorithms that input n-tuples and out-
put elements in the appropriate domain. Again, we use ordinary tuple notation for these
environments.

We use SeqE[[·]] when we need to distinguish between two Seq semantics based on
different error sets.

For E 6= ∅, we interchangeably use the SEQ and Seq semantics for SPCF since

Fun(Seq [[xτ1
1 . . . xτk

k `M]]) = SEQ[[xτ1
1 . . . xτk

k `M]]

for all SPCF terms M whose free variables are among xτ1
1 . . . xτk

k . Similarly, for a term that
does not explicitly mention error, it does not matter which error set we choose to determine
its Seq semantics.

Lemma 7.3 For all SPCF(∅) termsM (that is, a term that does not contain error constants) whose
free variables are among xτ1

1 . . . xτk
k then for any E,

SeqE[[xτ1
1 . . . xτk

k `M]] = Seq∅[[xτ1
1 . . . xτk

k `M]].

Proof. The proof proceeds by induction on the structure of M.

Moreover, SPCF is PCF-like.

Proposition 7.4 If M is a PCF program, then

Dom[[∅ `M]] ⊥= Seq [[∅ `M]]? ⊥= SEQ[[∅ `M]] ⊥ .

54 R. Cartwright, P.-L. Curien, M. Felleisen

Proof. The theorem follows from the operational adequacy theorem (Theorem 8.13 in the
following section), from Plotkin’s operational adequacy theorem for the continuous se-
mantics [24:Theorem 3.1], and a simple check that the two versions of the operational se-
mantics agree on PCF.

Next we can show that SPCF is sequential and propagates errors as expected, i.e., that
it is an observably sequential programming language. The proof relies on the results in
the preceding section and on Lemma 3.6, which states that a semantics based on cartesian-
closed categories satisfies (β).

Theorem 7.5 SPCF is sequential, manifestly sequential (if E 6= ∅), and observably sequential.

Proof. Let M1, . . . ,Mk be closed phrases in SPCF and let C[M1, . . . ,Mk] be a program sat-
isfying the hypotheses of Definition 3.9:

(i): SEQ[[` C[M1, . . . ,Mk]]] ∈ N ∪ E;

(ii): SEQ[[` C[Ω, . . . ,Ω]]] =⊥.

We must show that there is an argument position j that forces divergence. Since the se-
mantics satisfies the equation β, we have:

SEQ[[` C[M1, . . . ,Mk]]] ⊥
= SEQ[[` ((λxτ1

1 . . . xτk
k .C[x1, . . . , xk]) M1 . . . Mk)]] ⊥

= SEQ[[` (λxτ1
1 . . . xτk

k .C[x1, . . . , xk])]] ⊥ ?SEQ[[M1]] ⊥ ? . . . ? SEQ[[Mk]] ⊥

Now consider the possible denotations of the k-ary procedure

(λxτ1
1 . . . xτk

k .C[x1, . . . , xk])

The denotation of such a procedure is either a decision tree of the shape

{〈?〉 · 〈d〉}

for d ∈ N ∪ E or a decision tree that contains the path

〈?〉 · 〈?, j〉

for some j ≤ k. Clearly, the first case contradicts assumption (ii). The second case specifies
that the k-ary procedure first probes its jth argument. But this fact implies that

SEQ[[` C[M ′
1, . . . ,M

′
j , . . . ,M

′
k]]]

= SEQ[[` λxτ1
1 . . . xτk

k .C[x1, . . . , xk]]] ⊥
?SEQ[[`M ′

1]] ⊥ ? . . . ? SEQ[[`M ′
j]] ⊥ ? . . . ? SEQ[[`M ′

k]] ⊥
= ⊥

forM ′
j = Ω and arbitraryM ′

i , i 6= j. More concisely, the program diverges if the expression
Mj in jth hole diverges—regardless of the expressions in the other holes. Hence, j is the
desired sequentiality index.

Fully Abstract Semantics for Observably Sequential Languages 55

The proof that SPCF programs also propagate errors that occur at the sequentiality in-
dex proceeds in precisely the same manner. And finally, given λx1 . . . xk.C[x1, . . . , xk], the
expression (add1 (catch λx1 . . . xk.C[x1, . . . , xk])) produces the sequentiality context, i.e.,
D[] = (add1 (catch [])) is the appropriate context for any such procedure. Hence, SPCF
satisfies the conditions of Definition 4.2, which shows that it is a manifestly sequential and
observably sequential language.

After establishing the basic properties of SPCF’s semantics, we are ready to prove that
the semantics are fully abstract.

Theorem 7.6 (Full Abstraction) For all error sets E,

1. M vSeq N iff M @∼ N and M ≡Seq N iff M ' N ;

2. if E 6= ∅, M vSEQ N iff M @∼ N and M ≡SEQ N iff M ' N .

Note. We concentrate on the proof of the theorem’s second part, indicating differences to
the proof of the first part as we proceed.
Proof. The left to right direction follows from the compositional definition of the semantics.
For the right to left direction, assume M 6vSEQN (both are closed and of type τ). We will
prove that M 6@∼N .

By the Discriminator Lemma (7.7), there exists a finite, error-free discriminator F of
type τ → o such that F ? SEQ[[` M]] ⊥6v F ? SEQ[[` N]] ⊥. It follows from the Repre-
sentability Lemma (7.8) that there is a term D such that SEQ[[` D]] = F (Seq [[` D]] = F).
Thus,

SEQ[[` (D M)]] 6v SEQ[[` (D N)]],

(Seq [[` (D M)]] 6v Seq [[` (D N)]]) which implies M 6@∼M ′ as desired.
For open terms, it suffices to point out that if xτ1

1 , . . . , x
τk
k are all the free variables in

M and N, then M @∼ N implies λxτ1
1 . . . xτk

k .M
@∼ λxτ1

1 . . . xτk
k .N , which by the preceding

arguments for closed terms is equivalent to λxτ1
1 . . . xτk

k .M vSEQ λxτ1
1 . . . xτk

k .N and hence,
M vSEQ N [24].

Lemma 7.7 (Discriminator) If f, g are elements in SEQτ (Seqτ) and f 6v g then for some finite,
error-free F ∈ Dτ→o, F ? f v F ? g. Moreover, by monotonicity, f v g if and only if for all finite
F ∈ Dτ→o, F ? f v F ? g.

Proof. Assume f 6v g. From this it follows that there is some minimal response r ∈ f such
that r 6∈ g: for any r′ v r, r′ ∈ g. Let r1, . . . , rn be the prefixes of r such that r1 v . . . v rn =
r, let qi be the query that is the immediate predecessor of ri, and set

F ∗ = 〈?, 2〉 · 〈q1, 1〉 · 〈r1, 1〉 · . . . · 〈qn, 1〉 · 〈rn, 1〉 · 〈0, 2〉.

Then if r does not end in an error, F is the prefix-closure of F ∗, i.e., F = {r v F ∗} . As a
function, F explores its argument and determines whether the argument contains r. If so,
the argument dominates f and F returns 0 (F ? f = {? · 0}); otherwise it is undefined or
propagates errors (F ? g =⊥ or F ? g = {? · e}).

56 R. Cartwright, P.-L. Curien, M. Felleisen

If r = q · e, the discriminator is the prefix-closure of the shorter path

F& = 〈?, 2〉 · 〈q1, 1〉 · 〈r1, 1〉 · . . . · 〈qn, 1〉.

Again F checks whether r ∈ f but, if so, it returns e (F ? f = {? · e}). If F does not find r, it
is undefined or propagates a different error.

Thus, in both cases, F ? f 6v F ? g, which is what the lemma claims.

Lemma 7.8 (Representability) Let τ = τ1 → . . . → τk → o for k ≥ 0. If x is a finite tree
in SEQτ (Seqτ) , then there is a closed SPCF phrase M such that SEQ[[` M]] ⊥= x (Seq [[`
M]]? ⊥= x).

Proof. Due to its length, we have subdivided the proof into several parts.

Generalizing the Claim. The proof of the lemma is a lexicographic induction on the depth
of the type τ and the cardinality of the element x, where the depth of ground type o is 1,
the depth of τ1 → . . . τk → o is 1 + max{depth(τi) | 1 ≤ i ≤ k}. The term M that we shall
construct will have the shape

λxτ1
1 . . . xτk

k .L

for some term L. Given the knowledge of how to construct L′ for some x′ below x, we will
need to construct a termL that is likeL′ except for the code that accounts for the differences
between x and x′. Put differently, we will need to keep track of places in the code that are
due to occurrences of ⊥ in some tree x′ so that we know how to modify the code for
extensions of x′ that replace these occurrences of ⊥. To accomplish this bookkeeping task,
we will use a partitioning of M into contexts and holes filled with Ω. The generalized
induction hypothesis is as follows:

Given a finite tree x in the semantic domain associated with the type τ = τ1 →
. . . τk → o, and an arbitrary finite set Q of open queries, i.e., Q ⊆ Open(x), there
exists a term

M = λxτ1
1 . . . xτk

k .L

such that there is an injection from Q to the set of contexts with a single hole,
satisfying the following condition:

If q ∈ Q is associated with C[], then

M = C[Ωo]

and for all terms N (of ground type) whose free variables are in xτ1
1 , . . . , x

τk
k , for

all finite xi ∈ SEQτi (where 1 ≤ i ≤ k),

SEQ[[` C[N]]] ⊥ ?x1 ? . . . ? xk =

SEQ[[xτ1

1 . . . xτk
k ` N]]〈x1, . . . , xk〉

if ||πi(q)|| v xi, for all i
x ? x1 ? . . . ? xk

if ||πi(q)|| 6v xi, for some i

(‡)

Fully Abstract Semantics for Observably Sequential Languages 57

Given an element x and its term M, we say that M can grow in the direction of all q ∈ Q.
The condition (‡) has a simple intuitive explanation: If M is applied to arguments that

have responses to all the queries on the path from the root of x to the occurrence of ⊥ rep-
resented by C[], then the only relevant part of the code is the filler of the hole; otherwise,
the application has the same meaning as an application of x to the arguments. The condi-
tion implies that M represents x. To see this, set N = Ω. Since M = C[Ω] the claim clearly
holds if for some i, ||πi(q)|| 6v xi. Thus, assume ||πi(q)|| v xi, for all i. Then

SEQ[[`M]] ⊥ ?x1 ? . . . ? xk

= SEQ[[` C[Ω]]] ⊥ ?x1 ? . . . ? xk

= SEQ[[xτ1
1 . . . xτk

k ` Ω]]〈x1, . . . , xk〉
= ⊥ .

On the other hand, it is also straightforward to see that

x ? x1 ? . . . ? xk =⊥ .

For the application to contain ? · n or ? · e, the element x would have to have a path r such
that ||πi(r)|| v xi for all i and (π⇒2)k(q) =? @ (π⇒2)k(r), which by a k-fold application of
Lemma 6.13 would imply q @ r in contradiction to q ∈ Open(x). By extensionality we may
conclude that

SEQ[[M]] ⊥= x.

Base Case. If x is empty, a valid representation is

M = λxτ1
1 . . . xτk

k .Ω.

The only open query, q = 〈?〉, for x maps to λxτ1
1 . . . xτk

k .[]. The injection obviously satisfies
condition (‡).

Induction Step. If x is not empty andQ ⊆ Open(x), we can pick an x′ that is immediately
below x, i.e., there is some x′ such that for some query q′ ∈ Open(x′) and datum d,

x = x′ ∪ {q′ · d}.

Let Q− = {q ∈ Q | q′ v q} and let Q+ = Q \ Q− ∪ {q′}. By inductive hypothesis, some
term M ′ represents x′ relative to the set Q+, q′ is associated with a unique context C[] that
satisfies condition (‡) and, in particular, M ′ = C[Ω]. Clearly, to turn into M , M ′ must grow
in the direction of q′. But, to determine the precise replacement for the Ω term in the hole
of C[], we need to give consideration to the two possible origins of the datum d.

Induction Step: Numbers and Errors. First, if d = 〈n〉 or d = e, set

M = C[dne] or M = C[e],

respectively. To prove the appropriateness of this choice, we concentrate on the first case;
the proof for the error case proceeds in an analogous fashion.

58 R. Cartwright, P.-L. Curien, M. Felleisen

Since q′ · 〈n〉 is maximal in x, any q ∈ Q is also in Q+. By the inductive hypothesis for x′

and Q+, there is a context C ′ with two holes such that: (i) C[] = C ′[]1[Ω]2 and therefore
M ′ = C ′[Ω]1[Ω]2; and (ii) q is associated with the context C ′[Ω]1[]2. We claim that for x
and Q, q is associated with C ′[dne]1[]2.

Associating C ′[dne]1[]2 with q satisfies (‡). We analyze each of the two parts of the
constraint individually. Let N be an expression of ground type whose free variables are
among xτ1

1 , . . . , x
τk
k . Let x1 ∈ SEQτ1 , . . . , xk ∈ SEQτk be the denotations of these variables.

1. Suppose that ||πi(q)|| v xi for all i. We need to prove that for all N,

SEQ[[` C ′[dne]1[N]2]] ⊥ ?x1 ? . . . ? xk = SEQ[[` xτ1
1 . . . xτk

k ` N]]〈x1, . . . , xk〉.

By inductive hypothesis for x′ andQ+, mapping q to C ′[Ω]1[]2 satisfies (‡) and, thus,

SEQ[[` C ′[Ω]1[N]2]] ⊥ ?x1 ? . . . ? xk = SEQ[[` xτ1
1 . . . xτk

k ` N]]〈x1, . . . , xk〉

for arbitrary N. By induction on the types τ1 through τk, whose depth is smaller than
τ ’s depth, we can find terms P1, . . . , Pk denoting x1, . . . , xk. Hence,

SEQ[[` (C ′[Ω]1[N]2 P1 . . . Pk)]] ⊥ .

= SEQ[[` C ′[Ω]1[N]2]] ⊥ ?x1 ? . . . ? xk

= SEQ[[xτ1
1 . . . xτk

k ` N]]〈x1, . . . , xk〉

Thus, for N,N ′ with free variables among xτ1
1 . . . xτk

k , then, by monotonicity,

SEQ[[` C ′[N ′]1[N]2]] ⊥ ?x1 ? . . . ? xk = SEQ[[` xτ1
1 . . . xτk

k ` N]]〈x1, . . . , xk〉

if SEQ[[` xτ1
1 . . . xτk

k ` N]]〈x1, . . . , xk〉 ∈ N.

If N denotes ⊥ in the given environment, the equation also implies that

SEQ[[` C ′[Ω]1[Ω]2]] ⊥ ?x1 ? . . . ? xk =⊥,

By the sequentiality of SPCF (see Theorem 7.5), the second hole of C ′[]1[]2 is the
syntactic sequentiality index of the program. Hence,

SEQ[[` (C ′[N ′]1[N]2 P1 . . . Pk)]] ⊥= SEQ[[xτ1
1 . . . xτk

k ` N]]〈x1, . . . , xk〉 =⊥

for any N ′ and, in particular, for N ′ = dne. In conclusion, for all possible N,

SEQ[[` (C ′[dne]1[N]2 P1 . . . Pk)]] ⊥= SEQ[[xτ1
1 . . . xτk

k ` N]]〈x1, . . . , xk〉,

which is the desired conclusion.

2. Suppose that ||πi(q)|| 6v xi for some i. In this case, the goal is to prove

SEQ[[` C ′[dne]1[N]2]] ⊥ ?x1 ? . . . ? xk = x ? x1 ? . . . ? xk.

Depending on whether or not the information in the arguments demands the evalua-
tion of the contents of the first hole, which is associated with q′, we must distinguish
two subcases:

Fully Abstract Semantics for Observably Sequential Languages 59

(a) If ||πi(q′)|| v xi for all i, then by inductive hypothesis for x′ and Q+, the associa-
tion of q′ with C ′[]1[Ω] satisfies condition (‡):

SEQ[[` C ′[dne]1[Ω]2]] ⊥ ?x1 ? . . . ? xk = SEQ[[xτ1
1 . . . xτk

k ` dne]]〈x1, . . . , xk〉
= {? · n}
= (x′ ∪ {q′ · 〈n〉}) ? x1 ? . . . ? xk

= x ? x1 ? . . . ? xk.

The proof goal now follows from monotonicity.

(b) Assume ||πi(q′)|| 6v xi for some i. By the inductive hypothesis for x′ and Q+

the association of q′ with C ′[]1[Ω] as well as the association of q with C ′[Ω][]2
satisfy condition (‡). Thus,

SEQ[[C ′[Ω]1[N]2]] ⊥ ?x1 ? . . . ? xk = x′ ? x1 ? . . . ? xk (∗)

SEQ[[` C ′[L]1[Ω]2]] ⊥ ?x1 ? . . . ? xk = x′ ? x1 ? . . . ? xk (∗∗)

for all N and L (whose free variables are among xτ1
1 , . . . , xτk

k). Moreover, by a
simple argument,

x′ ? x1 ? . . . ? xk = (x′ ∪ {q′ · 〈n〉}) ? x1 ? . . . ? xk

= x ? x1 ? . . . ? xk

The rest depends on the result of x ? x1 ? . . . ? xk:

i. x ? x1 ? . . . ? xk 6=⊥: Equation (∗) implies the result by monotonicity.
ii. x ? x1 ? . . . ? xk =⊥: By instantiating N and L in equations (∗) and (∗∗)

appropriately, we can determine three equations about the program:

SEQ[[` C ′[Ω]1[e]2]] ⊥ ?x1 ? . . . ? xk = ⊥
SEQ[[` C ′[e]1[Ω]2]] ⊥ ?x1 ? . . . ? xk = ⊥
SEQ[[` C ′[Ω]1[Ω]2]] ⊥ ?x1 ? . . . ? xk = ⊥

By manifest sequentiality and the first two equations, neither hole in the
context C ′[]1[]2 can be a sequentiality index. By sequentiality and the
third equation, for all L and N:

SEQ[[` C ′[L]1[N]2]] ⊥ ?x1 ? . . . ? xk =⊥,

In particular, for all N,

SEQ[[` C ′[dne]1[N]2]] ⊥ ?x1 ? . . . ? xk =⊥= x ? x1 ? . . . ? xk.

This concludes the proof that for any q ∈ Q, we have a context that satisfies (‡), which
shows that the inductive claim holds for M , x, and the injection of queries from Q to
contexts.

60 R. Cartwright, P.-L. Curien, M. Felleisen

r
�

�
�

PPPPPPPPP

���������

@
@

@

r
HHH

HHH
HHH

HHH

���
���

���
���

� root of x

r r r r
⊥

. . .
⊥ ⊥

. . .
⊥

q′���)
〈q∗, i〉

HHj

r1 rm rm+1 rm+n

Q−

Figure 6: The Induction Step (Subtrees) of the Representability Lemma

Induction Step: Subtrees. Second, d = 〈q∗, i〉, i.e., d is a query about the ith argument.
Let q1, . . . , qm+n be all the queries in Q that dominate q′ · 〈q∗, i〉; they are the ones that
contribute to the construction of M. By the construction of the exponent sds, all of these
queries extend q′ · 〈q∗, i〉 with a response:

q1 = q′ · 〈q∗, i〉 · 〈r1, i〉
. . .

qm = q′ · 〈q∗, i〉 · 〈rm, i〉
qm+1 = q′ · 〈q∗, i〉 · 〈rm+1, i〉
. . .

qm+n = q′ · 〈q∗, i〉 · 〈rm+n, i〉

The are two distinct classes of responses to 〈q∗, i〉: q1, . . . , qm and qm+1, . . . , qm+n. The first
m responses are query responses, that is, the ith argument demands more information about
its possible inputs. Assuming that

τi = σ1 → . . . σl → o for l ≥ 0,

the responses have the shape

r1 = q∗ · 〈p1, i1〉
. . .

rm = q∗ · 〈pm, im〉

where p1, . . . , pm are queries for arguments i1, . . . , im, respectively, and 1 ≤ i1, . . . , im ≤ l.
The responses in the second set are final responses. They correspond to cases in which the
ith argument does not demand more information about its arguments and simply returns
an answer in N. They have the form:

rm+1 = q∗ · 〈a1〉
. . .

rm+n = q∗ · 〈an〉

Fully Abstract Semantics for Observably Sequential Languages 61

where a1, . . . , an ∈ N. The picture in Figure 6 provides a concise overview of the situation.
Now we need to construct a term N∗ such that C[N∗] denotes x. By the inductive

hypothesis for x′ (and Q+), we know that if x1, . . . , xk, the arguments to M, dominate the
information in q′, then the meaning of M is the meaning of N∗ and the query q∗ is open or
answered in xi. The program should then probe the ith argument and determine which of
the m+ n responses xi dominates, if any. Based on this probe, N∗ can perform a dispatch
according to the answer and diverge by evaluating Ω. Thus, a rough outline of N∗ is

let w = “probe argument xi” in

(if0 “w indicates r1 ∈ xi” Ω ; [1]
. . . ;
(if0 “w indicates rm ∈ xi” Ω ; [m]
(if0 “w indicates rm+1 ∈ xi” Ω ; [m+ 1]
. . . ;
(if0 “w indicates rm+n ∈ xi” Ω ; [m+ n]
Ω) . . .)) . . .) ;

where the expression (let w = L in K) abbreviates ((λw.K) L). The first m + n new Ω
terms in C[N∗] correspond to the m+n new open queries in whose direction M can grow.
Specifically, the Ω term on line [j] indicates where M must grow for a tree y that extends x
in the direction of the query q′ · 〈q∗, i〉〈rj , i〉 for j, 1 ≤ j ≤ m+ n.

A naı̈ve way of probing xi is to apply it to the arguments ||π1(q∗)||, . . . , ||πl(q∗)||, that is,
the information in q∗ about the arguments of xi. Since σi, the type of ||πi(q∗)||, is smaller
than τ , the inductive hypothesis implies that there is a term Ai that represents ||πi(q∗)||.
Hence a syntactic representation of the probe expression would be the application

(xτi
i A1 . . . Al).

As long as xi dominates a final response, say, rm+j for 1 ≤ j ≤ n, the naı̈ve way of
probing xi works. The probe will evaluate to aj (in N), and it is easy to dispatch to the
right branch in the following if0-expression. However, if xi contains some query response,
say, rj = q∗ · 〈pj , ij〉, then it ends up issuing a query asking for more information about its
ijth argument. Since the expression Aij only encodes the information embedded in q∗, i.e.,
pj ∈ Open(πij (q

∗)), this last action will cause the entire probe to diverge.
To get around the “over-exploration” of arguments to xi, we need to define variants

B1, . . . , Bl of the arguments A1, . . . , Al such that each variant Bh initiates a non-local exit
from the application (xτi

i B1 . . . Bl) whenever xi asks for information in the direction of
any of the responses r1, . . . , rm. In SPCF the catch operator, when applied to an appro-
priate procedure, can simulate a non-local exit. Thus, to implement our ideas in SPCF, the
expression (xτi

i B1 . . . Bl) needs to be parameterized such that it demands its jth argument
precisely when xi dominates rj . Call the resulting procedure N@. Then by applying the
catch operator to N@, the program can determine which query or which final response xi

dominates and can thus branch to the correct line in N∗.
Expressed formally, we must define a λ-abstraction

N@ = λyo
1 . . . y

o
m.(x

τi
i B1 . . . Bl)

62 R. Cartwright, P.-L. Curien, M. Felleisen

that satisfies the following condition:

SEQ[[xτ1
1 , . . . , x

τk
k ` N@]]〈x1, . . . , xk〉 =

{〈?〉 · 〈?, j〉} if rj ∈ xi

for some j, 1 ≤ j ≤ m
{〈?〉 · 〈a〉} if q∗ · 〈a〉 ∈ xi, a ∈ N

Then:

SEQ[[xτ1
1 , . . . , x

τk
k ` (catch N@)]]〈x1, . . . , xk〉 =

{? · (j − 1)} if rj ∈ xi

{? · (a+m)} if q∗ · 〈a〉 ∈ xi

{? · e} if q∗ · e ∈ xi

⊥ otherwise

The last two parts are implied by sequentiality and manifest sequentiality.
The key to constructing N@ is defining the expressions B1, . . . , Bl. Each expression Bh

must evaluate the variable yo
j if rj ∈ xi. In addition, each expression Bh must satisfy the

constraint ||πh(q∗)|| v SEQ[[yo
1, . . . , y

o
s ` Bh]]〈y1, . . . , ys〉 for arbitrary y1, . . . , ys. Since the

construction of the expression is complicated, we assume for the moment that we can con-
struct the argument expressions B1, . . . , Bl and continue with the rest of the construction
of N@.

Given the expression N@, N∗ is easy to construct. Since the application (catch N@)
yields an encoding of the index j of xi’s response rj (if any), N∗ can branch to the cor-
rect line representing the query qj by performing a sequential case split. Without loss of
generality, we assume that the final answers are sorted: a1 < a2 < . . . < an. Then

N∗ = let w = (catch N@) in

(if0 w Ω ; [1]
. . .
(if0 (sub1m−1 w) Ω ; [m]
(if0 (sub1a1+m w) Ω ; [m+ 1]
. . .
(if0 (sub1an+m w) Ω ; [m+ n]
Ω) . . .)) . . .)

where the expression (sub1b L) abbreviates the b-fold application of sub1 to the argument
expression L.

Beyond the construction of M the inductive hypothesis also demands the definition of
an injection from Q to the set of contexts derived from M such that the injection satisfies
(‡). If q ∈ Q+ then we can exploit the inductive hypothesis for x′ and Q+ and use the
injection from Q+ to contexts for M ′ to find an appropriate context for q and M ; the proof
that this association works is only a minor variant of the proof in the first subcase of the
induction step. Otherwise, by assumption, q is one of q1, . . . , qm+n. Say, q = qm+j for
1 ≤ j ≤ n and rm+j = q∗ · 〈aj〉. If Cm+j is the context whose hole contains the Ω term on
line m+ j of N∗, i.e., C[N∗] = C[Cm+j [Ω]], then C[Cm+j []] is the context associated with q.

We will concentrate on a query that ends in a final response to simplify the presenta-
tion: qm+j for 1 ≤ j ≤ n and rm+j = q∗ · 〈aj〉. For a response that ends in a query (rj for
1 ≤ j ≤ m), the proof proceeds in essentially the same manner.

Fully Abstract Semantics for Observably Sequential Languages 63

Associating C[Cm+j []] with q satisfies (‡). We analyze each of the two parts of condi-
tion (‡) separately. Let N be a term with free variables in xτ1

1 , . . . , x
τk
k , and let x1 ∈ SEQτ1 ,

. . . , xk ∈ SEQτk be the denotations of these variables.

1. Suppose that ||πh(q′ · 〈q∗, i〉 · 〈rm+j , i〉)|| v xh for all h, which clearly means ||πh(q′)|| v
xh and at index i implies

||πi(q′ · 〈q∗, i〉 · 〈rm+j , i〉)|| = ||πi(q′)|| ∪ {rm+j} v xi.

We must show that the meaning of C[Cm+j [N]] is the meaning of N :

SEQ[[xτ1
1 , . . . , x

τk
k ` C[Cm+j [N]]]]〈x1, . . . , xk〉

= SEQ[[xτ1
1 , . . . , x

τk
k ` N]]〈x1, . . . , xk〉

By the inductive hypothesis for x′ and Q+, q′ is associated with C[] and satisfies (‡).
Since ||πh(q′)|| v xh for all h by assumption,

SEQ[[` C[Cm+j [N]]]] ⊥ ?x1 ? . . . ? xk

= SEQ[[xτ1
1 , . . . , x

τk
k ` Cm+j [N]]]〈x1, . . . , xk〉.

Also by assumption, rm+j = q∗ · 〈aj〉 for aj ∈ N and thus,

SEQ[[xτ1
1 , . . . , x

τk
k ` (catch N@)]]〈x1, . . . , xk〉 = {? · (aj +m)}.

The rest is a straightforward calculation:

SEQ[[xτ1
1 , . . . , x

τk
k ` Cm+j [N]]]〈x1, . . . , xk〉

= SEQ[[xτ1
1 , . . . , x

τk
k , w

o `
(if0 w Ω . . .
(if0 (sub1m−1 w) Ω
(if0 (sub1a1+m w) Ω
. . .
(if0 (sub1aj+m w) N
. . .
(if0 (sub1an+m w) Ω) . . .) . . .)) . . .)]]〈x1, . . . , xk, {? · (aj +m)}〉

= SEQ[[xτ1
1 , . . . , x

τk
k , w

o `
(if0 (sub1aj+m w) N
. . .
(if0 (sub1an+m w) Ω) . . .)]]〈x1, . . . , xk, {? · (aj +m)}〉

= SEQ[[xτ1
1 , . . . , x

τk
k , w

o ` N]]〈x1, . . . , xk, {? · (aj +m)}〉
= SEQ[[xτ1

1 , . . . , x
τk
k ` N]]〈x1, . . . , xk〉 because wo is not free in N.

2. Suppose that ||πl(q′ · 〈q∗, i〉 · 〈rm+j , i〉)|| 6v xl for some l. Now we must show that the
meaning of C[Cm+j [N]] is independent of N :

SEQ[[` C[Cm+j [N]]]] ⊥ ?x1 ? . . . ? xk = x ? x1 ? . . . ? xk.

We distinguish two subcases:

64 R. Cartwright, P.-L. Curien, M. Felleisen

(a) If for any h (unrelated to l) ||πh(q′)|| 6v xh then by the inductive hypothesis for x′

and Q+, for any K,

SEQ[[` C[K]]] ⊥ ?x1 ? . . . xk = x′ ? x1 ? . . . ? xk.

By instantiating with Cm+j [L],

SEQ[[` C[Cm+j [N]]]] ⊥ ?x1 ? . . . ? xk

= x′ ? x1 ? . . . ? xk

= (x′ ∪ {q′ · 〈q∗, i〉}) ? x1 ? . . . ? xk

= x ? x1 ? . . . ? xk

The last two steps hold because ||πh(q′)|| 6v xh and therefore q′ · 〈q∗, i〉 does not
contribute anything to the final output of the application.

(b) If ||πh(q′)|| v xh for all h then obviously, ||πi(q′ · 〈q∗, i〉 · 〈rm+j , i〉)|| 6v xi. More-
over, the inductive hypothesis for x′ and Q+ implies that for any term in the
hole of C[], and in particular for Cm+j [L],

SEQ[[` C[Cm+j [N]]]] ⊥ ?x1 ? . . . ? xk

= SEQ[[xτ1
1 , . . . , x

τk
k ` Cm+j [N]]]〈x1, . . . , xk〉.

The rest of this case depends on the response of xi to the query q∗, if any:

i. If q∗ ∈ Open(xi) then

SEQ[[xτ1
1 , . . . , x

τk
k ` Cm+j [N]]]〈x1, . . . , xk〉

= SEQ[[xτ1
1 , . . . , x

τk
k , w

o ` (if0 w Ω . . .)]]〈x1, . . . , xk,⊥〉
= ⊥

because SEQ[[xτ1
1 , . . . , x

τk
k ` (catch N@)]]〈x1, . . . , xk,⊥〉 =⊥.

ii. If q∗ · e ∈ xi (for e ∈ E), then

SEQ[[xτ1
1 , . . . , x

τk
k ` Cm+j [N]]]〈x1, . . . , xk〉

= SEQ[[xτ1
1 , . . . , x

τk
k , w

o ` (if0 w Ω . . .)]]〈x1, . . . , xk, {? · e}〉
= {? · e}

because SEQ[[xτ1
1 , . . . , x

τk
k ` (catch N@)]]〈x1, . . . , xk〉 = {? · e} if q∗ · e ∈ xi.

iii. If q∗·〈a〉 ∈ xi, then two cases are possible. First, a = ah for some h, 1 ≤ h ≤ n
but h 6= j. Then because SEQ[[xτ1

1 , . . . , x
τk
k ` (catch N@)]]〈x1, . . . , xk〉 =

{? · (aj +m)},

SEQ[[xτ1
1 , . . . , x

τk
k ` Cm+j [N]]]〈x1, . . . , xk〉

= SEQ[[xτ1
1 , . . . , x

τk
k , w

o `

Fully Abstract Semantics for Observably Sequential Languages 65

(if0 w Ω . . .
(if0 (sub1m−1 w) Ω
(if0 (sub1a1+m w) Ω
. . .
(if0 (sub1aj+m w) N
. . .
(if0 (sub1an+m w) Ω) . . .) . . .)) . . .)]]

〈x1, . . . , xk, {? · (ah +m)}〉
= SEQ[[xτ1

1 , . . . , x
τk
k , w

o `
(if0 (sub1ah+m w) Ω
. . .
(if0 (sub1an+m w) Ω) . . .)]]〈x1, . . . , xk, {? · (aj +m)}〉

= SEQ[[xτ1
1 , . . . , x

τk
k , w

o ` Ω]]〈x1, . . . , xk, {? · (ah +m)}〉
= ⊥ .

Second, a may be distinct from a1, . . . , an such that, without loss of gener-
ality, a < an. Again, one of the test expressions will diverge:

SEQ[[xτ1
1 , . . . , x

τk
k ` Cm+j [N]]]〈x1, . . . , xk〉

= SEQ[[xτ1
1 , . . . , x

τk
k , w

o ` (if0 w Ω . . .)]]〈x1, . . . , xk, {? · a}〉
= SEQ[[xτ1

1 , . . . , x
τk
k , w

o ` (if0 (sub1aj+m w) Ω . . .)]]〈x1, . . . , xk, {? · a}〉
for aj > a

= ⊥

If a > an, then the evaluation will reach the else branch of the last if0-
expression, which will force divergence again.

iv. If q∗ · 〈p∗, 1〉 ∈ xi for some query p∗, we must also consider two cases. First,
p∗ may be one of p1, . . . , pm, e.g., p∗ = ph for h, 1 ≤ h ≤ m. This implies that

SEQ[[xτ1
1 , . . . , x

τk
k ` (catch N@)]] = {? · (h− 1)}.

A simple calculation now shows that

SEQ[[xτ1
1 , . . . , x

τk
k ` Cm+j [N]]]〈x1, . . . , xk〉

= SEQ[[xτ1
1 , . . . , x

τk
k , w

o `
(if0 w Ω . . .
(if0 (sub1h−1 w) Ω
(if0 (sub1a1+m w) Ω
. . .
(if0 (sub1aj+m w) N
. . .
(if0 (sub1an+m w) Ω) . . .) . . .)) . . .)]]
〈x1, . . . , xk, {? · (h− 1)}〉

= SEQ[[xτ1
1 , . . . , x

τk
k , w

o ` (if0 (sub1h−1 w) Ω . . .)]]

66 R. Cartwright, P.-L. Curien, M. Felleisen

〈x1, . . . , xk, {? · (h− 1)}〉
= ⊥

Second, p∗ may be distinct from any of the p1, . . . , pm, in which case

SEQ[[xτ1
1 , . . . , x

τk
k ` (catch N@)]]〈x1, . . . , xk〉 =⊥,

and therefore

SEQ[[xτ1
1 , . . . , x

τk
k ` Cm+j [N]]]〈x1, . . . , xk〉 =⊥ .

For all four cases, Cm+j [N] in the environment 〈x1, . . . , xk〉 evalutes as required:

x ? x1 ? . . . ? xk = (x′ ∪ {q′ · 〈q∗, i〉}) ? x1 ? . . . ? xk

=

⊥ if q∗ ∈ Open(xi)
{? · e} if q∗ · e ∈ xi

⊥ if q∗ · 〈a〉 ∈ xi, a 6= aj

⊥ if q∗ · 〈p∗, 1〉 ∈ xi

Given that N was arbitrary we were able to show that the association of Cm+j [] with
q = q′ · 〈q∗, i〉 · 〈rm+j , i〉 satisfies (‡).

Constructing B1, . . . , Bl. To complete the proof of the lemma, we must

• construct the argument expressions B1, . . . , Bl, and

• prove that the expression N@, constructed from B1, . . . , Bl, satisfies the correctness
conditions identified above.

Let h be an index in the range 1, . . . , l. The type of Bh has the form

σh = ν1 → . . . νt → o

for some integer t ≥ 0. Its construction falls into one of two cases. In the first case, no
query response rj (1 ≤ j ≤ m) asks for more information about the hth argument. In this
case, we simply define Bh as the closed expression representing the tree ||πh(q∗)||, which
exists by the induction hypothesis because the type σh of Bh is smaller than τ .

In the other case, a finite number s of query responses rj ask for more information about
the hth argument. We can assume without loss of generality that these query responses
are r1 = q∗ · 〈p1, h〉, . . . , rs = q∗ · 〈ps, h〉, and that the variables yo

1, . . . , y
o
s correspond

to these responses. From the assumptions, p1, . . . , ps ∈ Open(||πh(q∗)||). Now our goal
is to construct a procedure Bh that requests information about yo

j if xi inquires about pj

(1 ≤ j ≤ s). Thus, Bh must be a procedure of type σh but its body must also depend on the
parameters yo

1, . . . , y
o
s . If Eh is the body of Bh, the latter has the following shape:

Bh = λzν1
1 . . . zνt

t .(Eh z
ν1
1 . . . zνt

t yo
1 . . . y

o
s).

Fully Abstract Semantics for Observably Sequential Languages 67

In other words, Eh is procedure of type

σ′h = ν1 → . . . νt → o→ . . .→ o︸ ︷︷ ︸
s−times

→ o

that acts like ||πh(q∗)|| with respect to the first t arguments and contains a query for yo
j if the

first t arguments dominate the information in the path pj (1 ≤ j ≤ s).
Semantically speaking, we need to (1) inject ||πh(q∗)|| from the domain for σh into σ′h

and (2) extend ||πh(q∗)|| at the positions p1, . . . , ps so that it issues a query for argument
t+ 1, . . . , t+ s, respectively:

1. Every z tree of type σh directly corresponds to a tree in σ′h. By changing every initial
address on a path in z from

〈. . . 〈?, 2〉, . . . , 2〉︸ ︷︷ ︸
t

to 〈. . . 〈?, 2〉, . . . , 2〉︸ ︷︷ ︸
s+t

and every final datum from

〈. . . 〈? · n, 2〉, . . . , 2〉︸ ︷︷ ︸
t

to 〈. . . 〈? · n, 2〉, . . . , 2〉︸ ︷︷ ︸
s+t

,

we get a tree in the extended domain. We use the notation zσ′
h for the result of in-

jecting z. Since the tree in the extended domain does not contain any queries about
the arguments t+ 1, . . . , t+ s, it is immediate that ||πh(q∗)||σh and ||πh(q∗)||σ′

h relate to
each other as follows:

||πh(q∗)||σh ? z1 ? . . . ? zt = ||πh(q∗)||σ′
h ? z1 ? . . . ? zt ? y1 ? . . . ? ys

for all z1, . . . , zt and y1, . . . , ys.

2. Given the tree ||πh(q∗)||σ′
h , we can form a tree that grafts appropriate subtrees at (the

paths in the extended domain) p1, . . . , ps onto the tree:

eh = ||πh(q∗)||σ′
h ∪ {pσ′

h
1 · 〈?, t+ 1〉, . . . , pσ′

h
s · 〈?, t+ s〉}.

Interpreted as a function, eh obviously has the desired behavior. The inductive hypothesis
implies that there is a representing term Eh for eh because σ′h is smaller than τ .

The meaning of Bh depends on the values of yo
1, . . . , y

o
s in the environment. Let ~y =

〈y1, . . . , ys〉 be a vector of s arbitrary values in Ne
⊥. Then we claim that Bh denotes the tree

(||πh(q∗)|| ∪ {pj · yj | if yj ∈ E})σh

That is, if none of the variables yo
1, . . . , y

o
s denotes an error value, Bh denotes ||πh(q∗)||. If

some variable yo
j stands for an error value yj , the error value is propagated and is grafted

onto the end of the query pj ∈ Open(||πh(q∗)||). We refer to the meaning of Bh relative to ~y
as b~yh.

68 R. Cartwright, P.-L. Curien, M. Felleisen

To prove that the denotation of Bh is the above tree, assume that z1 ∈ SEQν1 , . . . , zt ∈
SEQνt and y1, . . . , ys ∈ Ne

⊥ are arbitrary:

SEQ[[yo
1 . . . y

o
s ` Bh]]〈y1, . . . , ys〉 ? z1 ? . . . ? zt

= SEQ[[yo
1 . . . y

o
sz

ν1
1 . . . zνt

t ` (Eh z
ν1
1 . . . zνt

t yo
1 . . . y

o
s)]]〈y1, . . . , ys, z1, . . . , zt〉

= eh ? z1 ? . . . ? zt ? y1 ? . . . ? ys

= (||πh(q∗)|| ∪ {p1 · 〈?, t+ 1〉, . . . , ps · 〈?, t+ s〉})σ′
h ? z1 ? . . . ? zt ? y1 ? . . . ? ys

=

{? · y1} if ||πg(p1)|| v zg for 1 ≤ g ≤ t, y1 ∈ E
. . .
{? · ys} if ||πg(ps)|| v zg for 1 ≤ g ≤ t, ys ∈ E
||πh(q∗)|| ? z1 ? . . . ? zt ? y1 ? . . . ? ys otherwise

= (||πh(q∗)|| ∪ {pj · yj | if yj ∈ E})σh ? z1 ? . . . ? zt,

which, by extensionality, implies SEQ[[yo
1 . . . y

o
s ` Bh]]〈y1, . . . , ys〉 = b~yh.

After constructing and analyzing Bh, we must show that the denotation of

N@ = λyo
1 . . . y

o
m.(x

τi
i B1 . . . Bl)

is such that

SEQ[[xτ1
1 , . . . , x

τk
k ` N@]]〈x1, . . . , xk〉 =

{〈?〉 · 〈a〉} if q∗ · 〈a〉 ∈ xi, a ∈ N
{〈?〉 · 〈?, j〉} if rj ∈ xi

for some j, 1 ≤ j ≤ m.

To prove this claim, assume that xi contains a response to q∗, say, rj . Let y1, . . . , ym be l
arbitrary values from Ne

⊥ and let ~y1, . . . , ~yl be vectors containing the values from y1, . . . , ym

of all the free variables among yo
1, . . . , y

o
m for the expressionsB1, . . . , Bl, respectively. Then:

SEQ[[xτ1
1 , . . . , x

τk
k ` N@]]〈x1, . . . , xk〉 ? y1 ? . . . ? ym

= SEQ[[xτ1
1 , . . . , x

τk
k ` (xi B1 . . . Bl)]]〈x1, . . . , xk, y1, . . . , ym〉

= xi ? b
~y1
1 ? . . . ? b~yl

l

= {(π⇒2)l(rj) | rj = q∗ · 〈a〉, a ∈ N} ∪ {(π⇒2)l(qj) · yhj
| rj = q∗ · 〈pj , hj〉, if yhj

∈ E}

because b~y1 w ||π1(q∗)||, . . . , b~yl w ||πl(q∗)||
= {? · a | rj = q∗ · 〈a〉, a ∈ N} ∪ {? · yhj

| rj = q∗ · 〈pj , hj〉, yhj
∈ E}

since pj · yj ∈ b
~yhj

hj
if yhj

∈ E and pj ∈ Open(b
~yhj

hj
) if yhj

∈ N⊥

=
{
{〈?〉 · 〈a〉} ? y1 ? . . . ? ym if rj = q∗ · 〈a〉
{〈?〉 · 〈?, j〉} ? y1 ? . . . ? ym if rj = q∗ · 〈pj , hj〉

By extensionality, the denotation of N@ satisfies the desired condition. This observation
completes the proof of the lemma for the semantics based on SEQ.

With minor adjustments, the proof is valid for a semantics based on Seq as long as
the set of error values is not empty. As for the non-extensional semantics Seq∅, the proof
proceeds as above. Since an error-free x is represented by a term M in SPCF(∅), and since
by Lemma 7.3 terms in SPCF(∅) of type τ denote the same tree in Seqτ independently of the
underlying error set, it is also true that Seq∅[[M]]? ⊥= x, i.e., M denotes x in the intensional
semantics.

Fully Abstract Semantics for Observably Sequential Languages 69

8 An Adequate Operational Semantics for SPCF

Although the denotational semantics of a programming language is an elegant tool for
reasoning about the phrases of the language, an operational semantics offers a better basis
for the derivation of an implementation. Moreover, when defined via the reductions of a
calculus, an operational semantics also provides a simple equational theory that is useful
for proving many observational equivalences.

To equip SPCF with an operational semantics, we follow Plotkin’s program [25]—as
extended by Felleisen, Friedman and Hieb [13, 14, 15]—on relating λ-calculi and abstract
machines. More specifically, we define an extension of the typed λ-calculus and, based on
it, a deterministic text rewriting machine for SPCF programs. We then prove an adequacy
theorem for SPCF, i.e., we show that for any program P , the meaning of P is n or e if and
only if P reduces to dne or e, respectively. Based on this adequacy result, the full abstraction
theorem can now be formulated as follows: given two SPCF phrases M and N , Seq [[M]] v
Seq [[N]] if and only if for for any program context C[] for M and N, C[M] evaluates to w
implies C[N] evaluates to w where w is either a numeral or an error element.17

8.1 Operational Semantics

The description of the operational semantics relies on the notion of an evaluation con-
text [13] for two separate purposes. First, the notion of an evaluation context is useful
for defining notions of reduction that capture the behavior of error elements and control
facilities like catch in a context-free manner. Second, given a reduction system, a standard
reduction of a program is the repeated reduction of the redex that occurs in the hole of
the evaluation context. This definition yields a deterministic textual rewriting machine be-
cause every SPCF program (that is not a value) has a unique partitioning into an evaluation
context and a (proper) redex.

Definition 8.1 (Evaluation Contexts) The set of evaluation contexts is the following subset
of the set of contexts:

E ::= [] | (f E) | (E M) | catch (λx1 . . . xn.E) for n ≥ 0

If E[] is an evaluation context, then (E[])[N/x] denotes the context that results from
capture-free substitution of all free x by N in the subterms of E[].

The set of evaluation contexts is a subset of the set of contexts (see Definition 3.3). Gen-
erally speaking, the hole of an evaluation context can only occur where a reduction must
take place due to the strictness properties of the primitive procedures and procedure appli-
cation in SPCF. There are four specific situations that meet these criteria (in SPCF). First, a
hole can clearly occur to the right of a primitive procedure because all primitives are strict.
Second, in an application the only position that must be evaluated is the function position:
hence, an evaluation context may have a hole in the function position of an arbitrary appli-
cation. Third, since catch must determine whether or not its argument is constant or strict

17The results presented in this section account for the fact that (sub1 d0e) denotes bottom but it does not rely
on it. It is easy to adapt the proofs for a version of SPCF in which (sub1 d0e) returns d0e or signals an error.

70 R. Cartwright, P.-L. Curien, M. Felleisen

in some position, it must clearly evaluate its argument and, if the argument reduces to a
procedure, the body of the argument’s value.18 To reflect the second part of this idea, an
evaluation context may also have a hole in the procedure body of the argument to catch.
Finally, to provide a base case for the inductive definition, we also include the plain hole
in the set of evaluation contexts.

For the specification and analysis of the operational semantics we need to extend the
substitution and context-filling operation to evaluation contexts. It is crucial that these
operations, i.e., filling an evaluation context with an evaluation context or replacing a free
variable by an arbitrary term in an evaluation context, yield not only arbitrary contexts but
evaluation contexts.

Lemma 8.2 If E and E′ are evaluation contexts, then so are E[E′[]] and (E[])[N/x].

Proof. The proofs are simple inductions on the structure of E.

Given the definition of evaluation contexts, we can now turn to the definition of the
SPCF calculus. The calculus is an extension of the PCF calculus. First, the basic set
of axioms contains the usual laws for procedure application (β) and for primitives (Y,
add1, sub1, if0/0, if0/1). Second, the laws for catch and error elements reflect the denota-
tional semantics. Accordingly a term signals an error if the error occurs in a position that
must be evaluated. Put formally, an error element erases any surrounding evaluation con-
text. Similarly, when a bound variable occurs in an evaluation context (in the procedure
body), a catch application will signal that the procedure is strict in this argument. An appli-
cation of catch to a procedure whose body is a numeral can be replaced by an appropriate
result. Finally, there is no reduction for Ωo because it represents the provably diverging
program.

18Operationally speaking, catch acts like a (strict) let-expression for which the evaluator creates the values
for the variables on the fly. The values are tags that mark the evaluation context of the let-expression. When
one of the tags is touched during the evaluation of the body, the portion of the evaluation context between the
markers and the occurrence of the tag needs to be erased. To avoid the introduction of an additional syntactic
object, we employ variables as tags and use the notation catch λx1 . . . xm. to mark the evaluation context
at the appropriate place. In an abstract machine with an explicit control stack, like the CEK [13] machine,
this implementation technique corresponds to marking the control stack (K) and binding the variables of the
catch argument to these tags. When an environment lookup produces a tag, the control stack is erased to an
appropriate extent.

Fully Abstract Semantics for Observably Sequential Languages 71

Definition 8.3 (SPCF Reductions, Calculus) The nine basic notions of reduction for SPCF
are the following nine relations between SPCF phrases:

add1 dne −→ dn+ 1e (add1)
sub1 dn+ 1e −→ dne (sub1)

if0 d0e −→ λxy.x (if0/0)
if0 dn+ 1e −→ λxy.y (if0/1)

YM −→ M(Y M) (fix)
(λx.M) N −→ M [N/x] (β)

E[e] −→ e, E 6= [], e ∈ E (error)
catch (λx1 . . . xm.

dne) −→ dm+ ne (return)
catch (λx1 . . . xm.E[xi]) −→ di− 1e where i ≤ m (catch)

Additional Constraints: First, in (error), E[e] must be of ground type. Second, the last rule
assumes that given a term of the shape E[xi], the occurrence of xi in the hole of E is a free
occurrence.
Terminology: As always, we refer to the left hand side of one of the above rules as “redex”.
E[e] is called an error redex; other redexes are proper redexes.

The SPCF calculus is the equational theory generated from the nine axioms above using
the inference rules:

M −→ N

M = N

M = N

C[M] = C[N]

M = N N = L

M = L

M = M

M = N

N = M

where C[] is an arbitrary context. We write SPCF ` M = N if M and N are provably
equal.

Calculating with terms preserves their types. This property is important for many of
the subsequent definitions though we will not explicitly mention it.19

Lemma 8.4 If A `M : τ and SPCF `M = N then A ` N : τ .

Proof. It is easy to check that the nine basic axioms have the following, slightly stronger
property: If A ` M : τ and M −→ N then A ` N : τ . The property obviously holds for
all rules except for (error), for which it is explicitly built in. The rest is a straightforward
induction.

An operational semantics for a language is a partial function from programs to an-
swers, that is, in our case from closed SPCF terms of ground type to numerals and error
elements. Based on the SPCF calculus we can define an evaluation function by saying that

19The property implies that e can only be the result of a program if it is a part of the original program text.

72 R. Cartwright, P.-L. Curien, M. Felleisen

if a program is provably equal to a numeral or to an error element, the respective value
is the program’s result. With this, it is easy to confirm that the example programs from
Section 3, (catch +l) and (catch +r), are equal to distinct outputs:

SPCF ` (catch +l) = d0e

and
SPCF ` (catch +r) = d1e.

However, Plotkin’s analysis of the λ-calculus as a programming language suggests that
such a definition is equivalent to the following, more algorithmic definition: to find the
value of a program, it suffices to reduce the leftmost-outermost redex until the program
is transformed into a value. Finding the leftmost-outermost redex in SPCF programs re-
quires a partitioning of the program into an evaluation context and a redex. As for PCF,
this partitioning process yields a unique pair of context and filler. If the filler is an error
element, there may be several choices of splitting the program into an evaluation context
and a redex. Otherwise, the pair is unique.

Lemma 8.5 (Unique Evaluation Context) For any SPCF application M , there exists exactly
one partitioning of M into an evaluation context E[] and a term R where R is either a free
variable, Ω, (sub1 0), an error element, or a proper redex.

Proof. The proof is an induction on the structure of M and proceeds by case analysis:

M = (M1 M2) : If M1 is a λ-abstraction, M is a redex and the empty context serves as
the required evaluation context. Otherwise, there exists a unique partitioning of M1

into some appropriate E1[] and R by the inductive hypothesis. Take M = E[R] as
the partitioning where E[] = (E1[] M2). By the inductive definition of the set of
evaluation contexts, there cannot be any other partitioning.

M = (f M1) where f ∈ {add1, sub1, if0}: If M1 is a numeral, M is a redex or is (sub1 d0e).
If M1 ∈ E, take E = (f []) and R = M1. Otherwise, M1 = E1[R] by the inductive
hypothesis. As in the preceding case, E[] = (f E1[]) and R are the desired pieces
of M .

M = (Y M1) : M is a redex.

M = (catch (λx1 . . . xi.M1)) where i ≥ 0 and M1 is not a λ-abstraction: If M1 is a numeral
or an error element, the argument proceeds as in the preceding case. Otherwise,
the inductive hypothesis guarantees that M1 = E1[R]. If R is a free variable among
x1, . . . , xi, then M is a redex of the right kind. If R is a redex, Ω, an error element,
or some different free variable, the required partitioning for M consists of E[] =
(catch (λx1 . . . xi.E1[])) and R.

As a consequence of the Unique Evaluation Context Lemma we can define evaluation
for SPCF programs in the traditional way, namely, as leftmost-outermost reduction to a
canonical form.

Fully Abstract Semantics for Observably Sequential Languages 73

Definition 8.6 (evalSPCF , 7→, Values) The operational semantics of SPCF is the partial rela-
tion

evalSPCF :
{

Programs −→◦ Values
M evalSPCF w iff M 7→∗ w

where
w ∈ Values = E ∪ {dne |n ∈ N}

and
M −→M ′

E[M] 7→ E[M ′]
.

If M 7→ N we say M standard reduces to N ; we call 7→ standard reduction.

Due to (error), the relation 7→ is clearly not a function but a proper relation. For exam-
ple, (add1 (add1 e)) 7→ (add1 e) and (add1 (add1 e)) 7→ e. Hence, it is necessary to prove that
evalSPCF is a function. The proposition is an easy consequence of the Unique Evaluation
Context Lemma.20

Proposition 8.7 The relation evalSPCF is a partial function.
Moreover, an SPCF program M evaluates either

1. to a numeral,

2. to an error value (if E 6= ∅),

3. to a stuck state,

4. or has an infinite standard reduction.

Proof. The first part of the proposition is a straightforward consequence of the Unique
Evaluation Context Lemma. If a program M is an application it either has a unique suc-
cessor with respect to standard reduction or reduces to a unique error value. Hence, if
M 7→∗ w, then w is either a unique numeral or a unique error value.

The second part of the proposition follows from a Uniform Evaluation Lemma (see
below). When applied to programs, which are closed and of ground type, the lemma says
that for every SPCF program M one of the suggested alternatives holds. The possibilities
are mutually exclusive due to the Unique Evaluation Context Lemma.

Uniform evaluation for SPCF means that the reduction rules suffice to show that all
SPCF terms M of ground type evaluate according to one of five possibilities: the four
mentioned in the previous lemma and a stuck state of the shape E[x] where x is free. The
idea generalizes to all types.

20The proposition also follows from the Soundness Lemma (see 8.14) in the second subsection.

74 R. Cartwright, P.-L. Curien, M. Felleisen

Definition 8.8 (Evalτ) The family of sets of SPCF phrases Evalτ is defined by induction on
types:

Evalo = {M | M 7→∗ dne or
M 7→∗ e or
M 7→∗ E[Ω] or
M 7→∗ E[xi] or
∀N.M 7→∗ N =⇒ ∃L.N 7→ L}

Evalσ→τ = {M | M 7→∗ λxσ.N ∧N ∈ Evalτ or
M 7→∗ E[e] or
M 7→∗ E[Ω] or
M 7→∗ E[xi] or
∀N.M 7→∗ N =⇒ ∃L.N 7→ L}

Lemma 8.9 (Uniform Evaluation) For every SPCF term M of type τ , M ∈ Evalτ .

Proof. The proof is an induction on the structure of τ . First assume τ = o, M 7→∗ N , and N
is irreducible with respect to standard reduction. If N ∈ Values one of the first two clauses
of Evalo holds. Otherwise N is an application. In this case Lemma 8.5 says that N = E[R]
where R ∈ Vars , R = Ω, R ∈ E, or R is a proper redex. The first two cases are covered
by clauses 3 and 4 of Evalo. If N = E[e] then N 7→∗ e because of its ground type. But
this contradicts the assumption that N is irreducible, so it is impossible. The case where R
is a redex leads to the same contradiction. Thus, M reduces according to one of the first
four clauses or for every reachable term N there is a successor with respect to standard
reduction.

Second assume τ = σ → ν. The same analysis applies as in the base case except
that irreducible terms are now λ-abstractions and evaluation contexts of type τ filled with
e ∈ E. By inductive hypothesis, the bodies of λ abstractions are in Evalν .

The Uniform Evaluation Lemma implies an important lemma on the evaluation of
phrases whose root is a catch application. The lemma is crucial for the treatment of catch
in the following subsection. It requires the definition of a set of terms that suitably gener-
alizes the set of terms with infinite standard reductions to higher types.

Definition 8.10 (Inf τ) The family of sets of SPCF phrases Inf τ is defined by induction on
types:

Inf o = {M | ∀N.M 7→∗ N =⇒ ∃L.N 7→ L}
Inf σ→τ = {M |M 7→∗ λxσ.N ∧N ∈ Inf τ ,∀N.M 7→∗ N =⇒ ∃L.N 7→ L}

The operator catch discovers when a term belongs to Inf .

Lemma 8.11 Let M be a term of type τ . If (catch M) ∈ Inf o, then M ∈ Inf τ .

Fully Abstract Semantics for Observably Sequential Languages 75

Before closing the section, we collect four properties of the reduction and standard
reduction relations that are crucial for proofs in the following subsection.

Proposition 8.12 1. If M −→ N then M [L/x] −→ N [L/x].

2. If M 7→M ′, then E[M] 7→ E[M ′].

3. If M 7→ N then M [L/x] 7→ N [L/x].

4. If M ∈ Inf τ and its arity is a, then for all L1, . . . , La and for all N1, . . . , Ni and x1, . . . , xi,
(M [N1/x1] . . . [Ni/xi] L1 . . . La) ∈ Inf o.

Proof. The proof of the first part is straightforward for each notion of reduction. For (error)
and (catch) the proof relies on Lemma 8.2, i.e., that substitutions in an evaluation context
do not affect its status as evaluation context.

For the second claim, if M = E′[N], N −→ N ′ and M ′ = E′[N ′], then E′′ = E[E′[]]
is an evaluation context by Lemma 8.2 and E[M] = E′′[N]. Hence, by definition of 7→,
E[M] 7→ E′′[N ′] = E[M ′].

The third claim follows from the first one and Lemma 8.2.
Finally, the fourth claim requires a simple induction on the type τ . For τ = o, M ∈ Inf o

implies that M has an infinite reduction sequence. By part 3, all substitution instances of
M also have an infinite reduction sequence and are thus in Inf o. Thus assume τ = σ → ν.
Then either M itself has an infinite standard reduction, in which case the claim is again
obviously true, or M standard reduces to some abstraction λxσ.L. In the latter case,

(M [N1/x1] . . . [Ni/xi] L1 . . . La) 7→∗ ((λxσ.L[N1/x1] . . . [Ni/xi]) L1 . . . La)
7→ (L[N1/x1] . . . [Ni/xi][L1/x

σ] L2 . . . La)

again by parts 2 and 3 plus (β). By definition L ∈ Inf ν and, hence by inductive hypothesis,

(L[N1/x1] . . . [Ni/xi][L1/x
σ] L2 . . . La) ∈ Inf o,

which proves the claim.

8.2 Adequacy

To be useful, an operational semantics must faithfully realize the denotational semantics
for programs. Technically, the operational semantics should map a program to a value
if and only if the denotational semantics equates the program with the denotation of the
value. Since this relationship is similar to the adequacy relationship between different
semantics of a language, the corresponding theorem is called Adequacy Theorem.

Theorem 8.13 (Adequacy) Let M be a program of SPCF(E). Then the following equivalences
hold:

1. Seq [[M]] ⊥= {? · n} iff evalSPCF (M) = dne;

2. Seq [[M]] ⊥= {? · e} iff evalSPCF (M) = e.

76 R. Cartwright, P.-L. Curien, M. Felleisen

(Seq can be replaced by SEQ if E 6= ∅.)

The if-part of the Adequacy Theorem relies on a standard soundness proof for the
reduction rules. Since the rules for catch differ from the rules of more traditional λ-calculi,
we formulate the lemma and sketch its proof.

Lemma 8.14 (Soundness) Let M and M ′ be terms that are typable with the same variable list A.
Then

1. if SPCF `M = M ′, then Seq [[A `M]] = Seq [[A `M ′]];

2. if M 7→∗ M ′ then Seq [[A `M]] = Seq [[A `M ′]].

Note: The type ofM is not necessarily o in clause 2: the standard reduction relation applies
to terms of higher type, too.
Proof. It is a routine exercise to check the basic reduction relations (add1), (sub1), (if0/0),
(if0/1), and the respective inference rules. The validity of β- and fix follows from Lemma 3.6
and the results of Section 6. Next, the validation of (return) is simple. Clearly, for any
appropriate list of typed variables A and matching environment tuple ρ,

Seq [[A ` λxτ1
1 , . . . , x

τk
k .

dme]] ? ρ = {〈?〉 · 〈m〉}.

Hence, by the semantics of catch,

Seq [[A ` (catch λxτ1
1 , . . . , x

τk
k .

dme)]] ? ρ
= Ck ? (Seq [[A ` λxτ1

1 , . . . , x
τk
k .

dme]] ? ρ)
= Ck ? ({〈?〉 · 〈m〉}) = {? · (m+ k)}
= Seq [[A ` dm+ ke]] ? ρ

The validity of the remaining rules, (catch) and (error), follows from a general claim
about the denotations of terms of the shape E[x]:

Claim (i): For any evaluation context E and vector of variables xτ1
1 , . . . , x

τk
k ,

variable list A and matching environment vector ρ, if i ≤ k, then

〈?〉 · 〈i〉 ∈ Seq [[A ` λxτ1
1 , . . . , x

τk
k .E[xi]]] ? ρ.

(Recall that, by convention, xi occurs free in the hole of E.) Given the meaning of catch, it
immediately implies the validity of (catch):

Seq [[A ` (catch λxτ1
1 , . . . , x

τk
k .E[xi])]] ? ρ

= Ck ? (Seq [[A ` λxτ1
1 , . . . , x

τk
k .E[xi]]] ? ρ)

w Ck ? {〈?〉 · 〈?, i〉} = {? · (i− 1)}
= Seq [[A ` di− 1e]] ? ρ

Together with the validity of (β), the claim also implies (error):

Seq [[A ` E[e]]] ? ρ = Seq [[A ` ((λxo.E[xo]) e)]] ? ρ by (β)
w {〈?〉 · 〈?, 1〉} ? {? · e} = {? · e} by the semantics of application and the claim
= Seq [[A ` e]] ? ρ.

Fully Abstract Semantics for Observably Sequential Languages 77

Thus, we have reduced our task to the proof of Claim (i), which proceeds as follows:

Seq [[A ` λxτ1
1 , . . . , x

τk
k .E[xi]]] ? ρ

= Λt(. . .Λt(︸ ︷︷ ︸
k

Seq [[A, xτ1
1 , . . . , x

τk
k ` E[xi]]]) . . .) ? ρ

(ii) w Λt(. . .Λt(︸ ︷︷ ︸
k

{〈?〉 · 〈〈. . . 〈〈?〉, 2〉, 1〉, . . . , 1〉︸ ︷︷ ︸
k−i

, 1〉, . . .}) . . .) ? ρ

= {〈〈?〉, 2〉〈〈?, i〉, 2〉, . . .} ? ρ
= {〈?〉 · 〈?, i〉, . . .}

The step marked with (ii) requires a separate proof. For clarity, we formulate the claim
explicitly:

Claim (ii): Let E[] be an evaluation context, and let A = xτ1
1 , . . . , x

τk
k be a list

of variables. Then

〈?〉 · 〈〈. . . 〈〈?〉, 2〉, 1〉, . . . , 1〉︸ ︷︷ ︸
k−i

, 1〉 ∈ Seq [[A ` E[xi]]].

We prove Claim (ii) by induction on the structure of evaluation contexts:

1. If E = [] then Seq [[A ` xi]] = πk
k−i+1, and this projection clearly contains a path of

the appropriate shape. Whence the conclusion immediately follows.

2. If E = (f E1), the result follows from the fact that all primitive functions f consult
their first argument, which is E1[xi]: compare Definitions 7.1 and 7.2.

3. If E = (E1 N), the conclusion follows from the fact that when an application is
evaluated, the procedure, i.e., E1[xi], is consulted first.

4. If E = catch (λyσ1
1 . . . yσm

m .E1), then by induction

〈?〉 · 〈〈. . . 〈〈?〉, 2〉, 1〉, . . . , 1〉︸ ︷︷ ︸
k−i+m

, 1〉 ∈ Seq [[A, yσ1
1 , . . . , yσm

m ` E1[xi]]]

hence

〈?〉 · 〈〈. . . 〈〈?〉, 2〉, 1〉, . . . , 1〉︸ ︷︷ ︸
k−i

, 1〉 = Λt(. . .Λt(︸ ︷︷ ︸
m

〈?〉 · 〈〈. . . 〈〈?〉, 2〉, 1〉, . . . , 1〉︸ ︷︷ ︸
k−i+m

, 1〉) . . .)

∈ Λt(. . .Λt(︸ ︷︷ ︸
m

Seq [[A, yσ1
1 , . . . , yσm

m ` E1[xi]]]) . . .)

= Seq [[A ` λyσ1
1 . . . yσm

m .E1[xi]]]

and

〈?〉 · 〈〈. . . 〈〈?〉, 2〉, 1〉, . . . , 1〉︸ ︷︷ ︸
k−i

, 1〉 ∈ Seq [[A ` catch (λyσ1
1 . . . yσm

m .E1[xi])]]

follows, since the sequentiality index of catch at (⊥, 〈?〉) is 〈?〉.

78 R. Cartwright, P.-L. Curien, M. Felleisen

For the only-if part of the Adequacy Theorem, we use Berry et al.’s [6] proof method,
which is a slight modification of Plotkin’s computability method originally developed for
the adequacy theorem for PCF [24]. We proceed in two steps. First, we prove an adequacy
theorem for SPCF1, which is SPCF without the Y operators. It has the same operational
semantics as SPCF. Second, we lift the adequacy theorem for SPCF1 by relating SPCF pro-
grams with Y to SPCF1 programs with Yn and by relating their evaluations.

To prove adequacy for SPCF1, we first prove that all evaluation sequences are finite.
The proof requires a generalization of this claim to closed phrases of all types.

Definition 8.15 (Compτ) The family of sets of closed SPCF1 phrases Compτ is defined by
induction on types:

Compo = {M |M 7→∗ dne,M 7→∗ e,M 7→∗ E[Ω],M 7→∗ E[(sub1 0)]}
Compσ→τ = {M | ∀N ∈ Compσ.(M N) ∈ Compτ}.

We say `M : σ is normalizing if M ∈ Compσ.

All SPCF1 phrases are normalizing.

Lemma 8.16 (Normalization of SPCF1) For every SPCF1 program M , M ∈ Compo.

Proof. For notational convenience, F ranges over numerals, errors, and E[Ω] in this proof.
The proof consists of three parts. The first claim shows that a phrase that standard reduces
to a normalizing phrase is normalizing.

Claim 1: Let M and M ′ be closed phrases of type τ . If M 7→ M ′ and M ′ ∈
Compτ , then M ∈ Compτ .

The proof is an induction on types:

1. Assume τ = o. By assumption, M ′ 7→∗ F and M 7→M ′. Hence, M 7→∗ F .

2. Assume τ = σ → ν. We must show (M P) ∈ Compν , for any P ∈ Compσ. By
Lemma 8.12, M 7→ M ′ implies (M P) 7→ (M ′ P). Since (M ′ P) ∈ Compν due to the
assumptions, the inductive hypothesis implies that (M P) ∈ Compν , which is what
we had to show. Claim1

Second, we prove that substituting normalizing phrases for all free variables in an open
phrase yields a normalizing phrase.

Claim 2: If x1 : σ1, . . . , xn : σn ` M : σ, then N1 ∈ Compσ1
, . . . , Nn ∈ Compσn

implies M [N1/x1, . . . , Nn/xn] ∈ Compσ.

We use the notation M [~N/~x] to abbreviate M [N1/x1, . . . , Nn/xn]. The proof procceds by
induction on the structure of M :

1. M = xi . Then M [~N/~x] = Ni, and the conclusion is one of the assumptions.

Fully Abstract Semantics for Observably Sequential Languages 79

2. M = e. Then M [~N/~x] = e, and hence M ∈ Compo.

3. M = dne. This case is similar to the preceding case.

4. M = Ω. If σ1 → . . .→ σm → o is the type ofM , we must prove ΩN1 . . . Nm ∈ Compo.
But this holds by definition since ΩN1 . . . Nm 7→∗ Ω.

5. M = (f M ′) where f 6= catch. Assume f = sub1. By the inductive hypothesis,
M ′[~N/~x] ∈ Compo, i.e.,

(a) M ′[~N/~x] 7→∗ d0e: then, M 7→∗ (sub1 d0e);

(b) M ′[~N/~x] 7→∗ dm+ 1e: then, M 7→∗ (sub1 dm+ 1e) 7→ dme;

(c) M ′[~N/~x] 7→∗ e: then, M 7→∗ (sub1 e) 7→ e

(d) M ′[~N/~x] 7→∗ E′[Ω]: then, M 7→∗ (sub1 E′[Ω]) = E[Ω] where E[] = (sub1 E′[]).

In summary, for all possible cases, M is normalizing.

The treatment of the cases for f = add1 and f = if0 is similar but easier.

6. M = (Yτ
n M

′). By induction hypothesis, M ′[~N/~x] is normalizing. Call this phrase
N. The rest is proved by sub-induction on n. For n = 0, M 7→ Ω(τ→τ). If L1, . . . , La

(where a is the arity of M) are normalizing expressions, then (Ωτ→τ L1 . . . La) 7→ Ωo,
which proves that Ωτ→τ is normalizing. For n > 0, (Yn N) 7→ (N (Yn−1 N)). Since
the sub-induction of this case implies that Yn−1 N ∈ Compσ, N (Yn−1 N)) ∈ Compσ

by definition of Compσ. By Claim 1, M [~N/~x] ∈ Compσ.

7. M = λxτ .M ′. Assume that σ = τ → ν. Let N be a phrase in Compτ . Then
(M [~N/~x] N) 7→ M ′[N/x][~N/~x], which, by the inductive hypothesis, is normalizing.
Hence, (M [~N/~x] N) ∈ Compν for every N ∈ Compτ , which is what we had to show.

8. M = (M1 M2). By the inductive hypothesis, M1[~N/~x] and M2[~N/~x] are normalizing.
The rest follows by the definition of Comp at higher types.

9. M = (catch M ′). Set N = M ′[~N/~x], which is normalizing by inductive hypothesis.
Assume N has type τ and arity a. Since (catchN) is a program, either (catchN) 7→∗ F
or (catchN) ∈ Inf o by the Uniform Evaluation Lemma. We need to prove that the lat-
ter cannot happen. If it does, Lemma 8.11 implies thatN ∈ Inf τ . By Proposition 8.12,
for all L1, . . . , La, and in particular normalizing ones, (N L1 . . . La) ∈ Inf o. But this
contradicts the normalizability of N. Hence, M ∈ Compo. Claim 2

Finally, since closed phrases are just a special case of Claim 3, we have also shown that
all SPCF1 programs are normalizing.

Based on the Normalization Lemma for SPCF1, it is easy to prove an adequacy lemma.

Lemma 8.17 (Adequacy of SPCF1) For all SPCF1 programs M (`M : o),

1. if Seq [[`M]] ?⊥ = {? ·m} then M 7→∗ dme;

80 R. Cartwright, P.-L. Curien, M. Felleisen

2. if Seq [[`M]] ?⊥ = {? · e} then M 7→∗ e;

3. if Seq [[`M]] ?⊥ = {} then M 7→∗ E[Ω].

Proof. By the Normalization Lemma (8.16), the evaluation of M can only proceed in one
of three possible ways:

1. M 7→∗ dme: By Soundness, we get Seq [[M]]? ⊥= {? ·m}.

2. M 7→∗ e: By Soundness, Seq [[M]]? ⊥= e for any e ∈ E.

3. M 7→∗ E[Ω]: By Soundness, Seq [[M]]? ⊥=⊥.

Now if Seq [[M]]? ⊥= m, then M 7→∗ m; anything else would contradict the preceding case
analysis. The same argument works in the other two cases.

Adequacy for full SPCF is a simple consequence of the preceding lemma.

Proof of Theorem 8.13. The right-to-left direction is a consequence of Lemma 8.14. The
left-to-right direction follows from Lemma 8.17, the Adequacy Lemma for SPCF1. The
result is lifted to full SPCF as follows. The semantics of (Y M) is the least upper bound
of the semantics of the expressions (Yn M) for all n ∈ N. Hence for any program M , if
Seq [[` M]]? ⊥6=⊥, then by continuity there is some sufficiently large n, such that Seq [[`
M]] = Seq [[` N]], where N is the term obtained from M by replacing all the occurrences
of Y in M by Yn. By Lemma 8.17, N evaluates to its meaning. To obtain a reduction from
M to the answer, it suffices to replace residuals of (Yn L), which are terms of the form
(L (. . . (L Ω) . . .)), with (Y L). For details of this lengthy, but uniformative argument, we
refer to Berry et al.’s report [6] or any of the modern textbooks on denotational semantics.
This finishes the proof of the adequacy theorem.

9 Generalizing Observable Sequentiality

Since PCF procedures have multiple sequentiality indices, PCF is clearly neither an observ-
ably sequential nor a manifestly sequential programming language (cmp. Definition 4.2).
Consequently, the decision tree semantics for PCF is not fully abstract. However, the in-
teresting question is which practical programming languages with non-local control oper-
ators are not manifestly sequential or observably sequential. At this point we know of one
prominent example: sequential languages with control delimiters [12], also called prompts.

The task of a control delimiter is to mask any control operation that happens during
the dynamic extent of some expression. Some typical examples in practical languages are
Lisp’s errset, Common Lisp’s unwind-protect and ML’s wild-card error-handler. Pragmati-
cally, control delimiters are used to recover gracefully from unforeseen errors or to attach
actions to non-local control operations. Languages with control delimiters are designed
not to be manifestly sequential because the very task of control delimiters is to swallow all
errors generated within their dynamic extent.

Fully Abstract Semantics for Observably Sequential Languages 81

Consider the following example. Let PCF′ be PCF augmented by the control delim-
iter % and indexed error constants [30]. The defining equation for % is

[[(% M)]] =
{

[[M]] [[M]] ∈ N⊥
i [[M]] = ei ∈ E .

In PCF′, we can define an addition procedure that does not propagate errors:

+ei = (λxy . (+l (% x) (% y))) = (λxy . (+r (% x) (% y))),

demonstrating that PCF′ is not a manifestly sequential language. A similar argument also
shows that the extended language is not observably sequential. At this point, we do not
know how to modify our construction to solve the full abstraction problem for PCF′ and
other languages with control delimiters.

Acknowledgements. R. Cartwright and M. Felleisen thank Rama Kanneganti and Dorai
Sitaram for helping hone their intuitions about manifest sequentiality, sequential func-
tions, and for numerous discussions about SPCF. Steve Brookes pointed out a mistake in
our original definition of syntactic sequentiality. John Gately and Trevor Jim discovered
inconsistencies in the first versions of [7] and [10]. The authors gratefully acknowledge
comments by Trevor Jim and Robert Harper on an early version of this manuscript. Fi-
nally, the authors want to thank the referees for their very careful readings.

A Sequential Data Structures vs. Concrete Data Structures

In this appendix, we connect the sequential data structures introduced in this paper with
the concrete data structures of Berry-Curien. We define a category Seq(E) of observable
sequential algorithms uniformly for any set of errors. We show that the definition of Seq(E)
in Section 6 and the definition of the same category here are equivalent. We also show that
the category Seq(∅) is equivalent to Berry-Curien’s category of sequential algorithms. In
the process, we introduce filiform data structures, which are intermediate constructions in
the gap between concrete data structures and sequential data structures.

A.1 Filiform Data Structures

We begin this subsection by recalling the definition of a concrete data structure. Then we
show that filiform concrete data structures correspond through an equivalence of categories
to the sequential data structures defined in this paper.

A filiform concrete data structure (fcds for short) is a quadruple (C, V,E,`) where C
and V are collections of cells and values, respectively; E is a subset of C × V ; and ` is a
subset of (E × C) ∪ C. If (c, v) ∈ E, we say that (c, v) is an event, and that c is filled with v.
We assume that each cell can be filled: for each c, there is a v such that (c, v) ∈ E. The set
` is called the enabling relation. We write (c1, v1) ` c to assert that ((c1, v1), c) is a member
of ` ∩ (E × C), and we say that event (c1, v1) enables cell c. We also say that c1 precedes
c. We write ` c to assert that c is a member of ` ∩ C. For ` c, we say that c is initial and
has an empty enabling. We assume that the precedence relation is well-founded. An fcds

82 R. Cartwright, P.-L. Curien, M. Felleisen

is canonical if each cell has a unique enabling. A state of the fcds (C, V,E,`) is a subset x of
E that is:

• consistent: if (c, v1) ∈ x and (c, v2) ∈ x, then v1 = v2; and

• safe: if (c, v) ∈ x, then x contains an enabling of c.

We assume that fcds’s are stable, which means that given a state x and a cell c filled in x
((c, v) ∈ x for some v), there is exactly one enabling of c in x. Canonical fcds’s are obviously
stable. For non-canonical fcds’s, the stability condition must be proved for each domain
construction, notably the exponent construction. In contrast, all sequential data structures
are canonical and hence stable.

To help explain the connection between fcds’s with sds’s, we introduce the intermediate
notion of a filiform data structure. The preceding definition of fcds is a restriction of the
general definition of a (stable) concrete data structure (cds). In a general cds, an enabling
consists of a finite collection of events. Thus the filiform case corresponds to restricting
the maximum cardinality of enablings in a cds to 1. The category of fcds’s and sequential
algorithms forms a full cartesian-closed subcategory of the category of stable cds’s and
sequential algorithms [8: Theorem 2.6.7]. As a result, we are free to ignore the more general
setting of stable cds’s and to take advantage of the special form of fcds’s. In the filiform case,
the notions of “filling a cell” and of “enabling a cell” become dual in a loose sense. This
fact can be emphasized by changing notation: we can write c ≺ (c, v) when (c, v) ∈ E, and
(c1, v1) ≺ c when (c1, v1) ` c. These observations lead to the following definition.

Definition A.1 (Filiform Data Structure) A filiform data structure (fds) (C,E,≺) consists of
a collection C of cells, a collection E of events, and a subset ≺ of (C × E) ∪ (E × C) ∪ C,
called the precedence relation where:

• the precedence relation is well-founded; and

• each event e has a unique predecessor.

We write ≺ c to assert that c is a member of ≺ ∩ C. In this case, we say that c is initial and
that it has an empty enabling.

The states of the fds are defined as the subsets x of E that are:

• consistent: if c ≺ e1, c ≺ e2, and e1 and e2 both belong to x, then e1 = e2; and

• safe: if e ∈ x, then either the predecessor c of e is initial, or there exists e1 ∈ x such
that e1 ≺ c ≺ e.

We assume that every fds stable: for any state x and any event e ∈ x, the predecessor c of
e has at most one predecessor in x. As for fcds’s, we say that an fds is canonical if each cell
has at most one predecessor. As before, canonicity implies stability. In addition, the well-
foundedness of ≺ implies that for any state x and any e ∈ x, there exist c1, e1 . . . en−1, cn
such that ≺ c1 ≺ e1 ≺ . . . ≺ en−1 ≺ cn ≺ e and e1, . . . , en−1 ∈ x. We call this a proof of e in
x.

Fully Abstract Semantics for Observably Sequential Languages 83

The notions of fcds and of fds lead to equivalent categories. Although we have not yet
defined these categories, the following “textual” correspondence should suffice to justify
this claim:

• Given an fcds (C, V,E,`), construct the fds (C,E,≺), where ≺ c iff ` c; e ≺ c iff e ` c;
and c ≺ e iff e = (c, v) for some v.

• Given an fds N = (C,E,≺), construct the fcds G(N) = (C,E,E′,`), E′ is the set
{(c, e) | e ∈ E, c ≺ e}; ` c iff ≺ c; and (c1, e) ` c iff e ≺ c.

These transformations induce order-isomorphisms between the respective sets of states
and trees. If we compose the two transformations in either order, we obtain a structure
isomorphic to the structure we started with. If we start with an fcds (C, V,E,`), we pro-
duce an fcds (C,E,E′,`), whose states are obtained by replacing each (c, v) by (c, (c, v)).
Similarly, if we start with an fds (C,E,≺), we obtain an fds (C,E′,≺), whose states are
obtained by replacing each e by (c, e), where c is the predecessor of e.

As for sds’s (and fcds’s), we write D(C,E,≺) for the set of states of an fds (C,E,≺),
ordered by inclusion.

We now connect sds’s and fds’s. Given an sds M = (A,D,P), we construct the fds
F (M) = (Que,Res,≺), where Que and Res are the sets of queries and responses of M,
respectively; ≺ p if and only if |p| = 1; and p1 ≺ p2 if and only if p2 = p1 · u for some
u. Notice that F (M) is canonical. The following observations give us the ingredients for
proving an equivalence of categories:

• The cpos D(M) and D(F (M)) coincide. This fact follows immediately from the ob-
servatins that prefix-closure implies safety, and glb-closure implies consistency.

• Any fds (C,E,≺) is isomorphic to the image of an sds (A,D,P) under F . We con-
struct (A,D,P) as follows: let A = C, D = E, and let P be the set of all the finite
precedence chains starting from an initial cell. Let the inverse mappings φ and ψ
that define the one-to-one correspondence between D(C,E,≺) and D(F (C,E, P)) by
defined as follows. The mapping φ replaces events e by their unique proof in x; ψ re-
places every response with its terminal event. Notice the key role that stability plays
in justifying the correspondence.

Since F maps sds’s to canonical fds’s, these observations also imply that fds’s and canonical
fds’s define equivalent categories. Berry and Curien chose to work with a non-canonical
presentation of the exponent of two canonical cds’s because this choice made it easier to
define composition arrows in their category.

The preceding discussion of fcds’s and sds’s can easily be extended to include a given
predefined set E of errors. We define states relative to E just as we did for trees in Section 5,
and we call them observable states when E is not empty.

The composition of the transformations F from sds’s to fds’s, and G from fds’s to fcds’s,
yields a mapping H that can be converted to an equivalence functor.

A.2 A Uniform Definition of Sequential Algorithms

In this subsection, we define categories of sds’s (and fds’s) with arrows that are (manifestly)
sequential algorithms. If the set of errors E 6= ∅, then the manifestly sequential algorithms

84 R. Cartwright, P.-L. Curien, M. Felleisen

correspond to functions and the methods used in Section 6 suffice. But if E = ∅, we need
to do more work to define a cartesian-closed category of either trees (using sds’s) or states
(using fds’s). We will follow the approach taken by Berry-Curien to define an abstract
algorithm between two sds’s, suitable for a simple definition of composition.

In the remainder of this section, we use the following notation. If x is a tree over an sds
(with or without error values), we write Enabled(x) for Answered(x) ∪Open(x).

Definition A.2 (Abstract algorithms) Let M = (A,D,P) and M′ = (A′, D′, P ′) be two sds’s.
Let Que , Res , Que ′, and Res ′ abbreviate QueM, ResM, QueM′ , and ResM′ , respectively. We
let u range over D′ ∪ Que ∪ E, and w′ range over D′ ∪ E. An abstract algorithm from M
to M′ is a partial function f from D(M) × Que ′ to D′ ∪ Que ∪ E satisfying the following
axioms:

(A0) f(x, q′) defined ⇒ ∃y ≤ x (y finite and f(y, q′) = f(x, q′)),

(A1.1) f(x, q′) = d′ ∈ D′ ⇒ (q′ · d′) ∈ P ′,

(A1.2) f(x, q′) = q ∈ Que ⇒ q ∈ Open(x),

(A2.1) f(x, q′) = w′ ∈ D′ ∪ E, x ≤ y ⇒ f(y, q′) = w′,

(A2.2) f(x, q′) = q, x ≤ y and q ∈ Open(y) ⇒ f(y, q′) = q,

(A2.3) f(x, q′) = q ⇒ f(x ∪ {q · e}, q′) = e, for any e ∈ E.

(A3.1) f(x, q′) defined ⇒ q′ ∈ Enabled(f ∗ x),

(A3.2) f(x, q′) defined, y v x and q′ ∈ Enabled(f ∗ y) ⇒ f(y, q′) defined.

where
f ∗ x = {(q′ · w′) | f(x, q′) = w′ for w′ ∈ D′ ∪ E}.

In the case where E is non-empty, we use the term abstract algorithms with errors instead of
abstract algorithms.

Let M′′ = (A′′, D′′, P ′′) be a third sds, and let g be an abstract algorithm from M′ to M′′.
The composition h = g ◦ f is defined as follows:

h(x, q′′) =
{
q ∈ Que ′′ if g(f ∗ x, q′′) = q′ and f(x, q′) = q
w′′ ∈ D′′ ∪ E if g(f ∗ x, q′′) = w′′

The mapping x 7→ f ∗ x defines a manifestly sequential function from D(M) to D(M′),
which we call the function computed by f . When E 6= ∅, the abstract algorithms are equiv-
alent to the manifestly sequential functions defined in Section 6. But abstract algorithms
support a uniform construction of Seq(E), independent of E.

The proof that the composition is well-defined follows the corresponding proof for
Berry and Curien’s abstract algorithms [8: Proposition 2.6.1]. Consequently, we only check
the axiom (A2.3) involving errors. If h(x, q′′) = q, then g(f ∗ x, q′′) = q′ and f(x, q′) = q.
By (A2.3) applied to f and g, respectively, we have f(x ∪ {q · e}, q′) = e and g((f ∗ x) ∪

Fully Abstract Semantics for Observably Sequential Languages 85

{q′ · e}, q′′) = e. From the first equation, we deduce that (q′ · e) ∈ f ∗ (x ∪ {q · e}), implying
(f ∗x)∪{q′ ·e} ≤ f ∗ (x∪{q ·e}). The conclusion of the axiom follows from applying (A2.3)
and (A2.1) to g.

We can now define a category of sds’s and (abstract) sequential algorithms.

Definition A.3 (Seq(E)) The category of (manifestly) sequential objects and algorithms
over an error set E is defined as follows:

1. the collection of objects is {D(M) |M is an sds}, the set of (manifestly) sequential
domains over sds’s relative to E;

2. the collection of arrows between the objects D(M1) and D(M2) is D(M1 ⇒ M2) (see
Definition 6.21), the set of (observably) sequential algorithms relative to E;

3. the composition operation for arrows is defined via the composition of trees when
interpreted as abstract algorithms (see Definition A.2);

4. for each object the identity arrow is the identity algorithm.

The main theorem of this appendix states that Seq(E) is cartesian-closed, for any E.
This fact can be proved uniformly for any E by faithfully imitating the proofs of Curien
[8]. In this subsection, we merely sketch the proof by partititioning it into two cases: E = ∅
and E 6= ∅. In each case, we show that the category Seq(E) is equivalent to a category
which we already know to be cartesian-closed.

Theorem A.4 The category Seq(E) is cartesian-closed, for all sets E of error values.

Proof. If E = ∅, we proceed as follows. The mapping H from sds’s to fcds’s defined in
the previous subsection extends to a full and faithful functor from Seq(∅) to the category
ALGO of stable cds’s and sequential algorithms, shown to be cartesian closed [8]. The
functor H is actually into the full subcategory fALGO of fcds’s. This full subcategory is
also cartesian-closed (the product and exponent of two fcds’s is filiform) [8: Theorem 2.6.7].
The arguments given in the last subsection can be easily turned into a formal proof that
Seq(∅) is equivalent to fALGO. Hence, it is cartesian-closed.

If E 6= ∅, it is straightforward to show that the abstract algorithms with errors are in
one-to-one correspondence with the manifestly sequential functions. The bijection “for-
gets” an abstract algorithm f and takes “only” the function x 7→ f ∗ x that it computes.
The inverse bijection makes the sequentiality indices of a manifestly sequential function
explicit. We omit the details.

References

1. BARENDREGT, H.P. The Lambda Calculus: Its Syntax and Semantics. Revised Edition.
Studies in Logic and the Foundations of Mathematics 103. North-Holland, Amsterdam,
1984.

86 R. Cartwright, P.-L. Curien, M. Felleisen

2. BERRY, G. Séquentialité de l’evaluation formelle des λ-expressions. In Proc. 3rd Inter-
national Colloquium on Programming, 1978.

3. BERRY, G. Modèles complètement adéquats et stables des lambda-calculus typés. Thèse
d’Etat, Université Paris VII, 1979.

4. BERRY, G. AND P.-L. CURIEN. Sequential algorithms on concrete data structures.
Theor. Comput. Sci. 20, 1982, 265–321.

5. BERRY, G. AND P.-L. CURIEN. Theory and practice of sequential algorithms: the
kernel of the applicative language CDS. In Algebraic Methods in Semantics, edited by
J. Reynolds and M. Nivat. Cambridge University Press. London, 1985, 35–88.

6. BERRY, G., P.-L. CURIEN, AND J.-J. LÉVY. Full abstraction of sequential languages: the
state of the art. In Algebraic Methods in Semantics, edited by J. Reynolds and M. Nivat.
Cambridge University Press. London, 1985, 89–131.

7. CARTWRIGHT, R.S. AND M. FELLEISEN. Observable sequentiality and full abstraction.
Technical Report 91-167. Rice University Department of Computer Science, 1991. Pre-
liminary version: In Proc. 19th ACM Symposium on Principles of Programming Languages,
1992, 328–342.

8. CURIEN, P.-L. Categorical Combinators, Sequential Algorithms, and Functional Program-
ming. Research Notes in Theoretical Computer Science. Pitman, London. 1986. Birk-
häuser, Revised Edition, 1993.

9. CURIEN, P.-L. Sequentiality and full abstraction. In Applications of Categories in Com-
puter Science, M.P. Fourman, P.T. Johnstone, and A.M. Pitts (Eds). Cambridge Univer-
sity Press, New York, 1992.

10. CURIEN, P.-L. Observable algorithms on concrete data structures. In Proc. 7th Sympo-
sium on Logic in Computer Science, 1992, 432–443.

11. CURIEN, P.-L. On the symmetry of sequentiality. In Proc. Mathematical Foundations of
Programming Semantics 1993. Springer Lecture Notes in Computer Science, Berlin. To
appear.

12. FELLEISEN, M. The theory and practice of first-class prompts. In Proc. 15th ACM
Symposium on Principles of Programming Languages, 1988, 180–190.

13. FELLEISEN, M. AND D.P. FRIEDMAN. Control operators, the SECD-machine, and the
λ-calculus. In Formal Description of Programming Concepts III, edited by M. Wirsing.
Elsevier Science Publishers B.V. (North-Holland), Amsterdam, 1986, 193–217.

14. FELLEISEN, M. AND R. HIEB. The revised report on the syntactic theories of sequential
control and state. Technical Report 100, Rice University, June 1989. Theor. Comput. Sci.
102, 1992, 235–271.

15. FELLEISEN, M., D.P. FRIEDMAN, E. KOHLBECKER, AND B. DUBA. A syntactic theory
of sequential control. Theor. Comput. Sci. 52(3), 1987, 205–237. Preliminary version in:
Proc. Symposium on Logic in Computer Science, 1986, 131–141.

16. JIM, T. AND A. MEYER. Full abstraction and the context lemma. In Proc. International
Conference on Theoretical Aspects of Computer Software (TACS). Lecture Notes in Com-
puter Science 526. Springer Verlag, Berlin Heidelberg 1991. 131–151.

Fully Abstract Semantics for Observably Sequential Languages 87

17. JUNG, A., AND A. STOUGHTON. Studying the fully abstract model of PCF within its
continuous function model. In Proc. Conference on Typed Lambda Calculi and Applications.
Lecture Notes in Computer Science 664. Springer Verlag, Berlin Heidelberg 1993.

18. KAHN, G. AND G. PLOTKIN. Domaines Concrets. IRIA Report 336. 1978. English
translation: Concrete domains, to appear in C. Boehm Festschrift, special volume of
Theoretical Computer Science.

19. KANNEGANTI, R., R. CARTWRIGHT, AND M. FELLEISEN. SPCF: its model, calculus,
and computational power. In Proc. REX Workshop on Semantics and Concurrency. Lecture
Notes in Computer Science 666. Springer Verlag, Berlin Heidelberg 1993. 318–347.

20. LAMARCHE, M. Sequentiality, games and linear logic. Unpublished manuscript. Ecole
Normale Supérieure, 1992.

21. MEYER, A. R. AND K. SIEBER. Towards a fully abstract semantics for local variables.
In Proc. 15th ACM Symposium on Principles of Programming Languages, 1988, 191–203.

22. MILNER, R. Fully abstract models of typed λ-calculi. Theor. Comput. Sci. 4, 1977, 1–22.
23. MULMULEY, K. Full Abstraction and Semantic Equivalence. MIT Press, Cambridge, Mas-

sachusetts, 1986.
24. PLOTKIN, G.D. LCF considered as a programming language. Theor. Comput. Sci. 5,

1977, 223–255.
25. PLOTKIN, G.D. Call-by-name, call-by-value, and the λ-calculus. Theor. Comput. Sci. 1,

1975, 125–159.
26. SAZONOV, V.Y. Expressibility of functions in D.Scott’s LCF language. Algebra i Logika

15(3), 1976, 308–330.
27. SCOTT, D. S. Domains for denotational semantics. In Proc. International Conference

on Automata, Languages, and Programming, Lecture Notes in Mathematics 140, Springer
Verlag, Berlin, 1982, 577–613.

28. SCOTT, D.S. Lectures on a Mathematical Theory of Computation. Techn. Monograph PRG-
19, Oxford University Computing Laboratory, Programming Research Group, 1981.

29. SIEBER, K. Relating full abstraction results for different programming languages. In
10th Conference on Foundations of Software Engineering and Theoretical Computer Science.
K.V. Nori and C.E. Veni Madhavan, Eds. Lecture Notes in Computer Science 472.
Springer Verlag, Berlin, 1990, 373–387.

30. SITARAM, D. AND M. FELLEISEN. Reasoning with continuations II: Full abstraction
for models of control. In Proc. 1990 ACM Conference on Lisp and Functional Programming,
1990, 161–175. Corrections posted to the “continuations” email list on September 22,
1992 (also available from titan.cs.rice.edu via anonymous ftp in public/languages as
lfp90-sf-correction.{ps,dvi}.Z).

31. STEELE, G.L., JR. AND G.J. SUSSMAN. The revised report on Scheme, a dialect of Lisp.
Memo 452, MIT AI-Lab, 1978.

32. STOUGHTON, A. Fully Abstract Models of Programming Languages. Research Notes in
Theoretical Computer Science. Pitman, London. 1986.

33. VUILLEMIN, J. Proof techniques for recursive programs. IRIA Report. 1973.

88 R. Cartwright, P.-L. Curien, M. Felleisen

Notation

Notation Description Section

Sets
N the set of natural numbers 2

A \B set minus 2
A]B tagged, disjoint union 2

(λx : A. · · ·x · · ·) mathematical function from A to B 2
〈x, y〉 cartesian pair of x and y 2

Domains
(D,v) partial order, approximation relation 2

@ strict partial order (below) 2
t least upper bound 2

x ↑ y bounded (consistent) elements x and y 2
u greatest lower bound 2
⊥ least element 2
N⊥ flat domain of natural numbers 2

Paths
Σ∗ set of paths over alphabet Σ 2
ε empty path 2

a · p consing a onto path p 2
p · a consing a onto the end of p 2
q · p appending q onto p 2
p@n nth element in path p 2

(Φ,Ψ)∗ set of alternating paths 2
◦ composition of arrows 2

Categories
idA identity arrow for object A 2
1 terminal object 2
1A unique arrow from object A to 1 2

A×B cartesian product of A and B 2
πi cartesian projection to the ith component 2
πn

i ith cartesian projection for n fold product 2
A⇒ B exponent of A and B 2
Λ,Λ−1 curry function and inverse 2
App application arrow 2

Fully Abstract Semantics for Observably Sequential Languages 89

Notation Description Section

PCF syntax
o PCF ground type (number) 3

τ → σ PCF procedure type 3
x PCF variable 3
xτ typed PCF variable 3

λx.M PCF procedure 3
(M N) PCF application 3
(f M) PCF primitive application 3

dne PCF numeral 3
add1 PCF successor primitive 3
sub1 PCF predecessor primitive 3
if0 PCF zero test primitive 3
Y PCF fixed-point operator 3
C[] PCF single hole context 3

C[]1 . . . []n PCF multiple hole context 3
A `M : τ PCF type judgement 3

Ω Syntactic representation of ⊥ 3
Yn nth approximation of Y 3

Semantics
C meta-variable for PCF semantics 3

Dom continuous functions semantics of PCF 3
vC denotational approximation for terms, 3

relative to a semantics C
≡C denotational equivalence relation for terms, 3

relative to a semantics C
@∼ operational approximation 3
' operational equivalence 3
+l left addition 3
+r right addition 3

SPCF
E SPCF set of error values 4
e element of E 4

catch SPCF catch operation 4
LE set of error expressions in PCF-like language 4
E element of LE 4

90 R. Cartwright, P.-L. Curien, M. Felleisen

Notation Description Section

sdss
M = (A,D,P) sequential data structure 5

ResM responses of sds M 5
QueM queries of sds M 5

N sds of natural numbers 5
T sds of booleans 5

N4 → N sds for algorithms from N4 to N 5
D(M) domain over sds M 5
D0(M) finite elements in D(M) 5

Ne
⊥ flat domain of natural numbers and errors 5

Open(x) open queries of element x 5
Answered(x) answered queries in element x 5
F(M1 ⇒ M2) (observably) sequential functions: 5

D(M1) −→ D(M2)
sif (x, q′) sequentiality index of f at x and q′ 5

Function Trees
SEQ(E) category of (observably) sequential domains 6

and functions
Seq(E) category of (observably) sequential domains 6

and functions-as-trees
π×i projection for cartesian products in SEQ(E) 6.1
inj i injection for cartesian products in SEQ(E) 6.1
||s|| domain element determined by s 6.2.1
π⇒1 projection to input sds of exponent 6.2.1
π⇒2 projection to output sds of exponent 6.2.1
? application operation 6.2.1

Fun isomorphism from exponent to function space 6.2.1
Tree inverse of Fun 6.2.1

Pathf (x, p) path for simulating f on x with p ∈ f(x) 6.2.1
Λt,Λ−1

t curry function and inverse for trees 6.2.2

SPCF Semantics
〈?〉 initial address for D(M1 ⇒ . . .Mk ⇒ N) 7
〈n〉 initial datum behind 〈?〉 7
〈p, i〉 path in ith part of D(M1 ⇒ . . .Mk ⇒ N) 7
πi = π⇒1 (π⇒2 (. . . π⇒2︸ ︷︷ ︸

i−1

(p) . . .) 7

for D(M1 ⇒ . . .Mk ⇒ N)
A denotation of add1 7
S denotation of sub1 7
I denotation of if0 7
C denotation of catch 7

Fully Abstract Semantics for Observably Sequential Languages 91

Notation Description Section

Operational Semantics
E[] evaluation context 8

M −→ N SPCF reduction relation 8
M = N SPCF calculus 8
M 7→ N SPCF standard reduction 8
evalSPCF SPCF evaluator for 8

Evalτ uniform evaluation set 8
Inf τ set of terms with infinite evaluation 8

Compτ set of tersm with finite evaluation 8

Appendix
(C, V,E,`) concrete data structure A.1
(C,E,≺) filiform data structure A.1

∗ application of abstract algorithms A.2

92 R. Cartwright, P.-L. Curien, M. Felleisen

Contents

1 Full Abstraction and Sequentiality 1
1.1 History of Previous Work . 3
1.2 Summary of Results . 4

2 Mathematical Preliminaries 5

3 PCF: Syntax and Semantics 9
3.1 PCF Syntax . 9
3.2 PCF Semantics . 12
3.3 Full Abstraction and Sequentiality . 14

4 Observing Sequentiality 15
4.1 Using Errors, Programmers Can Observe the Order of Evaluation 16
4.2 Using Control Operators, Programs Can Observe the Order of Evaluation . 16
4.3 Observably Sequential Programming Languages 18
4.4 Procedure Denotations Have Explicit Computational Structure 18
4.5 Higher-order Procedures Explore and Output Trees Sequentially 21
4.6 SPCF Defines Manifestly Sequential Functions 23

5 Sequential Data Structures with Errors 23

6 The Manifestly Sequential Cartesian-Closed Category 31
6.1 SEQ(E) is Cartesian . 33
6.2 SEQ(E) is Cartesian-Closed . 34

6.2.1 An Extensional Representation of Functions as Trees 34
6.2.2 The Exponent Object . 48

7 Full Abstraction for SPCF 50

8 An Adequate Operational Semantics for SPCF 69
8.1 Operational Semantics . 69
8.2 Adequacy . 75

9 Generalizing Observable Sequentiality 80

A Sequential Data Structures vs. Concrete Data Structures 81
A.1 Filiform Data Structures . 81
A.2 A Uniform Definition of Sequential Algorithms 83

References 85

Notation 88

Contents 92

