CS 395/495-26: Spring 2002	
IBMR: Week 6B	
Chapter 3: Estimation & Accuracy	
Littliation & Accuracy	
Jack Tumblin jet@cs.northwestern.edu	
Reminders	
No midterm, no final, but Alternating homework / project	
/ itemating homework / project	
 Project 2 Due Thurs May 9 Homework 1 due Thurs May 16	
• Homework I due murs May 10	
New! Project 3 assigned May 9 (see website) due May 23	
due May 25	-
R^4 Quadrics for the Variety v_H	
• For the i-th point pair, DLT minimizes e _i :	
$\mathbf{A}_{i}^{T}\mathbf{h} = \mathbf{\varepsilon}_{i} \qquad \begin{bmatrix} 0^{T} & -w_{i}\mathbf{x}_{i}^{T} & y_{i}\mathbf{x}_{i}^{T} \\ w_{i}\mathbf{x}_{i}^{T} & 0^{T} & -x_{i}^{T}\mathbf{x}_{i}^{T} \\ -y_{i}\mathbf{x}_{i}^{T} & -x_{i}^{T}\mathbf{x}_{i}^{T} & 0^{T} \end{bmatrix} \begin{bmatrix} \mathbf{h}^{1} \\ \mathbf{h}^{2} \\ \mathbf{h}^{3} \end{bmatrix} = \begin{bmatrix} \mathbf{\varepsilon}_{i1} \\ \mathbf{\varepsilon}_{i2} \\ \mathbf{\varepsilon}_{i3} \end{bmatrix}$	
• In R ⁴ , point pair is $X_i = [x \ y \ x' \ y']^T$ (cosmowwith)	
 Augment X_i with 1; then R⁴ quadrics are: 	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	

R^4 Quadrics for the Variety v_H

• For the i-th point pair, DLT minimizes e;:

For the i-th point pair, DLT minimizes
$$\varepsilon_i$$
:

$$A_i h = \varepsilon_i \quad \begin{array}{ccc} \text{Row } 1 \Rightarrow \begin{bmatrix} 0^T & -w_i \, \mathbf{x}_i^T & y_i \, \mathbf{x}_i^T \\ \mathbf{Row } 2 \Rightarrow & w_i \, \mathbf{x}_i^T & 0^T & -x_i \, \mathbf{x}_i^T \\ \mathbf{Row } 3 \Rightarrow & -y_i \, \mathbf{x}_i^T & -x_i' \, \mathbf{x}_i^T & 0^T \end{bmatrix} \begin{bmatrix} \mathbf{h} \, 1 \\ \mathbf{h} \, 2 \\ \mathbf{h} \, 3 \end{bmatrix} = \begin{bmatrix} \varepsilon_{11} \\ \varepsilon_{12} \\ \varepsilon_{13} \end{bmatrix}$$

• Write each row as an R4 quadric:

vviito odori	ow do dirry que	M G A
Q _{i1} for Row 1	Q _{i2} for Row 2	Q _{i3} for Row 3
$\begin{bmatrix} 0 & 0 & 0 & h_{31} & -w'h_{21} \end{bmatrix}$	$\begin{bmatrix} 0 & 0 & -h_{31} & 0 & w'h_{11} \end{bmatrix}$	$\begin{bmatrix} 0 & 0 & h_{21} & -h_{11} & 0 \end{bmatrix}$
0 0 0 h ₃₂ -w'h ₂₂	0 0 -h ₃₂ 0 w'h ₁₂	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$
0 0 0 0 0	$0 \ 0 \ 0 \ 0 \ -w \ h_{33}$	0 0 0 0 w h ₂₃
0 0 0 0 wh ₂₂	0 0 0 0 0	$0 \ 0 \ 0 \ w h_{13}$
0 0 0 0 w'wh,		0 0 0 0 0

R^4 Quadrics for the Variety v_H

- Write each row as an R⁴ quadric: $X^T Q_i X=0$
- ALL have this form: Q_i =
- Quadric's derivatives are easy

	<u>а</u>	<u>Չ</u> ։				$\frac{Q_i}{V}$					Q _i					$\frac{Q_i}{v'}$	•		
0	0	0	0	0	0	0		0	0				a	0				b	
0	0			0	0	0			0	0			d	0	0			e	
0	0	0	a	0	0	0	0	d	0	0	0	0	0	0	0	0	0	0	
0		0	b	0			0	e	0			0	0	0			0	0	
0		0	c	0			0	f	0			0	g	0			0	h	

Sampson Error Approx.

- Sampson error's estimate: $\hat{X}_i = X_i + \delta_{v}$
- Re-name DLT result $A_i h = \varepsilon_i$ as $C_H(X) = \varepsilon_i$

- Use Taylor Series Approx: $C_{H}(X_{i} + \delta_{X}) \cong C_{H}(X) + \frac{\partial C_{H}(X_{i})}{\partial X} \delta_{X}$
- Find δ_x for error \cong 0: $C_H(X_i + \delta_X) \cong \mathbf{0} = \mathbf{\varepsilon}_i + \frac{\partial C_H(X_j)}{\partial X} \delta_X$
- But How? (2-,3- and 4-vectors here!)

Sampson Error Approx.

- Sampson error's estimate: $\hat{X}_i = X_i + \delta_X$
- Re-name DLT result $A_i h = e_i$ as $C_H(X) = e_i = e_i$
- Find δ_x : solve $\epsilon_i + \frac{\partial C_n(X_i)}{\partial X} \delta_X = 0$
- Or as in Book: $\epsilon_i + J \delta_x = 0$

Sampson Error Approx.

- Sampson error's estimate: $\hat{X}_i = X_i + \delta_X$
- Re-name DLT result $A_i h = \mathbf{e}_i$ as $C_H(X) = \mathbf{e}_i$
- Find δ_x : solve $\epsilon_i + \frac{\partial C_H(X_i)}{\partial X} \delta_x = 0$
- Or as in Book: $\mathbf{e}_i + \mathbf{J} \delta_x = \mathbf{0}$

Sampson Error Approx.

- Sampson error's estimate: $\hat{X}_i = X_i + \delta_X$
- Re-name DLT result $A_i h = \varepsilon_i$ as $C_H(X) = \varepsilon_i = \varepsilon_i$

$$\begin{bmatrix} \mathbf{c}_{i1} \\ \mathbf{c}_{i2} \\ \mathbf{c}_{i3} \end{bmatrix} + \begin{bmatrix} \frac{\partial C_{in}(\mathbf{X}_{i})}{\partial \mathbf{x}} & \frac{\partial C_{in}(\mathbf{X}_{i})}{\partial \mathbf{x}} & \frac{\partial C_{in}(\mathbf{X}_{i})}{\partial \mathbf{x}} & \frac{\partial C_{in}(\mathbf{X}_{i})}{\partial \mathbf{y}} \\ \frac{\partial C_{i2}(\mathbf{X}_{i})}{\partial \mathbf{x}} & \frac{\partial C_{i2}(\mathbf{X}_{i})}{\partial \mathbf{y}} & \frac{\partial C_{i2}(\mathbf{X}_{i})}{\partial \mathbf{x}} & \frac{\partial C_{i2}(\mathbf{X}_{i})}{\partial \mathbf{y}} \\ \frac{\partial C_{i2}(\mathbf{X}_{i})}{\partial \mathbf{x}} & \frac{\partial C_{i2}(\mathbf{X}_{i})}{\partial \mathbf{y}} & \frac{\partial C_{i2}(\mathbf{X}_{i})}{\partial \mathbf{x}} & \frac{\partial C_{i2}(\mathbf{X}_{i})}{\partial \mathbf{y}} \\ \frac{\partial C_{i2}(\mathbf{X}_{i})}{\partial \mathbf{x}} & \frac{\partial C_{i2}(\mathbf{X}_{i})}{\partial \mathbf{y}} & \frac{\partial C_{i2}(\mathbf{X}_{i})}{\partial \mathbf{x}} & \frac{\partial C_{i2}(\mathbf{X}_{i})}{\partial \mathbf{y}} \\ \frac{\partial C_{i2}(\mathbf{X}_{i})}{\partial \mathbf{x}} & \frac{\partial C_{i2}(\mathbf{X}_{i})}{\partial \mathbf{y}} & \frac{\partial C_{i2}(\mathbf{X}_{i})}{\partial \mathbf{x}} & \frac{\partial C_{i2}(\mathbf{X}_{i})}{\partial \mathbf{y}} \\ \frac{\partial C_{i2}(\mathbf{X}_{i})}{\partial \mathbf{x}} & \frac{\partial C_{i2}(\mathbf{X}_{i})}{\partial \mathbf{x}} & \frac{\partial C_{i2}(\mathbf{X}_{i})}{\partial \mathbf{x}} & \frac{\partial C_{i2}(\mathbf{X}_{i})}{\partial \mathbf{y}} \\ \frac{\partial C_{i2}(\mathbf{X}_{i})}{\partial \mathbf{x}} & \frac{\partial C_{i2}(\mathbf{X}_{i})}{\partial \mathbf{x}} & \frac{\partial C_{i2}(\mathbf{X}_{i})}{\partial \mathbf{x}} & \frac{\partial C_{i2}(\mathbf{X}_{i})}{\partial \mathbf{x}} \\ \frac{\partial C_{i2}(\mathbf{X}_{i})}{\partial \mathbf{x}} & \frac{\partial C_{i2}(\mathbf{X}_{i})}{\partial \mathbf{x}} & \frac{\partial C_{i2}(\mathbf{X}_{i})}{\partial \mathbf{x}} & \frac{\partial C_{i2}(\mathbf{X}_{i})}{\partial \mathbf{x}} \\ \frac{\partial C_{i2}(\mathbf{X}_{i})}{\partial \mathbf{x}} & \frac{\partial C_{i2}(\mathbf{X}_{i})}{\partial \mathbf{x}} & \frac{\partial C_{i2}(\mathbf{X}_{i})}{\partial \mathbf{x}} & \frac{\partial C_{i2}(\mathbf{x}_{i})}{\partial \mathbf{x}} \\ \frac{\partial C_{i2}(\mathbf{x}_{i})}{\partial \mathbf{x}} & \frac{\partial C_{i2}(\mathbf{x}_{i})}{\partial \mathbf{x}} & \frac{\partial C_{i2}(\mathbf{x}_{i})}{\partial \mathbf{x}} & \frac{\partial C_{i2}(\mathbf{x}_{i})}{\partial \mathbf{x}} \\ \frac{\partial C_{i2}(\mathbf{x}_{i})}{\partial \mathbf{x}} & \frac{\partial C_{i2}(\mathbf{x}_{i})}{\partial \mathbf{x}} & \frac{\partial C_{i2}(\mathbf{x}_{i})}{\partial \mathbf{x}} & \frac{\partial C_{i2}(\mathbf{x}_{i})}{\partial \mathbf{x}} \\ \frac{\partial C_{i2}(\mathbf{x}_{i})}{\partial \mathbf{x}} & \frac{\partial C_{i2}(\mathbf{x}_{i})}{\partial \mathbf{x}} & \frac{\partial C_{i2}(\mathbf{x}_{i})}{\partial \mathbf{x}} & \frac{\partial C_{i2}(\mathbf{x}_{i})}{\partial \mathbf{x}} \\ \frac{\partial C_{i2}(\mathbf{x}_{i})}{\partial \mathbf{x}} & \frac{\partial C_{i2}(\mathbf{x}_{i})}{\partial \mathbf{x}} & \frac{\partial C_{i2}(\mathbf{x}_{i})}{\partial \mathbf{x}} & \frac{\partial C_{i2}(\mathbf{x}_{i})}{\partial \mathbf{x}} \\ \frac{\partial C_{i2}(\mathbf{x}_{i})}{\partial \mathbf{x}} & \frac{\partial C_{i2}(\mathbf{x}_{i})}{\partial \mathbf{x}} & \frac{\partial C_{i2}(\mathbf{x}_{i})}{\partial \mathbf{x}} & \frac{\partial C_{i2}(\mathbf{x}_{i})}{\partial \mathbf{x}} \\ \frac{\partial C_{i2}(\mathbf{x}_{i})}{\partial \mathbf{x}} & \frac{\partial C_{i2}(\mathbf{x}_{i})}{\partial \mathbf{x}} & \frac{\partial C_{i2}(\mathbf{x}_{i})}{\partial \mathbf{x}} & \frac{\partial C_{i2}(\mathbf{x}_{i})}{\partial \mathbf{x}} \\ \frac{\partial C_{i2}(\mathbf{x}_{i})}{\partial \mathbf{x}} & \frac{\partial C_{i2}(\mathbf{x}_{i})}{\partial \mathbf{x}} & \frac{\partial C_{i2}(\mathbf{x}_{i$$

• Sampson Error vector $\delta_{X} = -J^{T}(JJ^{T})^{-1}e$

Answer: find shortest δ_X :
minimize $\|\delta_X\|^2$ by
Lagrange multipliers...

Aside: Lagrange Multipliers

"Given only f(x) = 0, find shortest-length x"

Semi-magical vector trick:

- Length² is scalar value: $||x||^2 = x^Tx$
- Mix in an unknown vector λ ('Lagrange multiplier'):

$$x^Tx - 2 \lambda^T f(x) = g(x,\lambda) = weird_length^2$$

Aside: Lagrange Multipliers

"Given only f(x) = 0, find shortest-length x"
Semi-magical vector trick:

- Length² is scalar value: $||x||^2 = x^Tx$
- Mix in an unknown vector λ ('Lagrange multiplier'):

$$x^Tx$$
 - 2 $\lambda^T f(x) = g(x,\lambda) = weird_length^2$
[MUST be -0]

Aside: Lagrange Multipliers

"Given only f(x) = 0, find shortest-length x"
Semi-magical vector trick:

- Length² is scalar value: $||x||^2 = x^Tx$
- Mix in an unknown vector λ ('Lagrange multiplier'):

$$x^Tx$$
 - $(2\lambda^T f(x) = g(x,\lambda) = weird_length^2$

Find shortest 'weird_length2':

- Find $(\partial g / \partial x) = 0$, Find $(\partial g / \partial \lambda) = 0$,
- Solve them for λ (substitutions)
- then use λ in $g(x,\lambda)$ to find x

!Done!

-	

More General Approach:

- Define 'Measurement space' (e.g. R4)
 - Vector: a complete measurement set
 - Vector holds only known values, but
 - Can be ANYTHING: input, output, length, H, ...
 - All possible measures (good or bad)
- · Define 'Model'
 - All possible error-free 'perfect measurements'
 such as the variety v_H
 - Defined by a known function (e.g. $C_H(X) = 0$)
 - A subset of measurement space

More General Approach:

- Gather points X, in 'measurement space'
- Replace X_i with 'estimates' X̂_i that:
 - Satisfy the model, and
 - minimize distance $||\hat{X}_i X_i||$
- Book (pg 85) gives examples for:
 - Error in both images (what we just did)
 - Error in one image only
 - Maximum likelihood estimation:
 - → same as minimizing geometric error ←
 - → same as minimizing reprojection error ←

DLT Non-Invariance

laccuracy depends on origin location!

- 'Non-optional' Correction required: (Outline on pg. 92)
 - Find centroid of measured points
 - Find average distance of points to centroid
 - Offset origin to centroid for all points
 - Scale about new origin to set average distance-to-origin to sqrt(2)
 - Reverse process after DLT. See book for proof.

-		

END	