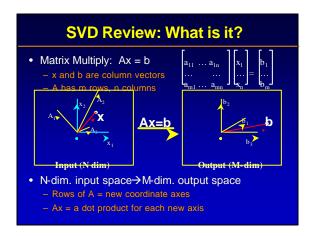
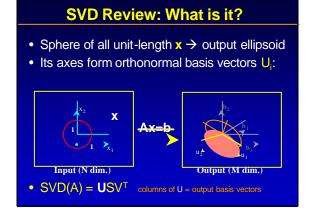
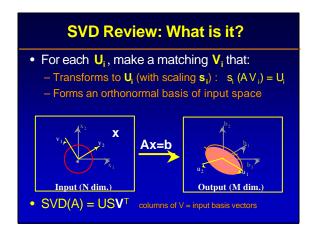
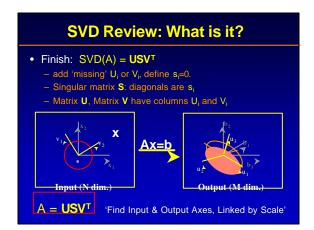
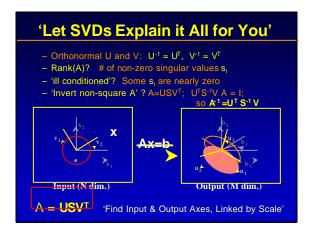
CS 395/495-26: Spring 2002 IBMR: Week 3 B SVD Review, & Finish 2D Projective Geometry Jack Tumblin jet@cs.northwestern.edu

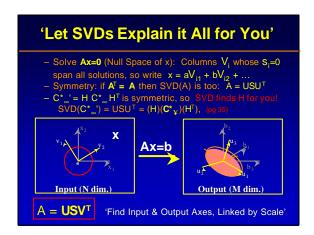












? But how do we find C*** One Answer: use perpendicular lines - (Recall) we defined 'world space' C**** as \$\begin{array}{ccc} \limet_0 & \li

Undoing H: Metric Rectification

. (recall)
$$\mathbf{H} = \mathbf{H}_{S} \mathbf{H}_{A} \mathbf{H}_{P} = \begin{bmatrix} sR & t \\ t \\ 0 & t \end{bmatrix} \begin{bmatrix} K & t \\ 0 & t \end{bmatrix} \begin{bmatrix} 1 & t \\ 0 & t \end{bmatrix}$$

• Tedious algebra shows symmetry: $\mathbf{C}_{\Upsilon}^{\star} = \mathbf{H} \ \mathbf{C}_{\Upsilon}^{\star} \ \mathbf{H}^{\mathsf{T}} = \begin{bmatrix} \mathbf{K} \mathbf{K}^{\mathsf{T}} \cdot \mathbf{K}^{\mathsf{K} \mathsf{V}} \\ \mathbf{K} \mathbf{K}^{\mathsf{T}} \cdot \mathbf{K}^{\mathsf{K} \mathsf{V}} \end{bmatrix}$

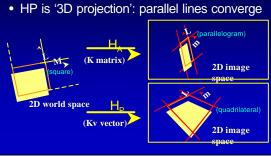
$$\mathbf{C}_{\mathbf{Y}}^{*} = \mathbf{H} \mathbf{C}_{\mathbf{Y}}^{*} \mathbf{H}^{\mathsf{T}} = \begin{bmatrix} \mathbf{K} \mathbf{K}^{\mathsf{T}} \cdot \mathbf{K}^{\mathsf{K}} \\ \mathbf{K}^{\mathsf{T}} \cdot \mathbf{K}^{\mathsf{T}} \\ \mathbf{Y}^{\mathsf{T}} \mathbf{K} \cdot \mathbf{0} \end{bmatrix}$$

where K is 2x2 symmetric (affine part: 2DOF) v is 2x1 vector, (projective part: 2DOF)

• ?But what do K and V really control?

Compare H_A and H_P

- HA is '2D skew': directional scaling:



Undoing H: Metric Rectification

OK, then how do we fing K and ν?

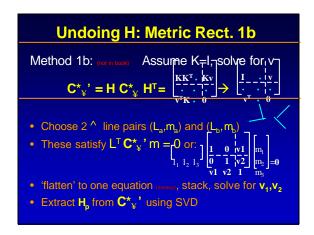
$$C_{\chi}^{*} = H C_{\chi}^{*} H^{T} = \begin{bmatrix} KK^{T} \cdot KV \\ \vdots \\ V^{T}K \cdot 0 \end{bmatrix}$$

- Choose known-perpendicular line pairs (L_i, m_i), then compute by:
 - Method 1a: (pg 36) Assume v=0, solve for K
 - Method 1b: (NOT in book) Assume k=0, solve for v
 - Rearrange, solve for full C*x' - Method 2: then get H using SVD.

Undoing H: Metric Rect. 1a Method 1a: $_{109} = 0$ Assume v=0, solve for K $C^*_{\gamma} = H C^*_{\gamma} H^T = \begin{bmatrix} KK^T, & KV \\ V^TK & 0 \end{bmatrix} \rightarrow \begin{bmatrix} KK^T & 10 \\ 0 & 10 \end{bmatrix}$ • Choose 2 ^ line pairs (L_a,m_a) and (L_b,m_b) • These satisfy L^T C^*_{γ} 'm = 0 or: • "flatten' to one equation: [1] 12 13 [1] 13 [1] 14 15 [1] 15

 $\begin{bmatrix} 1_1 m_1 & 1_2 m_1 + l_1 m_2 & l_2 m_2 \end{bmatrix}$

Undoing H: Metric Rect. 1a Method 1a: (a) 30) Assume v=0, solve for K $C^*_{Y}' = H C^*_{Y} H^T = \begin{pmatrix} KK^T & Kv \\ -T & Kv \\ -T & Kv \end{pmatrix} \Rightarrow \begin{pmatrix} s1 & s2 & 0 \\ s2 & s3 & 0 \end{pmatrix}$ • 'Stack' to combine both line pairs $\begin{pmatrix} l_1m_1 & l_2m_1 + l_1m_2 & l_2m_2 \\ l_1m_1 & l_2m_1 + l_1m_2 & l_2m_2 \end{pmatrix} \begin{pmatrix} s_1 \\ s_2 \end{pmatrix} = 0$ • Solve s using SVD: 'input null space' (Ax=0) • Extract H_A using SVD: recall C*_Y' = H C*_Y H^T, it is symmetric...



Undoing H: Metric Rect. 2

$$\mathbf{C^*}_{Y}$$
' = $\mathbf{H} \ \mathbf{C^*}_{Y} \ \mathbf{H^T} = \begin{bmatrix} a & b/2 & d/2 \\ b/2 & c & e/2 \\ d/2 & e/2 & f \end{bmatrix}$

- Choose **5** ^ line pairs (L₁,m₁) ... (L₅,m₅) \
- These satisfy $L^T C^*_{Y}$, m = 0 or:

$$\begin{bmatrix} \mathbf{l}_1 \ \mathbf{l}_2 \ \mathbf{l}_3 \end{bmatrix} \begin{bmatrix} \mathbf{a} & \mathbf{b}/2 & \mathbf{d}/2 \\ \mathbf{b}/2 & \mathbf{c} & \mathbf{e}/2 \\ \mathbf{d}/2 & \mathbf{e}/2 & \mathbf{f} \end{bmatrix} \begin{bmatrix} \mathbf{m}_1 \\ \mathbf{m}_2 \\ \mathbf{m}_3 \end{bmatrix} = \mathbf{0}$$
 nation:

• 'flatten' to one equation:

to one equation:
$$\begin{bmatrix} u/2 & e/2 & 1 \end{bmatrix} \begin{bmatrix} u_1 y_2 \\ \vdots \\ u_m \end{bmatrix} \begin{bmatrix} (l_1 m_1 + l_1 m_2)/2 & l_2 m_2 & (l_1 m_1 + l_1 m_3)/2 & (l_2 m_3 + l_1 m_2)/2 \end{bmatrix} \begin{bmatrix} e \\ e \\ f \end{bmatrix}$$

Undoing H: Metric Rect. 2

Method 2: Rearrange, or 'flatten' C**

$$C_{Y}^{*} = H C_{Y}^{*} H^{T} =$$

$$\begin{bmatrix}
a & b/2 & d/2 \\
b/2 & c & e/2 \\
d/2 & e/2 & f
\end{bmatrix}$$

- Solve for a,b,c,d,e,f with SVD (null space; Ax=0)
- Extract H_o from C*_¥' using SVD

Polar Lines and Pole Points

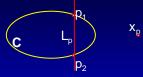
• Line Conic **C**'s tangent line **L**_t at point **x**_t by:

$$\mathbf{C} \mathbf{x}_{t} = \mathbf{L}_{t}$$
 (given \mathbf{x}_{t} is on the conic: $\mathbf{x}_{t}^{\mathsf{T}} \mathbf{C} \mathbf{x}_{t} = \mathbf{0}$)

Polar Lines and Pole Points

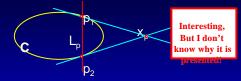
- Line Conic C's tangent line \mathbf{L}_t at point \mathbf{x}_t by: $\mathbf{C} \mathbf{x}_t = \mathbf{L}_t$ (given \mathbf{x}_t is on the conic: $\mathbf{x}_t^\mathsf{T} \mathbf{C} \mathbf{x}_t = \mathbf{0}$)
- But if x is **NOT** on the conic? try $Cx_p = L_p$

Polar Lines and Pole Points



- Line Conic C's tangent line L_t at point x_t by:
 C x_t = L_t (given x_t is on the conic: x_t^T C x_t=0)
- But if x is **NOT** on the conic? try $Cx_p = L_p$
- 'Polar line' L_p = conic at p₁, p₂ (find them?ugly!)

Polar Lines and Pole Points



- Line Conic C's tangent line L_t at point x_t by:
 C x_t = L_t (given x_t is on the conic: x_t^T C x_t=0)
- But if x is **NOT** on the conic? try $Cx_p = L_p$
- 'Polar line' L_p = conic at p₁, p₂ (to find them?ugly!)
- p₁, p₂ tangent lines meet at 'Pole point' x_p

SVDs and Conics

- Conics (both C and C*) are symmetric;
- SVD of any symmetric A is also symmetric: SVD(A) = USU^T
- All conic's singular values $s_i = 0,1$, or -1.
- Singular values classify conic type: (6940)

S	values	Equation	Type .
	(1, 1, 1)	$x^2 + y^2 + w^2 = 0$	imaginary-only
	(1, 1, -1)	A 1 y - W - U	circle
	(1, 1, 0)		single real point (0,0,1)
	(1,-1,0)	$x^2 - y^2 = 0$	2 lines: x+/- y
	(1, 0, 0)	$x^2 = 0$	2 co-located lines: x=0

Eigen-values,-vectors, Fixed pt & line

- Formalizes 'invariant' notion:
 - if x is 'fixed' for H, then Hx only scales x H $\mathbf{x} = \lambda \mathbf{x}$ (λ is a constant scale factor)
 - $-\mathbf{x}$ is an 'eigenvector', λ is its 'eigenvalue'
 - again, SVD helps you find them.
- Elaborate topic (but not hard). Skip for now.
- NEXT CLASS:
 - Will post Homework 2, update schedule
 - Will begin Chapter 2, '3D Projective Geometry'

END