CS 395/495-26: Spring 2002

IBMR: Week 2 A 2-D Projective Geometry

Jack Tumblin jet@cs.northwestern.edu

Overview

- Project 1: 1: Image-Colored Mesh Viewer
- Chapter 1: <u>any</u> 2D plane, as seen by <u>any</u> 3D camera view (texture mapping generalized)
- Homogeneous Coordinates are Wonderful
- Everything is a Matrix:
 Conics (you can skip for now)
 - Aside: interpolation of pixels and points...
- Transform your Point of View: H matrix
- Parts of H: useful kinds of Transforms

2D Homogeneous Coordinates

- WHY? makes MUCH cleaner math!
 - Unifies lines and points
 - Puts perspective projection into matrix form

- No divide-by-zero, lines at infinity defined...

Homogeneous Coordinates

WHAT?! Why x3? Why 'default' value of 1?

- Look at lines in R²:
 - 'line' == all (x,y) points where ax + by + c = 0-scale by 'k' $\rightarrow \rightarrow$ no change: kax + kby + kc = 0
- Using 'x₃' for points UNIFIES notation: - line is a 3-vector named I

- now point (x,y) is a 3-vector too, named x $\begin{bmatrix} x_1 & x_2 & x_3 \end{bmatrix} \begin{bmatrix} a \\ b \end{bmatrix} = \mathbf{0}$

Useful 3D Graphics Ideas

- Every Homog. point (x₁,x₂,x₃) describes a 3D ray
- 'Phantom' dimension x₃ is the 'z-buffer' value
- 3D→2D 'hard-wired':

(Fig 1.1, pg 8)

 $\mathbf{x}^{\mathrm{T}} \mathbf{l} = \mathbf{0}$

· Homogeneous coords allows translation matrix:

1	0	3	x		x+3
0	1	5	y	=	y+5
0	0	1_	1		1

2D Homogeneous Coordinates

Important Properties 1(see book for details)

- 3 coordinates, but only 2 degrees of freedom (only 2 ratios (x₁/x₃), (x₂/x₃) can change)
- DUALITY: points, lines are interchangeable
 - Line Intersections = point: $\mathbf{l}_1 \times \mathbf{l}_2 = \mathbf{x}$

(a 3D cross-product)

- Point 'Intersections' = line: $x_1 \times x_2 = 1$
- Projective theorem for lines $\leftarrow \rightarrow$ theorem for points!

Homogeneous Coordinates

Important Properties 2(see book for details)

- Neatly Sidesteps 'divide-by-zero': In (x,y) space (R)

 Store (x₁, x₂, x₃)^T, compute (x₁ / x₃), (x₂ / x₃) only if OK.
 - Define 'Ideal Point' (x,y,0)^T as a point at infinity in (x,y) space (#
 Note! (x,y,0) is an entire plane of points in the 3D (x₁, x₂, x₃)^T xspace
 - Note: (xy,o) is an entire plane of points in the ob (x₁, x₂, x₃) -xspace
 Note! 'Center of Projection' is an ideal point. (Image plane 'wraps around' to that point?)
 - Define 'Line at infinity' $\mathbf{I}_{m} \equiv (0,0,1)^{T}$, or "0x +0y +1=0"
 - All ideal points are on \mathbf{I}_{∞} : proof? $\mathbf{I}_{\infty} \cdot (\mathbf{X}_1, \mathbf{X}_2, \mathbf{0})^T = \mathbf{0}$
 - All parallel lines Let $\mathbf{l} = (\mathbf{a}, \mathbf{b}, \mathbf{c})^T$ and $\mathbf{l}^* = (\mathbf{a}, \mathbf{b}, \mathbf{c}^*)^T$.
 - Any line I intersects with I line at an ideal point
 - Two parallel lines I and I' always meet at an ideal point (page 7)

Homogeneous Coordinates

Important Properties 3(see book for details)

• Conic Sections (in the (x,y) plane, a.k.a. R²)

- SKIP this until a little later ...

- Core idea: Conics are Well-Behaved in the upcoming view-interpolations
 - Elegant homogeneous matrix form for any and all conic curves (ellipse, circle, parabola, hyperbola, degenerate lines & points):
 x^TCx = 0
 - Find any conic curve from 5 (x,y) points on the curve
 - · Nice dual form exists too (analogous to line/point duality)!

Projective Transform H

Projective Transform H

Finding H from point pairs (correspondences)

 $\mathbf{H} \quad \mathbf{X}'_{1} \quad \mathbf{X}'_{2} \quad \mathbf{X}'_{3} \quad \mathbf{X}'_{4} = \mathbf{X}_{1} \quad \mathbf{X}_{2} \quad \mathbf{X}_{3}$

- We know that **Hx' = x**, and
- we know at least 4 point pairs
- x' and x that satisfy it:
 ATTEMPT 1: 'plug & chug' make a matrix of x and x' values...

END