CS 395/495-26: Spring 2002

IBMR: Week 2 A

 2-D Projective GeometryJack Tumblin
jet@cs.northwestern.edu

Recall: Scene \& Image

\qquad

Light + 3D Scene:
2D Image:
Collection of rays
through a point
shape, movement,
surface BRDF,

GOAL: a Reversible Mapping Scene angles $\leftarrow \rightarrow$ image positions

View Interpolation: How?

- Chapter 2: 3D Projection (soon)

View Interpolation: How?

- BUT FIRST, the simpler case

Chapter 1: 2D Projection
From a flat 2D image,
Find new views of that image

\qquad

\qquad
\qquad
view2

Answer: 2D Homogeneous Coords

Chapter 1: 2D Projection

From a flat 2D image,
Find new views of that image

Cartesian (x, y) coordinates in \mathbf{R}^{2}

2D Homogencous ($\left.\begin{array}{lll}x_{1} & x_{2} & x_{3}\end{array}\right)$ coordinates in \mathbf{P}^{2}

Overview

- Project 1: 1: Image-Colored Mesh Viewer
- Chapter 1: any 2D plane, as seen by any 3D camera view (earre mapmong gemearizec)
- Homogeneous Coordinates are Wonderful
- Everything is a Matrix: \qquad
- Conics (you can skip for now)
- Aside: interpolation of pixels and points \qquad
- Transform your Point of View: H matrix
- Parts of H: useful kinds of Transforms
\qquad
\qquad

2D Homogeneous Coordinates

- WHY? makes MUCH cleaner math!

- Unifies lines and points
- Puts perspective projection into matrix form
- No divide-by-zero, lines at infinity defined.
in \mathbf{R}^{2},
write point \mathbf{x} as $\left[\begin{array}{l}x \\ y\end{array}\right]$

But in \mathbf{P}^{2}, write same point \mathbf{x} as where:
$x=x_{1} / x_{3}$,
$\mathrm{y}=\mathrm{x}_{2} / \mathrm{x}_{3}$,
$x_{3}=$ anything non-zero!
(but usually defaults to 1)
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Homogeneous Coordinates

WHAT?! Why x_{3} ? Why 'default' value of 1 ?

- Look at lines in \mathbf{R}^{2} :
- 'line' == all (x, y) points where $a x+b y+c=0$
- scale by ' k ' $\rightarrow \rightarrow$ no change: $\mathrm{kax}+\mathrm{kby}+\mathrm{kc}=0$
- Using ' x_{3} ' for points UNIFIES notation: \qquad
- line is a 3-vector named \mathbf{l}
- now point (x, y) is a 3-vector too, named \mathbf{x}
ax $+\mathrm{by}+\mathrm{c}=0$

\qquad
\qquad

Useful 3D Graphics Ideas

- Every Homog. point $\left(\mathrm{x}_{1}, \mathrm{x}_{2}, \mathrm{x}_{3}\right)$ describes a 3D ray
- 'Phantom' dimension x_{3} is the ' z-buffer' value
- 3D \rightarrow 2D 'hard-wired':
(Fig 1.1, pg 8)

An 'Ideal Point' at (0,0,0)
Center of Projection

- Homogeneous coords allows translation matrix:
$\left[\begin{array}{lll}1 & 0 & 3 \\ 0 & 1 & 5 \\ 0 & 0 & 1\end{array}\right]\left[\begin{array}{l}x \\ y \\ 1\end{array}\right]=\left[\begin{array}{l}x+3 \\ y+5 \\ 1\end{array}\right]$
\qquad
\qquad

2D Homogeneous Coordinates

Important Properties $1_{\text {(see book tor datills) }}$

- 3 coordinates, but only 2 degrees of freedom (only 2 ratios $\left(x_{1} / x_{3}\right),\left(x_{2} / x_{3}\right)$ can change) \qquad
- DUALITY: points, lines are interchangeable \qquad
- Line Intersections = point: $\mathrm{l}_{1} \times \mathrm{l}_{2}=\mathrm{x}$ \qquad
- Point 'Intersections' $=$ line: $\mathbf{x}_{\mathbf{1}} \times \mathbf{x}_{\mathbf{2}}=\mathbf{1}$
- Projective theorem for lines $\leftrightarrow \rightarrow$ theorem for points!
\qquad
\qquad

Homogeneous Coordinates

\qquad
Important Properties $\mathbf{2}_{\text {(see book for detalis) }}$

- Neatly Sidesteps 'divide-by-zero':
- Store $\left(x_{1}, x_{2}, x_{3}\right)^{T}$, compute $\left(x_{1} / x_{3}\right),\left(x_{2} / x_{3}\right)$ only if OK.
- Define 'Ideal Point' $(x, y, 0)^{T}$ as a point at infinity
- Note! $(x, y, 0)$ is an entire plane of points in the 3D $\left(x_{1}, x_{2}, x_{3}\right)^{T}$ xspace Note! 'Center of Projection' is an ideal point. (Image plane 'wraps around' to that point?)
- Define 'Line at infinity' $\mathbf{l}_{\infty} \equiv(0,0,1)^{\mathrm{T}}$, or " $0 \mathrm{x}+0 \mathrm{y}+1=0$ "
- All ideal points are on I_{∞} : proof? $I_{\infty} \cdot\left(x_{1}, x_{2}, 0\right)^{\top}=0$
- All parallel lines Let $\mathrm{I}=(\mathbf{a}, \mathbf{b}, \mathbf{c})^{\mathrm{T}}$ and $\mathrm{l}^{\prime}=\left(\mathbf{a}, \mathbf{b}, \mathbf{c}^{\mathrm{s}}\right)^{\mathrm{T}}$. \qquad
- Any line 1 intersects with I_{∞} line at an ideal point
- Two parallel lines land l' always meet at an ideal point (page 7) \qquad

Homogeneous Coordinates

Important Properties $3_{\text {see book for dealils) }}$

- Conic Sections (in the (x,y) plane, a.k.a. R^{2})

SKIP this until a little later

- Core idea: Conics are Well-Behaved
\qquad
in the upcoming view-interpolations
Elegant homogeneous matrix form for any and all conic curves (ellipse, circle, parabola, hyperbola, degenerate lines \& points): $\mathbf{x}^{\top} \mathbf{C} \mathbf{x}=0$
Find any conic curve from $5(x, y)$ points on the curve
- Nice dual form exists too (analogous to line/point duality)!

Homogeneous Coordinates

Important Properties 4 (see book tor dealis)

- View Interpolation ('Projective Transform')
- 'Central' image plane $(x, y, 1)^{\top}$
- Choose a known point x'
- Apply 3×3 Matrix H to $(\mathrm{x}, \mathrm{y}, 1)^{\top}$ to make some OTHER plane

Ray through known point x^{\prime} pierces unknown point x

$H x^{\prime}=x$

$\left[\begin{array}{lll}h_{11} & h_{12} & h_{13} \\ h_{21} & h_{22} & h_{21} \\ h_{31} & h_{32} & h_{32}\end{array}\right]\left[\begin{array}{lll}x_{33}\end{array}\right]\left[\begin{array}{l}x_{1}^{\prime} \\ x_{1} \\ x_{2} \\ x_{3}\end{array}\right]=\left[\begin{array}{l}x_{1} \\ x_{1} \\ x_{2} \\ x_{2}\end{array}\right]$

Projective Transform H

H matrix: Plane-to-Plane mapping
$\mathbf{H} \mathbf{x}^{\prime}=\mathbf{x} \quad\left[\begin{array}{lll}\mathrm{h}_{11} & \mathrm{~h}_{12} & \mathrm{~h}_{13} \\ \mathrm{~h}_{21} & \mathrm{~h}_{22} & \mathrm{~h}_{21} \\ \mathrm{~h}_{31} & \mathrm{~h}_{32} & h_{33}\end{array}\right]\left[\begin{array}{l}\mathrm{x}_{3}^{\prime}{ }_{1} \\ \mathrm{x}_{1}^{\prime} \\ \mathrm{x}_{2}^{\prime} \\ \mathrm{x}_{3}\end{array}\right]=\left[\begin{array}{l}\mathrm{x}_{1} \\ \mathrm{x}_{2} \\ \mathrm{x}_{3}\end{array}\right]$

What if H is unknown, but we have four or more pairs of X, X^{\prime} points?
$\mathbf{x}_{1}, \mathbf{x}^{\prime}{ }_{1}, \mathbf{x}_{2}, \mathbf{x}_{2}^{\prime}$
$\mathrm{x}_{3}, \mathrm{x}_{3}, \mathrm{x}_{4}, \mathrm{x}_{4}{ }^{\prime} \ldots$

Projective Transform H

Finding H from point pairs (correspondences) \qquad

- We know that $\mathbf{H x}^{\prime}=\mathbf{x}$, and
- we know at least 4 point pairs
$H x^{\prime}=x$
x ' and x that satisfy it:
ATTEMPT 1:
'plug \& chug' make a matrix
$\left[\begin{array}{lll}\mathrm{h}_{11} & \mathrm{~h}_{12} & \mathrm{~h}_{13} \\ \mathrm{~h}_{21} \\ \mathrm{~h}_{22} & \mathrm{~h}_{21} \\ \mathrm{~h}_{31} & \mathrm{~h}_{32} & \mathrm{~h}_{33}\end{array}\right]\left[\begin{array}{l}\mathrm{x}^{\prime}{ }_{1} \\ \mathrm{~h}_{1} \\ \mathrm{x}_{2} \\ \mathrm{x}_{3}^{\prime}\end{array}\right]=\left[\begin{array}{l}\mathrm{x}_{1} \\ \mathrm{x}_{2} \\ \mathrm{x}_{3}\end{array}\right]$ of \mathbf{x} and x^{\prime} values.

$$
\left[\boldsymbol{H}\left[\begin{array}{c:c:c}
\mathbf{x}_{1} & \mathbf{x}_{2} & \mathbf{x}_{3} \\
& \mathbf{x}_{4} \\
\hline & &
\end{array}\right]=\left[\begin{array}{c:c:c:c}
\mathbf{x}_{1} & \mathbf{x}_{2} & \mathbf{x}_{3} & \mathbf{x}_{4} \\
& & &
\end{array}\right]\right.
$$

Projective Transform H

Finding H from point pairs (correspondences)

- We know that $\mathrm{Hx}^{\prime}=\mathbf{x}$, and
- we know at least 4 point pairs $H x^{\prime}=x$ x' and x that satisfy it:
ATTEMPT 1:
'plug \& chug' make a matrix
of \mathbf{x} and x^{\prime} values.

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

