
Quantum Computing and λq

Jesse A. Tov

November 30, 2006

1 The Qubit

Quantum mechanics is concerned with states in a Hilbert (vector, inner product) space.
Consider bits 0 and 1 in a register. These are orthogonal “basis states”. Actual states are
superpositions c0|0〉 + c1|1〉 where

∑

i |ci|2 = 1. We call these quantum states “qubits.”

Examples:

ψ = |0〉

ψ =
1√
2
(|0〉 + |1〉)

ψ =

√
3

2
|0〉 − i

2
|1〉

The squares of the magnitudes values of the coefficients form a probability distribution,
which is what we see when we measure the system.

What space is generated by |0〉 and |1〉? C2, but normalized (a Bloch sphere). The |·〉
notation is Dirac’s. It’s nice, but sometimes it helps to think of our space this way:

|0〉 =

[

1
0

]

|1〉 =

[

0
1

]

1√
2
(|0〉 + |1〉) =

[

1√
2

1√
2

] √
3

2
|0〉 − i

2
|1〉 =

[
√

3
2
−i
2

]

We probably want registers with more qubits in them. A register with n qubits is in the
quantized space HQB(n) = ℓ2(Bn). Each classical state of n bits is one of our computational

1

basis states:

|0〉 ⊗ |0〉 = |00〉 =
[

1 0 0 0
]T |0〉 ⊗ |1〉 = |01〉 =

[

0 1 0 0
]T

|1〉 ⊗ |0〉 = |10〉 =
[

0 0 1 0
]T |1〉 ⊗ |1〉 = |11〉 =

[

0 0 0 1
]T

2 Quantum Computation

To do quantum computation, we evolve this state through the application of unitary, re-
versible operators. Unitary: Preserves normalization. Reversible: zero entropy. If we throw
away information, we generate heat, which causes decoherence. We also can’t duplicate

state, in the sense that there is no meaningful function ψ → ψ ⊗ ψ—anything we copy will
be coupled.

2.1 Quantum Circuits

By analogy to classical circuits, we can build quantum circuits out of gates. The gates have
to be unitary and reversible, of course.

2.2 Classical Gates

Must be reversable. Consider and:

and =

[

1 1 1 0
0 0 0 1

]

So and is no good, because it loses information. (What is and−1 0?) Must not duplicate
information. By the Pigeonhole principle, gates are invertible transformations Bn → Bn.

Reversible classical logic has been shown to be complete. Some useful classical gates:

2.3 Identity

I =

[

1 0
0 1

]

2

2.3.1 Not

not =

[

0 1
1 0

]

Note that not−1 = I.

2.3.2 Cnot

Also known as invertible xor:

cnot =









1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0









Note that cnot−1 = I.

2.3.3 Toffoli Gate

Controlled-Controlled-Not. In general,

CU =

[

I 0
0 U

]

The Toffoli gate is a basis for classical (reversible) logic circuits.

2.4 Uncontrolled gates:

We’d like to apply, say, a one-bit gate to a particular bit of a two-bit register. E.g.:

(I ⊗ U)|ψ0, ψ1〉 = (I ⊗ U)(|ψ0〉 ⊗ |ψ1〉) = |ψ0〉 ⊗ U |ψ1〉

Of course there are permutation gates, too.

2.5 Quantum Gates

To do quantum computations, though, we need some gates that create superpositions and
take advantage of the phase space.

3

2.5.1 Hadamard

The Hadamard gate produces a uniform distribution, but is reversible.

H =
1√
2

[

1 1
1 −1

]

H|0〉 =
1√
2
(|0〉 + |1〉)

H|1〉 =
1√
2
(|0〉 − |1〉)

Note that H2 = I.

2.5.2 Phase

Rn =

[

1 0
0 e2πi/2n

]

The gates cnot, H , and R3, along with composition and tensor product, form a basis for the
space of unitary, reversible functions HQB(n) → HQB(n).

2.5.3 Pauli Gates

It may also be convenient to have the three Pauli gates:

σ1 =

[

0 1
1 0

]

σ2 =

[

0 −i
i 0

]

σ3 =

[

1 0
0 −1

]

Some properties:

• σ2
n = I

• σnσn+1 = iσn+2 (mod 3)

• σnσm = −σmσn (i 6= j)

4

2.6 Some Quantum Algorithms

What’s quantum computation good for? Factorization, discrete Fourier transform, function
inversion (!), coin flips, “teleportation”. . .

2.6.1 A Coin Flip

H|0〉.

2.6.2 Deutsch’s Algorithm

For a one-bit function f , (H⊗ I)Uf (H⊗H)|01〉 where Uf : (x, y) 7→ (x, y⊕ f(x)). Why Uf .

The first bit of the result is 1 if f is balanced and 0 otherwise. This algorithm is deterministic.

2.6.3 Einstein, Podolsky, Rosen

The EPR paradox:

epr ≡ cnot(H ⊗ I)|00〉

= cnot
1√
2
(|00〉 + |10〉)

=
1√
2
(|00〉 + |11〉)

“Spooky action at a distance.” John Bell: No hidden variable (1964).

3 The Quantum Lambda Calculus λq

3.1 Syntax

Wheh. Now for λq:

t ::= x | λx.t | t t | c | !t | λ!x.t terms

c ::= 0 | 1 | H | Rn | cnot | T | σ1 | σ2 | σ3 | · · · constants

5

We need to be careful not to throw away or duplicate non-definite state. Well-formedness
(for preserving linearity):

⊢ c Const
x ⊢ x Id

!x1, . . . , !xn ⊢ t
!x1, . . . , !xn ⊢!t

Promotion
Γ, x ⊢ t
Γ, !x ⊢ t Dereliction

Γ, !x, !y ⊢ t
Γ, !z ⊢ t[z/x, z/y] Contraction

Γ ⊢ t
Γ, !x ⊢ t Weakening

Γ, x ⊢ t
Γ ⊢ λx.t ⊸-I

Γ, !x ⊢ t
Γ ⊢ λ!x.t

→-I
Γ ⊢ t1 ∆ ⊢ t2

Γ,∆ ⊢ t1 t2
⊸-E

3.2 Dynamics

Call-by-value:

v ::= c | λx.t | λ!x.t | !t values

E ::= [] | (E t) | (v E) evaluation contexts

Reduction rules:

E[(λx.t) v] → E[t[v/x]] (β)

E[(λ!x.t) !t′] → E[t[t′/x]] (!β)

E[|cU φ〉] → E[U |φ〉] (U)

History-preserving rules. . . ?

3.3 Useful Stuff

We need a fixed pointer operator, so let

fix ≡ (λ!u.λ!f.f !(u !u !f)) !(λ!u.λ!f.f !(u !u !f))

Then we could verify that fix !t→∗ t !(fix !t).

Sugar for pairs:

() ≡ λ!x.λ!y.x id

cons ≡ λh.λt.λ!x.λ!y.y h t

case t1 of (() → t2, h : t→ t3) ≡ t1 !(λ!z.t2) !(λh.λt.t3)

Let’s assume we also have let.

6

3.4 Nice Properties

Two terms are said to be “congruent” iff they differ only in 1s and 0s. Theorem: All
superposed terms generated by λq are congruent.

If the initial state is definite, all !-suspended terms are definite.

We can embed the classical cbv untyped lambda calculus as follows:

(t1 t2)
∗ = (λ!z.z) t∗1 t

∗
2

x∗ =!x

(λx.t)∗ =!(λ!x.t∗)

4 Some Algorithms in λq

4.1 Deutsch Revisited

deutsch Uf → let (x, y) = Uf ((H 0), (H 1)) in ((H x), y)

Example: if f = id then Uf = cnot.

deutsch cnot→ let (x, y) = cnot ((H 0), (H 1)) in ((H x), y)

→ let (x, y) = cnot
1

2

(

|(0, 0)〉 + |(1, 0)〉 − |(0, 1)〉 − |(1, 1)〉
)

in ((H x), y)

→ let (x, y) =
1

2

(

|(0, 0)〉 + |(1, 1)〉 − |(0, 1)〉 − |(1, 0)〉
)

in ((H x), y)

→ 1

2

(

|((H 0), 0)〉 + |((H 1), 1)〉 − |((H 0), 1)〉 − |((H 1), 0)〉
)

→ 1

2
√

2

(

|(0, 0)〉 + |(1, 0)〉 + |(0, 1)〉 − |(1, 1)〉

− |(0, 1)〉 − |(1, 1)〉 − |(0, 0)〉 + |(1, 0)〉
)

=
1

2
√

2

(

2|(1, 0)〉 − 2|(1, 1)〉
)

= |1〉 ⊗ 1√
2

(

|0〉 − |1〉
)

7

Now, what if f = λx.0? Then Uf(x, y) = (x, y ⊕ f(x)) = (x, y). So,

deutsch id → let (x, y) = id2 ((H 0), (H 1)) in ((H x), y)

→ let (x, y) = id2
1

2

(

|(0, 0)〉 + |(1, 0)〉 − |(0, 1)〉 − |(1, 1)〉
)

in ((H x), y)

→ let (x, y) =
1

2

(

|(0, 0)〉+ |(1, 0)〉 − |(0, 1)〉 − |(1, 1)〉
)

in ((H x), y)

→ 1

2

(

|((H 0), 0)〉 + |((H 1), 0)〉 − |((H 0), 1)〉 − |((H 1), 1)〉
)

→ 1

2
√

2

(

|(0, 0)〉+ |(1, 0)〉 + |(0, 0)〉 − |(1, 0)〉

− |(0, 1)〉 − |(1, 1)〉 − |(0, 1)〉+ |(1, 1)〉
)

=
1

2
√

2

(

2|(0, 0)〉 − 2|(0, 1)〉
)

= |0〉 ⊗ 1√
2

(

|0〉 − |1〉
)

4.2 Spooky Action

Now we have epr ≡ cnot ((H 0), 0). See teleportation from van Tonder, 29.

4.3 Controlled U

Suppose we have a one-bit function U : HQB(1) → HQB(1). We want to build a two-bit
function CU such that

CU |00〉 7→ |00〉
CU |01〉 7→ |01〉
CU |10〉 7→ |1〉U |0〉
CU |11〉 7→ |1〉U |1〉

We have cnot = Cnot. Recall, in general, we can build CU =

[

I 0
0 U

]

. How do we do it in λq?

8

C ≡ λU. λ(c, x).

let (x1, x2) = cnot(x, 0) in

let (c′, x′1, d1) = T (σ1c, x1, 0) in

let (c′′, x′2, d2) = T (σ1c
′, Ux2, 0) in

let (d′1, d
′
2, r) = T (σ1d1, σ1d2, 1) in

(c′′, r, x′1, x
′
2, d

′
1, d

′
2)

4.4 Fourier Transform

We have lists. We can also write (linear) map and reverse. See van Tonder, 31.

5 Related Work

5.1 Quantum Turing Machine

Equivalent to the quantum Turing machine. The basis states of Q are |x;n;m〉 where x is
head position, n is a finite state, and m is an infinite memory (which always has only a finite
number of 1s).

Transitions are represented by a reversible, unitary operator U , so ψ(t) = U t|x; 0;n0〉. U
has some restrictions: it can affect only the bit nx at any step, and x can change only by 1.
There’s a universal QTM that takes an encoding of U as part of its input.

Theorem: For any particular “finite” QTM, there’s a quantum circuit.

Theorem: QTM and λq are equally powerful.

5.2 Lambda-q

Another quantum lambda calculus which is strictly more powerful. Can compute NP effi-
ciently. Does this using non-linear operators, so we don’t know if it’s implementable.

9

References

[1] Paul Benioff. The computer as a physical system: A microscopic quantum mechanical
Hamiltonian model of computers as represented by Turing machines. Journal of Statistical

Physics, V22(5):563–591, May 1980.

[2] David Deutsch. Quantum theory, the Church-Turing principle and the universal quantum
computer. Proceedings of the Royal Society of London. Series A, Mathematical and

Physical Sciences, 400(1818):97–117, 1985.

[3] David Deutsch. Quantum computational networks. Proceedings of the Royal Society of

London. Series A, Mathematical and Physical Sciences, 425(1868):73–90, 1989.

[4] Philip Maymin. The lambda-q calculus can efficiently simulate quantum computers, Feb
1997.

[5] Peter Selinger and Benoit Valiron. A lambda calculus for quantum computation with
classical control. Mathematical Structures in Computer Science, 16(3):527–552, June
2006.

[6] André van Tonder. A lambda calculus for quantum computation, April 2004.

[7] André van Tonder. Quantum computation, categorical semantics and linear logic, Octo-
ber 2004.

[8] Wikipedia. Various articles: “Deutsch-Jozsa algorithm”, “Grover’s algorithm”, “Shor’s
algorithm”, “Quantum gate”, “Toffoli gate”, “Hadamard transform”, “Pauli matrices”,
“Quantum computer”, “Quantum circuit”.

10

