
Practical Programming with Substructural Types

A dissertation presented

by

Jesse A. Tov

to the Faculty of the Graduate School

of the College of Computer and Information Science

in partial fulfillment of the requirements for the degree of

Doctor of Philosophy

Northeastern University

Boston, Massachusetts

February, 2012

Abstract

Substructural logics remove from classical logic rules for reordering, duplica-

tion, or dropping of assumptions. Because propositions in such a logic may no

longer be freely copied or ignored, this suggests understanding propositions

in substructural logics as representing resources rather than truth. For

the programming language designer, substructural logics thus provide a

framework for considering type systems that can track the changing states of

logical and physical resources.

While several substructural type systems have been proposed and im-

plemented, many of these have targeted substructural types at a particular

purpose, rather than offering them as a general facility. The more general

substructural type systems have been theoretical in nature and too unwieldy

for practical use. This dissertation presents the design of a general purpose

language with substructural types, and discusses several language design

problems that had to be solved in order to make substructural types useful in

practice.

i

So design is a constant challenge to balance comfort with luxe, the
practical with the desirable.

— Donna Karan

iii

Acknowledgments

Thanks go first to my advisor, Riccardo Pucella, for his steady support and

guidance. His suggestions and criticism have improved this dissertation in

ways too numerous to list. I am also grateful to the rest of my thesis committee:

Mitchell Wand, from whom I learned to think like a semanticist; Matthew

Fluet, whose work prompted and shaped my own; and Matthias Felleisen,

whose example and high expectations are an inspiration.

I owe much gratitude to the faculty and the present and former students

at the Northeastern University College of Computer and Information Science,

who together create a collegial, intellectual environment that I am sad to

leave: Ahmed Abdelmeged, Jay Aslam, Dan Brown, Bryan Chadwick, Agnes

Chan, Stephen Chang, Will Clinger, Richard Cobbe, Ryan Culpepper, Christos

Dimoulas, Carl Eastlund, Felix Klock, Tony Garnock-Jones, Dave Herman,

Ian Johnson, Karl Lieberherr, Olin Shivers, Vincent St-Amour, Paul Stansifer,

Stevie Strickland, Asumu Takikawa, Sam Tobin-Hochstadt, Aaron Turon,

David Van Horn, and Dimitris Vardoulakis. Alec Heller’s insights and demands

for clarity have been especially valuable.

This journey began when Norman Ramsey first introduced me to the study

of programming languages as an academic discipline, and for that I am forever

grateful. I would also like to thank Henry Leitner, Radhika Nagpal, Margo

Seltzer, and Chris Thorpe, from whom I learned much about teaching; Chung-

chieh Shan, who first told me to listen to the types; and my colleagues at

FNMOC, Oleg Kiselyov and Andrew Pimlott.

Last but not in the least least, I would like to thank my family: Yaron,

Shoshanah, Sarah, Michael, Maryann, Lau, Evelyn, and my infinitely patient

wife, Elizabeth, without whom nothing is possible.

v

vi ACKNOWLEDGMENTS

This research was supported in part by AFOSR grant FA9550-09-1-0110.

Contents

Abstract i

Acknowledgments v

List of Figures xi

1 Practical Substructural Types 1
1.1 The Structure of This Dissertation 3

2 Background: Stateful Type Systems 5
2.1 Substructural Logics and λ Calculi 6

2.2 Typestate . 16

2.3 Region-Based Memory Management 22

2.4 Session Types . 28

3 Programming in Alms 39
3.1 Alms by Example . 39

3.2 Syntax Matters . 52

4 Expressiveness of Alms 59
4.1 Typestate . 59

4.2 Regions . 69

4.3 Session Types . 75

4.4 Discussion . 94

5 A Model of Alms 97

vii

viii CONTENTS

5.1 Syntax and Semantics of aλms 98

5.2 Theoretical Results . 116

6 Implementation of Alms 123
6.1 Core Alms . 123

6.2 A Type Inference Algorithm . 132

6.3 Solving Subtype Constraints . 135

6.4 Solving Subqualifier Constraints 146

7 Mixing Affine and Conventional Types 153
7.1 Related Work . 154

7.2 A Model of Affine Contracts . 155

7.3 Type Soundness for FA
C . 174

7.4 Implementing Affine Contracts 186

8 Substructural Types and Control 197
8.1 Related Work . 201

8.2 Syntax and Semantics of λURAL 203

8.3 Generic Control Effects in λURAL(C) 211

8.4 The Generic Theory . 219

8.5 Example Control Effects . 231

8.6 Discussion . 242

9 Related Work and Design Rationale 245
9.1 Substructural Type Systems . 245

9.2 The Spirit of ML . 250

9.3 From ILL to Alms . 253

10 Conclusion 257
10.1 Contributions . 257

10.2 Future Work . 258

A Proofs: A Model of Alms 263
A.1 Preliminaries . 263

A.2 Principal Qualifiers . 268

CONTENTS ix

A.3 Type Soundness . 272

B Proofs: Mixing Affine and Conventional Types 331
B.1 Properties of Types and Stores 331

B.2 Evaluation Contexts and Substitution 335

B.3 Preservation . 357

B.4 Progress . 375

C Proofs: Substructural Types and Control 385
C.1 Properties of λURAL . 385

C.2 Properties of λURAL(C) . 396

C.3 Proofs for Example Control Effects 424

List of Definitions and Propositions 449

Bibliography 455

List of Figures

2.1 Term assignment for ILL . 10

2.2 States and transitions for TCP (simplified) 17

2.3 Vault interface to TCP (server only) 18

2.4 Sockets API in a dependent ILL . 21

2.5 Sockets API in λURAL . 23

2.6 Vault region API . 27

2.7 Vault region client example . 27

2.8 λrgnUL region API . 27

2.9 State diagram for ATM–bank protocol 30

2.10 Message type for ATM protocol in CML 31

2.11 ATM client code for getting the balance in CML 31

2.12 Session type duality . 32

2.13 ATM client code in Vasconcelos et al.’s (2004) language 34

2.14 Session types in λURAL . 34

3.1 Affine array interface in Alms . 40

3.2 Affine array implementation in Alms 41

3.3 Interface for unlimited arrays with affine capabilities 42

3.4 Implementation of unlimited arrays with affine capabilities . . . 43

3.5 Some type definitions and inferred qualifier kinds 45

3.6 Interface for arrays with potentially affine elements 48

3.7 Interface to arrays with capabilities and locks 49

3.8 Interface to mvars (synchronized variables) 50

3.9 Implementation of to arrays with capabilities and locks 50

xi

xii LIST OF FIGURES

3.10 Reader-writer locks with capabilities 51

3.11 Fractional reader-writer capabilities 51

3.12 Comparison of missing-means-U rule to actual rule 57

4.1 States and transitions for Berkeley sockets TCP 60

4.2 Alms interface to Berkeley sockets TCP (i): basic operations . . . 60

4.3 Alms interface for TCP (ii): error handling 62

4.4 Alms implementation of TCP (i): basic operations 64

4.5 Alms implementation of TCP (ii): error handling 66

4.6 Alternate, untrusted implementation of error handling 67

4.7 An echo server using SocketCap . 68

4.8 Simple, Vault-style regions . 70

4.9 Regions with fractional capabilities 71

4.10 Simple homogeneous regions . 73

4.11 Homogeneous regions with adoption and focus 74

4.12 Binary session types . 75

4.13 Duality for binary session types . 76

4.14 Interface for binary session types 77

4.15 Monomorphic, synchronous channels 78

4.16 Implementation of binary session types 78

4.17 Interface for k-ary session types . 80

4.18 ATM–bank protocol in k-ary session types 81

4.19 Client for ATM–bank protocol . 81

4.20 Implementation of k-ary session types 82

4.21 Example of polygon clipping . 83

4.22 Interface for a simple 3-D geometry library 84

4.23 Implementation of polygon clipping (part 1 of 3) 85

4.24 Implementation of polygon clipping (part 2 of 3) 87

4.25 Implementation of polygon clipping (part 3 of 3) 88

4.26 Interface to session types with regions 90

4.27 Implementation of session types with regions 91

4.28 Broadcasting using session type regions (part 1 of 2) 93

4.29 Broadcasting using session type regions (part 2 of 2) 95

LIST OF FIGURES xiii

5.1 Syntax (i): expressions . 99

5.2 Syntax (ii): types . 99

5.3 Syntax (iii): Qualifier constants, variances, and variance composi-

tion . 100

5.4 Syntax (iv): kinds . 100

5.5 Operational semantics . 102

5.6 Type system judgments . 103

5.7 Syntax of typing contexts . 103

5.8 Statics (i): kinds . 104

5.9 Statics (ii): types . 106

5.10 Statics (iii): subtyping . 108

5.11 Statics (iv): typing contexts . 111

5.12 Statics (v): expressions . 113

5.13 Statics (vi): stores and configurations 116

6.1 Alms source code size by function 124

6.2 Syntax of Core Alms . 124

6.3 Syntax and semantics of constraints 125

6.4 HM(X) (syntax directed, with subtyping) 126

6.5 Constraints for Substructural HM(X) 127

6.6 Qualifiers of types and environments 128

6.7 Occurrence analysis for affine types 129

6.8 Occurrence analysis for URAL types, with additive if expression 129

6.9 Substructural HM(X) (syntax directed) 130

6.10 Core Alms (syntax directed) . 131

6.11 Type inference algorithm for Core Alms 132

6.12 Constraint rewriting and generalization 134

6.13 Some decomposition rules (non-lossy) 136

6.14 Variance of type variables . 137

6.15 Some constraint reduction rules (non-lossy) 138

6.16 Existential introduction (non-lossy) 139

6.17 Guessing (lossy) . 146

6.18 Qualifier constraint standardization (lossy and non-lossy) 148

xiv LIST OF FIGURES

6.19 Qualifier constraint reduction (lossy and non-lossy) 149

6.20 Finding constant qualifier bounds (lossy) 151

7.1 Syntax of FC . 157

7.2 Operational semantics of FC . 158

7.3 Static semantics of FC . 159

7.4 Syntax of FA . 160

7.5 Operational semantics of FA . 161

7.6 Static semantics of FA (i) . 162

7.7 Static semantics of FA (ii) . 164

7.8 Additional syntax for FA
C . 165

7.9 Static semantics of FA
C . 167

7.10 Operational semantics of FA
C (i): run-time syntax 170

7.11 Operational semantics of FA
C (ii): reduction 172

7.12 Internal type system for FA
C (i): store types 176

7.13 Internal type system for FA
C (ii): new expressions 177

7.14 Internal type system for FA
C (iii): configurations 179

7.15 Internal type system for FA
C (iv): old FC expressions 179

7.16 Internal type system for FA
C (v): old FA expressions 180

7.17 Wrappers for opaque types . 189

7.18 Type directed generation of coercions 189

7.19 Coercion generation in Alms (simplified) 193

7.20 Coercion generation in Alms . 195

8.1 λURAL syntax (i): expression level 203

8.2 λURAL syntax (ii): type and kind level 204

8.3 λURAL operational semantics . 206

8.4 λURAL statics (i): kinding . 207

8.5 λURAL statics (ii): qualifiers . 207

8.6 λURAL statics (iii): context splitting 208

8.7 λURAL statics (iv): typing . 209

8.8 λURAL statics (v): typing . 210

8.9 Updated syntax for λURAL(C) . 212

8.10 λURAL(C) statics (i): updated kinding rules 214

LIST OF FIGURES xv

8.11 λURAL(C) statics (ii): control effect judgments 214

8.12 λURAL(C) statics (iii): typing . 215

8.13 λURAL(C) statics (iv): typing . 217

8.14 CCoS translation (i): kinds and kind contexts 221

8.15 CCoS translation (ii): type-level terms and contexts 222

8.16 CCoS translation (iii): values and expressions 224

8.17 Statics for delimited continuation effects 232

8.18 Statics for answer-type effects . 237

8.19 Statics for exception effects . 240

A.1 Coarse subkinding relation for definition A.26 287

A.2 One-step parallel type reduction 311

C.1 Exhaustive proof for final case in translation subsumption . . . 428

CHAPTER 1

Practical Substructural Types

IN THE LAST two decades, researchers have proposed a myriad of stateful type

systems, in which types reflect and regiment the dynamic states of program

resources. These type systems span a range from minimalistic models (Wadler

1992) to production-quality general-purpose programming languages (Brus

et al. 1987). Many of the more theoretical systems (Wadler 1991; Bierman 1993;

Benton 1995; Barber 1996; Morrisett et al. 2005; Ahmed et al. 2005) are based

explicitly on Girard’s linear logic (1987). Actual implemented programming

languages, however, tend to support less general approaches to statefulness

targeted at specific problems, such as memory regions and typestate for safety

in low-level languages (DeLine and Fähndrich 2001; Grossman et al. 2002;

Zhu and Xi 2005), session types for static checking of communication protocols

(Fähndrich et al. 2006), or security-oriented types (Swamy et al. 2010).

These special-purpose type systems are often elegant and effective, but they

are of little use to a programmer who wants to write a program using the next
as-yet-uninvented stateful type system. However, many of the specific cases

for statefulness are instances of a more general case: Given a substructural
type system—which limits how many times some values may be used—and

sufficiently flexible abstraction mechanisms, many of the special-purpose type

systems can be expressed within the language. For example, rather than

provide session types as a primitive language feature, session types can be

programmed as a library in a language with substructural types.

If realized successfully, a general-purpose substructural type system can

provide several benefits. First, it eliminates the need to design a new language

1

2 CHAPTER 1. PRACTICAL SUBSTRUCTURAL TYPES

for each new stateful type discipline, and second, it allows for several different

designs for a particular stateful type discipline within the same language.

Together, these properties facilitate experimentation in stateful types. Third,

a general-purpose substructural programming language can support different

notions of stateful types within the same program, which is not possible if each

stateful type system is confined to its own language. However, this flexibility

comes with a trade-off, because a language designed with a particular state

discipline in mind may be tuned specifically for that purpose, potentially

making it easier to use than a general-purpose system. Thus, it is important

to show that programming with a general-purpose substructural type system

is not especially onerous.

This brings me to my thesis:

A programming language with general-purpose substructural
types can be practical and expressive.

By substructural types, I mean type systems that restrict the usual structural

rules of contraction and weakening in order to control the number of times

values may be used, in the style of Girard’s linear logic (1987); in this thesis I

focus mainly on affine types, which can prevent values from being used more

than once. By general-purpose substructural types, I mean a type system in

which substructural types are not devoted to the management of a particular

kind of stateful resource, but available as a general mechanism for building

program abstractions. By practical, I mean that the language offers a full

complement of modern language features suitable for writing a wide range

of programs, and that using the language is not inordinately difficult; by

expressive, I mean that the language can express a variety of stateful resource

disciplines found in the literature.

To support this thesis, I have developed Alms, a general-purpose program-

ming language with affine types. Even the most elementary affine type system

is sufficient to express a variety of stateful type disciplines, but the challenge in

designing a language such as Alms is to make the resulting language practical.

Solving this problem required the introduction of several novel type system

features, such as dereliction subtyping and dependent qualifier kinds, which

1.1. THE STRUCTURE OF THIS DISSERTATION 3

promote reuse by allowing the same abstractions to apply to both affine and

unlimited (non-affine) types. Also in pursuit of pragmatics, I had to come to

grips with the interaction between substructural types and control effects such

as exceptions, and practical concerns led me to consider a mechanism for the

safe interaction between code written in a new, affine language such as Alms

and a similar but conventional (non-affine) language. In each case, I developed

a formal model to validate the soundness of language design ideas motivated

by the pragmatics of substructural types.

1.1 The Structure of This Dissertation

In this dissertation, I introduce the Alms programming language informally,

give a formal model of its semantics, and describe its implementation. I relate

Alms to prior work by others and discuss how the design of Alms is influenced

by that prior work.

In chapter 2, I survey stateful type systems; I show how substructural

types can express a variety of stateful type disciplines, but also highlight the

extent to which the resulting interfaces are awkward. Chapter 3 describes

Alms, a programming language with affine types, and introduces its features

in a series of examples. In chapter 4, I revisit the examples from chapter 2 in

Alms, demonstrating its expressiveness and elegance.

In chapter 5, I describe a model of Alms and prove two propositions, one

about principal types and the other a syntactic type soundness theorem; this

work, along with some of chapter 3, previously appeared the 2011 Symposium

on Principles of Programming Languages (Tov and Pucella 2011b). Addi-

tional proofs for chapter 5 appear in appendix A. Chapter 6 describes the

implementation of Alms, focusing on type inference.

The next two chapters describe and formalize interactions of substructural

types with other language features. Chapter 7, which originally appeared

in the 2010 European Symposium on Programming (Tov and Pucella 2010),

shows how a programming language with affine types can safely interact

with a similar language that lacks affine types. Chapter 8, which originally

appeared in the 2011 Conference on Object-Oriented Programming, Systems,

4 CHAPTER 1. PRACTICAL SUBSTRUCTURAL TYPES

Languages and Applications (Tov and Pucella 2011a), explores the relationship

between substructural types and control effects, and proposes a type-and-effect

system to support their safe interaction. Additional proofs for these chapters

appear in appendices B and C, respectively.

In chapter 9, I compare Alms to related work and show how some of that

work influenced the design of Alms. Finally, I propose some future work and

conclude in chapter 10.

CHAPTER 2

Background: Stateful Type Systems

IN A STATEFUL type system, types reflect the dynamic state of resources and

can be used to regulate the usage of such resources. In a weak sense, this is

true of many type systems. For example, in OCaml (Leroy et al. 2011), the type

of a reference cell indicates the type of the value in the corresponding store

location, and the reference acts as a capability to read and write the location

at the proper type. OCaml’s state as reflected in its types is monotonic, in

that the set of operations permitted increases monotonically over time. This

chapter surveys type systems that are stateful in a stronger, non-monotonic

sense: Operations admitted by the type system at one point in a program may

be rejected at a later point.

In §2.1, I begin by introducing intuitionistic linear logic and several

related type systems, which form the basis for much of this chapter. While

these type systems are far from practical, I use them to demonstrate the

expressiveness of substructural types. The subsequent three sections introduce

type systems for managing specific kinds of stateful resources: objects with

simple protocols (§2.2), manually allocated memory (§2.3), and communication

channels with statically checked protocols (§2.4). In each section, I show how

linear logic or one of its variants from §2.1 can be used to express the specific

resource management discipline described in that section. The argument

for expressiveness continues in chapter 4, where I show that these resource

management disciplines are also expressible in Alms.

5

6 CHAPTER 2. STATEFUL TYPE SYSTEMS

2.1 Substructural Logics and λ Calculi

Substructural logics arise from removing structural rules such as weakening
and contraction from conventional logics:1

IL-WEAKENING

Γ` τ
Γ,σ` τ

IL-CONTRACTION

Γ,σ,σ` τ
Γ,σ` τ

.

Weakening means that if we can deduce a result from some premises, then

we can deduce the same result from the same premises along with additional,

unused premises. Contraction means that any result deducible from some

duplicated premise is also deducible from only one copy of the premise. (This

only makes sense if we consider premises as sequences or bags, rather than

mere sets.) By rejecting contraction, weakening, or both, we can understand

propositions as standing for resources, which are conserved, rather than as

arbitrarily duplicable or potentially irrelevant truths.

Girard (1987) noticed that an interesting thing happens when structural

rules are removed. Consider these two versions of a conjunction introduction

rule for intuitionistic logic:

IL-∧I
Γ`σ Γ` τ

Γ`σ∧τ

IL-∧I?

Γ`σ ∆` τ
Γ,∆`σ∧τ

.

In the presence of weakening and contraction, these rules are interderivable,

but in a substructural logic, conjunction splits into two different connectives,

the additive conjunction (&) and multiplicative conjunction (⊗) of linear logic:

ILL-&I
Γ`σ Γ` τ

Γ`σ&τ

ILL-⊗I
Γ`σ ∆` τ
Γ,∆`σ⊗τ

.

We can consider these linear connectives in light of the resource interpretation.

In the derivation of the additive conjunction Γ ` σ& τ, resources σ and τ

1I use natural deduction throughout this section because it makes the transition to
computational interpretations of the logics smoother. Similarly, metasyntactic variables are
chosen with an eye toward type systems.

2.1. SUBSTRUCTURAL LOGICS AND λ CALCULI 7

are constructed from the same resources Γ; whereas, in the multiplicative

conjunction Γ,∆ ` σ⊗ τ, resources σ and τ are constructed from separate

resources Γ and ∆. Elimination rules for both conjunctions appear along with

the term assignment in figure 2.1.

Intuitionistic linear logic. In Girard’s linear logic, several more connec-

tives arise naturally from prohibiting weakening and contraction. For example,

the usual disjunction (∨) splits into additive (⊕) and multiplicative (

&

) disjunc-

tions. Additive disjunction admits a simple resource interpretation: σ⊕τ is

either resource σ or resource τ, as chosen by its two potential introduction

rules. Multiplicative disjunction is harder to understand. While several

computational interpretations involving concurrency and control have been

proposed (Abramsky 1993; Mazurak and Zdancewic 2010), in this treatment I

follow Bierman’s (1993) development of intuitionistic linear logic (henceforth

ILL), which omits

&

.

Instead of multiplicative disjunction, ILL includes as primitive the (multi-

plicative) linear implication ((), which is a derived connective in Girard. It too

has a simple resource interpretation: The linear implication σ(τ, from which

linear logic gets its name, represents the ability to transform resource σ into

resource τ without duplicating σ. ILL also includes three nullary connectives,

which are units for the binary connectives: > for additive conjunction (&), 0
for additive disjunction (⊕), and 1 for multiplicative conjunction (⊗).

The exponential. While the logic that results from rejecting weakening and

contraction gives fine-grained control over resources, its inability to contend

with durable “truth” renders it unacceptably weak. Girard (1987) remedies

this problem by reintroducing weakening and contraction under controlled

conditions, using the new exponential connectives ? and ! (only the latter of

which appears in ILL). In the resource interpretation, !σ represents the ability

to produce zero, one, or more copies of resource σ. Such resources, which I will

8 CHAPTER 2. STATEFUL TYPE SYSTEMS

call unlimited, admit weakening and contraction:2

ILL-WEAKENING

Γ` τ
Γ, !σ` τ

ILL-CONTRACTION

Γ, !σ, !σ` τ
Γ, !σ` τ

.

Girard shows that the addition of exponentials makes it possible to embed

intuitionistic logic in linear logic, in particular by factoring the usual intu-

itionistic implication into linear implication and an exponential that allows

dropping or duplicating the antecedent:

σ→ τ !σ(τ.

Exponential introduction and elimination are of particular concern in

this dissertation, as dealing with them cleanly is necessary for a practical

substructural programming language. The rules are

ILL-PROMOTION

!Γ` τ
!Γ` !τ

ILL-DERELICTION

Γ` !τ

Γ` τ
,

where !Γ stands for a context !σ1, . . . , !σk containing only unlimited resources.

We can understand promotion to mean that if a resource is derivable from only

unlimited resources, then that resource is also unlimited.3 Dereliction means

that, given some unlimited resource !τ, we may “forget” that it is unlimited

and obtain one copy of τ.
2Bierman (1993) uses more complicated versions of the weakening and contraction rules

for his natural deduction formulation:

ILL-WEAKENING?

Γ` !σ ∆` τ
Γ,∆` τ

ILL-CONTRACTION?

Γ` !σ ∆, !σ, !σ` τ
Γ,∆` τ .

I use his sequent calculus versions of the same rules, which are easily interderivable with
these versions, because they smooth the transition to implicit weakening and contraction.

3 Bierman also uses a more complicated version of the promotion rule:

ILL-PROMOTION?

Γ1 ` !σ1 · · · Γk ` !σk !σ1, . . . , !σk ` τ
Γ1, . . . ,Γk ` τ .

This is necessary for his natural deduction formulation to be closed under substitution, but
when modeling a call-by-value language, we need to substitute only normal proofs, which
makes the simple version of the promotion rule given here sufficient.

2.1. SUBSTRUCTURAL LOGICS AND λ CALCULI 9

A term assignment. In order to consider ILL as a type system for a pro-

gramming language, we require a term assignment. A term assignment based

on Bierman’s (1993), which uses terms similar to a core functional language,

appears in figure 2.1.

2.1.1 Use Types and Standard Types

Wadler (1991) considers several changes to make ILL more suitable as a

programming language. First, he makes the exponential rules (promotion,

dereliction, contraction, and weakening) implicit rather than syntax-directed.

Going further, however, he observes that dereliction is similar to a subtyping

rule, whereby a term of type !σ may be used where a term of type σ is expected.

Thus, we may define a subtype relation for linear types that extends dereliction

through other type constructors:

!σ<:σ

σ′ <:σ τ<: τ′

σ(τ<:σ′(τ′
σ<:σ′ τ<: τ′

σ⊗τ<:σ′⊗τ′
.

Then add a subsumption rule for terms:

ILL-SUBSUME

Γ` e :σ σ<: τ

Γ` e : τ
.

It is straightforward to show that a derivation using subsumption can be

translated to a derivation without subsumption, using the lemma that if σ<: τ

then there exists a term e such that ` e :σ(τ.

Unfortunately, as Wadler points out, the resulting type system does not

enjoy principal type schemes. Consider, for example, term λx.λy. x y. It has

several types, including !(σ(τ)(!(σ(τ) and (σ(τ)((σ(τ). However,

the greatest lower bound of those two types under the proposed subtyping

order, (σ(τ)(!(σ(τ), is not a type of term λx.λy. x y, nor is it even a

theorem of ILL. Thus, the term does not have a principal type scheme in

ILL-with-subtyping.

10 CHAPTER 2. STATEFUL TYPE SYSTEMS

ρ,σ,τ ::= > | 0 | 1 | σ(τ | σ⊗τ | σ&τ | σ⊕τ | !σ propositions

x, y, z ∈ Var term variables

e, f , g ::= x | discard x in e | copy x as y, z in e | derelict e proof terms

| promote e | λx. e | e f | 〈e, f 〉 | let 〈x, y〉 = e in f | [e, f] | fst e | snd e

| inl e | inr e | case e of inl x → f ; inr y→ g | true | false e | 〈〉
| let 〈〉 = e in f

Γ` e : τ (intuitionistic linear logic)

ILL-IDENTITY

x:σ` x :σ

ILL-WEAKENING
Γ` e : τ

Γ, x:!σ` discard x in e : τ

ILL-CONTRACTION
Γ, y:!σ, z:!σ` e : τ

Γ, x:!σ` copy x as y, z in e : τ

ILL-DERELICTION
Γ` e : !σ

Γ` derelict e :σ

ILL-PROMOTION
!Γ` e :σ

!Γ` promote e : !σ

ILL-(I
Γ, x:σ` e : τ

Γ`λx. e :σ(τ

ILL-(E
Γ` e :σ(τ ∆` f :σ

Γ,∆` e f : τ

ILL-⊗I
Γ` e :σ ∆` f : τ

Γ,∆` 〈e, f 〉 :σ⊗τ

ILL-⊗E
Γ` e :σ⊗τ ∆, x:σ, y:τ` f : ρ

Γ,∆` let 〈x, y〉 = e in f : ρ

ILL-&I
Γ` e :σ Γ` f : τ

Γ` [e, f] :σ&τ

ILL-&E1

Γ` e :σ&τ

Γ` fst e :σ

ILL-&E2

Γ` e :σ&τ

Γ` snd e : τ

ILL-⊕E
Γ` e :σ⊕τ

∆, x:σ` f : ρ ∆, y:τ` g : ρ

Γ,∆` case e of inl x → f ; inr y→ g : ρ

ILL-⊕I1

Γ` e :σ

Γ` inl e :σ⊕τ

ILL-⊕I2

Γ` e : τ

Γ` inr e :σ⊕τ

ILL->I

Γ` true :>

ILL-0E
Γ` e : 0

Γ` false e : τ

ILL-1I

` 〈〉 : 1

ILL-1E
Γ` e : 1 ∆` f :σ

Γ,∆` let 〈〉 = e in f :σ

Figure 2.1: Term assignment for ILL

2.1. SUBSTRUCTURAL LOGICS AND λ CALCULI 11

Use types. Principal types can be recovered, Wadler suggests, if there is

some way to connect the presence or absence of the exponential on the domain

and codomain of the type. To achieve this, Wadler introduces use types, which

allow parametrizing over the presence of exponentials. A use is either a use
variable or a constant 0 or 1, and the exponential is annotated with a use:

µ,ν ∈ UVar use variables

i, j,k ::= µ | 0 | 1 uses

ρ,σ,τ ::= ·· · | !iτ use types

Then !1σ is like !σ in ILL, and !0σ is merely σ.

Type schemes now include a constraint, which is a set of inequalities on

uses, where 1≥ 0. Then λx.λy. x y has the principal type scheme

!i(τ(σ)(! j(τ(σ) [i ≥ j].

The two types given above for the term, as well as !(τ(σ)(τ(σ, are

instances of the scheme, while the incorrect type is not.

Standard types. Use types seem like a significant improvement over ILL,

since they allow polymorphism of linearity. As a simplification, Wadler

suggests that the syntax of use types be regularized as follows. Since the

exponential is idempotent, the ability to repeat exponentials can result in

more complicated types but does not increase expressiveness. Thus, Wadler

suggests building the exponential into the syntax of types in only certain

places:

ρ,σ,τ ::= !iτ(σ | !iτ⊗ ! jσ | !iτ⊕ ! jσ standard types

Wadler gives a type inference algorithm for standard types, asserts that it finds

principal type schemes, and suggests what a proof might look like. Standard

types are sound for linear types, in that if a term has a standard type, then

all linear type instances of that standard type are also types of the term.

Additionally, standard types are complete for linear types, in that if a term

has a linear type, then it has a standard type of which that linear type is an

instance.

12 CHAPTER 2. STATEFUL TYPE SYSTEMS

2.1.2 Steadfast Types, λURAL, and Uniqueness Types

A common misconception about linear types is that a value of linear type

cannot be aliased. A linear type system prevents aliasing of a value whose

type is linear, but it does not actually guarantee the uniqueness of values of

linear type, because of dereliction. In particular, the systems described in this

chapter so far allow an unlimited value, which may already be aliased, to be

derelicted to a linear type:

Γ` e : !σ

Γ` e :σ

Γ` e : !iσ i ≥ j

Γ` e : ! jσ
.

If we want better control of aliasing, rather than treating dereliction as

subtyping, we might do away with dereliction altogether.

Steadfast standard types. Wadler (1991) suggests a way forward with

steadfast (standard) types, in which the promotion and dereliction rules for

exponential introduction and elimination are removed. Instead, promotion

is rolled into the introduction rules for all type constructors, and dereliction

is likewise performed by each elimination rule. For example, here are the

introduction and elimination rules for the linear function type in Wadler’s

system of steadfast standard types:

SST-(I
C; !IΓ, x : !iσ` e : τ

C∧ I ≥ j; !IΓ`λx. e : ! j(!iσ(τ)

SST-(E
C; !IΓ` e : ! j(!iσ(τ) D; !J∆` f : !iσ

C∧D; !IΓ, !J∆` e f : τ
.

(I and J are sets of uses, where !IΓ is an environment whose range contains

types with uses I. C and D are constraints comprising use inequalities, where

I ≥ j means that i ≥ j for each i ∈ I.) Rule SST-(I includes promotion,

because it gives the resulting function type a use based on the uses in the

environment, which the promotion rule does for use types and ILL. Similarly,

rule SST-(E allows applying a function with any use on its type, which

means there is no need for a separate dereliction step.

Thus, with steadfast standard types, the use on a type is determined when

that type is introduced, never changes, and does not need to be removed by

2.1. SUBSTRUCTURAL LOGICS AND λ CALCULI 13

dereliction before that type is eliminated. This guarantees that a value of

linear type is not aliased, since it is now impossible to alias an unlimited value

and then derelict it to get an aliased, linear value. This strong non-aliasing

property of steadfast types means that when a heap-allocated value of linear

type is eliminated in a steadfast system, it is guaranteed that there are no

other pointers to the same heap value, which makes it safe to immediately

free or reuse the memory at the point of elimination.

λURAL. A small change to the type structure of steadfast standard types

yields Ahmed et al.’s (2005) λURAL, a polymorphic, substructural λ calculus

with even finer control of resource usage. In λURAL, uses are replaced by

substructural qualifiers, which determine which structural rules apply to a

given type. Qualifiers include type variables and four qualifier constants:

L, for linear, allows neither contraction nor weakening; A, for affine, allows

weakening but not contraction; R, for relevant, allows contraction but not

weakening; and U, for unlimited, allows both contraction and weakening. The

available structural rules naturally induce a subsumption lattice on qualifiers.

In λURAL, a type is composed of a qualifier, which specifies which structural

rules apply, and a pretype, which specifies the introduction and elimination

rules:

α,β,γ ∈ TVar type variables

ξ ::= α | U | R | A | L qualifiers

ρ,σ,τ ::= α | σ(τ | σ⊗τ | σ⊕τ | 1 pretypes

ρ,σ,τ ::= α | ξτ types

For example, consider type R(σ⊗τ). Its qualifier, R, indicates that contraction

but not weakening applies to variables of this type; its pretype, σ⊗τ, indicates

that terms of this type are introduced and eliminated as pairs.

Unlike use types and standard types, λURAL has neither subtyping nor

qualifier constraints on type schemes, which means that term λx.λy. x y has

all types of the form
ξ(ξ1(σ(τ)(ξ2(σ(τ))

14 CHAPTER 2. STATEFUL TYPE SYSTEMS

where ξ1 v ξ2. Such a constraint is not expressible as a λURAL type.

In chapter 8, I use λURAL to explore the interaction of substructural types

and control, so a full presentation of the system appears there.

Uniqueness types. Steadfast types and λURAL eliminate dereliction and

promotion altogether. Another possibility, if the goal is to track uniqueness, is

to reverse the direction of dereliction. That is, rather than !1σ<: !0σ, allow that

!0σ<: !1σ, where !0σ indicates a unique, unaliased value, and !1σ indicates a

value that is potentially aliased. Subsumption then amounts to forgetting the

uniqueness of a value. Uniqueness types guarantee that a value has not been

aliased, linear types guarantee that a value will not be aliased, and steadfast

types guarantee both.

This is the direction taken by the Clean programming language (Brus

et al. 1987). Uniqueness types are similar to λURAL types, but instead of use

qualifiers, types are composed of pretypes and uniqueness attributes:

α,β,γ ∈ TVar type variables

i, j,k ::= α | • | × uniqueness attributes

ρ,σ,τ ::= α | σ→ τ | 1 pretypes

ρ,σ,τ ::= α | iτ types

Uniqueness attribute • indicates a unique value and × a potentially shared

value. In the partial order of uniqueness attributes, unique is bottom and

shared is top:

• ≤ i i ≤×

In Clean, weakening applies to all types, but contraction applies only to

non-unique types. However, (first order) unique values may be duplicated by

forgetting their uniqueness, which is permitted by Clean’s subtyping relation:

i ≤ j σ is not a function pretype
iσ<: jσ

.

In addition to subtyping, Clean types involve uniqueness constraints analogous

to the use constraints found in Wadler’s standard types.

2.1. SUBSTRUCTURAL LOGICS AND λ CALCULI 15

One complication of Clean is that uniqueness subtyping does not apply

to function types. The uniqueness attribute of a function is determined in a

similar manner to the promotion rules of previous systems in this chapter:

A function type gets attribute • if any of the values in its closure are unique.

To guarantee that the uniqueness of those attributes is accurate, the system

must ensure that a unique function is applied at most once. In Clean parlance,

such a value is necessarily unique, which means essentially the same thing as

affine.

A simplification. De Vries et al. (2007) propose a new treatment of unique-

ness types that eliminates the need for constraints and subtyping. To get rid of

the need for uniqueness constraints, they first extend the syntax of uniqueness

attributes to a Boolean algebra:

i, j,k ::= α | • | × | ¬i | i∧ j | i∨ j equality-based uniqueness attrs.

Then any inequality constraint on uniqueness attributes may be solved, by

Boolean unification, to yield a substitution that gives the same type scheme

without the constraint. For example, given a constrained type scheme of the

form

. . . iσ . . . jτ . . . [i ≤ j],

the most-general Boolean unifier is {i 7→ i, j 7→ i∨k}. Substituting, we get the

equivalent, constraint-free type scheme

. . . iσ . . . i∨kτ

Instead of subtyping, de Vries et al. (2007) use slack variables according

to the polarity of types, as follows. Where • (unique, the bottom uniqueness

attribute) appears in a covariant position, it is replaced with a type variable;

similarly, a type variable replaces × (shared, the top uniqueness attribute)

in contravariant positions. If the types of library functions have slack vari-

ables that correctly reflect their polymorphism over uniqueness, then useful

polymorphic types are inferred for user functions as well.

A similar technique could be used to replace use variable constraints in

Wadler’s systems of use types and standard types.

16 CHAPTER 2. STATEFUL TYPE SYSTEMS

2.2 Typestate

As a first special-purpose, stateful type system, we consider typestate. The

original concept of typestate predates the substructural logics and type systems

of the previous section. Thus, while the original theory does not rely on

substructural types, we will see that typestate is a straightforward application

of substructural types.

Strom and Yemini (1986) introduce typestate as a way to track the states

of resources, to determine which operations on those resources are valid at

a given program point. In this section, I discuss a more recent approach

to typestate embodied by the safe, low-level programming language Vault

(DeLine and Fähndrich 2001).

In Vault, values may be associated with compile-time keys, which track

value ownership and state. The type checker maintains a held key set at each

program point, ensuring that keys are neither duplicated nor dropped. (That

is, keys are linear.) The key for a particular tracked value must be in the held

key set at any program point where the associated value is accessed. DeLine

and Fähndrich give the simple example of allocating a tracked object p with a

new key named P:

tracked(P) point p = new tracked point { x = 3; y = 4; };

After such a declaration, P is in the held key set, which permits access to p.

A function that operates on a tracked value is annotated with a specification

for how it treats the associated key. For example, consider a function that

computes some property of a point:

double norm(tracked(K) point p) [K];

Function norm takes any point p tracked by some key K. The annotation [K]

indicates that key K must be held when norm is called and continues to be

held after norm returns. Annotations can also indicate that a function adds to

or removes from the held key set. Attempting to access a tracked value when

its key is not in the held key set is a type error. For example, norm(p) is a type

error here because delete has already removed P from the held key set:

2.2. TYPESTATE 17

raw named listening ready

closed

socket() bind() listen()
⊗

accept() recv(), send()

connect()

close()
close() close()

close() server

client

both

Figure 2.2: States and transitions for TCP (simplified)

delete p;
f = norm(p);

2.2.1 Key States

Keys alone track ownership, but Vault adds to this the ability to associate with

each key a state token, which reflects the state of the tracked value. As an

example, DeLine and Fähndrich show a Vault interface for Berkeley sockets,

the standard C language interface to network communication (Stevens 1990).

Transmission Control Protocol (TCP), which provides reliable byte streams, is

the standard transport layer protocol used by most internet applications (e.g.,
SMTP, HTTP, and SSH). Setting up a TCP session using Berkeley sockets is a

multi-step process (figure 2.2).

A network client must first create a communication end-point, called a

socket, via the socket() system call. It may optionally select a port to use with

bind(), and then it establishes a connection with connect(). Once a connection

is established, the client may send() and recv() until either the client or the

other side closes the connection.

For a server, the process is more involved: It begins with socket() and bind()

as the client does, and then it calls listen() to allow connection requests to

18 CHAPTER 2. STATEFUL TYPE SYSTEMS

interface SOCKET {
type sock;

variant domain [‘UNIX | ‘INET];
variant comm_style [‘STREAM | ‘DGRAM];
tracked(@raw) sock socket(domain, comm_style, int);

struct sockaddr { . . . };
void bind(tracked(S) sock, sockaddr) [S@raw→named];
void listen(tracked(S) sock, int) [S@named→listening];
tracked(N) sock accept(tracked(S) sock) [S@listening, new N@ready];

void recv(tracked(S) sock, byte[]) [S@ready];
void close(tracked(S) sock) [−S];

}

Figure 2.3: Vault interface to TCP (server only)

begin queuing. The server calls accept() to accept a connection request. When

accept() succeeds, it returns a new socket that is connected to a client, and the

old, listening socket is available for further accept() calls. (For simplicity, I

omit error transitions for now, but I discuss errors in §2.2.2.)

DeLine and Fähndrich’s Vault interface for setting up a server-side TCP

socket (2001, p. 4) appears in figure 2.3. The interface uses the same state

names as the diagram in figure 2.2, and the same transition names, except that

it omits send and connect. Function socket returns a new socket tracked by a

key in the raw state, indicated by the return type tracked(@raw) sock. (The

prototype for socket avoids naming the key, since the type of socket only needs

to mention the key or its state once.) Function bind takes a socket tracked

by some key S which must be in the raw state, and transitions the key to the

named state; similarly, listen transitions from state named to state listening.

Function accept takes a socket tracked by some key S in state listening, and

leaves socket S in that same state, but it also returns a new socket tracked by

a new key N in state ready. Function recv requires a socket in state ready and

leaves it in that state. Finally, close takes a socket whose key S is in any state

and removes S from the held key set, which prohibits further operations on

2.2. TYPESTATE 19

the corresponding socket.

2.2.2 Dynamic and Disjunctive Typestate

The Vault interface presented in the previous section relies on simplifying the

state machine to obtain a property that does not necessarily hold in real-world

APIs: a given transition can start in only one state or in any state (as close
does), rather than a select subset of states; a transition always ends in one

defined final state. This simplified notion of state machine cannot deal with

two features of the actual Berkeley sockets TCP interface:

• When setting up a client, connect requires as a precondition either state

raw or named; that is, the precondition is disjunctive.

• Each operation may fail, leaving the socket in the same state that it

was in before attempted state transition; that is, the postcondition is

disjunctive.

Vault provides a way to represent disjunctive typestates using algebraic

data types, which allow dynamic management of keys and key states. For

example, to add the connect operation, we can declare an algebraic data type

with two constructors, one for each potential state in the precondition of

connect:

variant connectable<key S> [‘Raw {S@raw} | ‘Named {S@named}];

Constructing an instance of the variant requires a held key in the given state,

and removes that key from the held key set; variants are destroyed by pattern

matching, which reintroduces the key and its state into the held key set. Then

connect can have the following prototype:

void connect(tracked(S) sock, string, int, tracked(C) connectable<S>)
[−C, +S@ready];

That is, connect takes a socket tracked by key S, but does not require any

precondition on S in its effect annotation. Instead, it requires a value of type

20 CHAPTER 2. STATEFUL TYPE SYSTEMS

tracked(C) connectable<S>, which is a dynamic witness that S is in either the

raw or named state. Furthermore, the connectable variant is itself tracked by

key C to ensure that the dynamic witness is not duplicated. The typestate

effect of connect is to remove C from the held key set, since the variant no

longer accurately reflects the state of the socket, and to add key S at state

ready back to the held key set.

Similarly, algebraic data types can be used to encode failure by having

operations that can fail return a variant, which must then be pattern matched

to check for failure. As an example, DeLine and Fähndrich give a prototype

for a version of bind that can fail:

variant status<key K> [‘Ok {K@named} | ‘Error(error_code) {K@raw}];
tracked status<S> bind(tracked(S) sock, sockaddr) [−S@raw];

Now bind takes a socket in state raw and removes its key from the held key set,

and returns a status value. If the operation succeeds, then pattern matching

the status value returns the key to the held key set at state named. If the

operation fails, then pattern matching the status value yields an error code

and restores the key at state raw.

2.2.3 Typestate in Linear Types

Typestate may be encoded easily using linear types, provided some mechanism

for associating keys—which become ordinary values—with the values that

they track.

Using dependent types. One way to tie values to their states is with

dependent types, where a tracked state then appears as a predicate on values.

For example, figure 2.4 contains the sockets API from figure 2.2, recast in a

hypothetical linear, dependent type theory. In the example, sock and state are

types, where the former represents a socket at run time and the latter has

values standing for each possible socket state. Witnesses that a socket is in a

particular state are made with binary type constructor ·@ ·, where a value of

type s@st is evidence that socket s is in state st.

2.2. TYPESTATE 21

sock : TYPE

state : TYPE where raw, named, listening, ready : state
·@ · : sock !−→ state !−→ TYPE

socket : domain !−→ comm_style !−→ int !−→Σ(s : !sock).s@raw
bind : Π(s : !sock).sockaddr !−→ s@raw !−−◦ s@named
listen : Π(s : !sock). int !−→ s@named !−−◦ s@listening
accept : Π(s : !sock).s@listening !−−◦ (Σ(t : !sock). t@ready)⊗s@listening

recv : Π(s : !sock). int !−→ s@ready !−−◦ string⊗s@ready
close : Π(s : !sock) (st : !state).s@st !−−◦ 1

(Sugar: σ !−−◦ τ, !(σ(τ) and σ !−→ τ, !σ !−−◦ τ)

Figure 2.4: Sockets API in a dependent ILL

Unlike in Vault, where keys and states are threaded implicitly by the type

checker, these evidence tokens are threaded explicitly by a program, so each

operation takes a witness to its precondition as an argument and returns a

witness to its postcondition. For example, consider the (desugared) type of

listen:

Π(s : !sock). !(!int(!(s@named(s@listening)).

This means that listen takes an unlimited socket, named s, an unlimited

integer (the port for listening), and linear evidence that socket s is in state

named. It returns evidence that socket s is in state listening.

A socket’s state changes non-monotonically. An operation such as listen,

which applies at some point in time, will not apply at a later point in time

when the socket is no longer in the same state. For the state to evolve safely,

the API must be able to revoke each old state witness when the client performs

an operation that changes the state. Essential to making this encoding of

typestate work is that there is always exactly one state witness for each socket

value. Linear types alone do not guarantee this property, but linear types

do guarantee that the client of the API cannot alias the witness tracking a

socket’s state. The other necessary condition is that each of the operations

maintains the invariant of one witness per socket, which they clearly do.

22 CHAPTER 2. STATEFUL TYPE SYSTEMS

Using phantom types. Dependent types are not the only way to associate

run-time values with their states. Another way is to add a phantom parameter

to both the type of the run-time value and the state witness type, and to use

parametric polymorphism to generate a fresh abstract type to tie the two

together. This approach, rendered in λURAL, appears in figure 2.5.

In this version of the sockets API, the type of sockets (sock) takes a type

parameter, which will be used to identify it. The witness pretype constructor

(·@ ·) takes a matching type to tie it to the socket and a pretype indicating

the state. For example, given a socket of unlimited type U(sock α), a linear

witness value of type L(α@ready) is evidence that the socket is in the ready
state. Function socket returns an existential package of type

L∃α:TYPE. L(U(sock α) ⊗ L(α@raw)).

The existential quantifier ensures that type α matches no other type in the

program. This effectively ties the socket to its state, because the type tag of

the witness for one socket will never match the tag of a different socket.

Other than the mechanism for tying a socket to its state, the λURAL version

of the API in figure 2.5 follows the dependently-typed version of figure 2.4 very

closely.

2.3 Region-Based Memory Management

As a second example of a special-purpose, stateful type system, we consider

region-based memory management.

2.3.1 Nested Regions

Memory regions are a technique to allow safe, flexible memory management

without requiring a tracing garbage collector. Tofte and Talpin (1997) introduce

stack-like regions as a generalization of the stack allocation regime common to

block-structured programming languages. Under stack allocation, the lifetimes

of objects are known because they correspond to activation records or other

lexical structures in a program. This can be efficient, but it is limiting because

2.3. REGION-BASED MEMORY MANAGEMENT 23

sock : TYPE ⇒ PRETYPE

raw, named, listening, ready : PRETYPE

·@ · : TYPE ⇒ PRETYPE ⇒ PRETYPE

socket : domain U−→ comm_style U−→ int U−→
L∃α:TYPE. L(U(sock α) ⊗ L(α@raw))

bind : U∀α:TYPE. sock α U−→ sockaddr U−→ L(α@raw) U−−◦ L(α@named)
listen : U∀α:TYPE. sock α U−→ int U−→ L(α@named) U−−◦ L(α@listening)
accept : U∀α:TYPE. sock α U−→ L(α@listening) U−−◦

L(L(∃β:TYPE. L(U(sock β) ⊗ L(β@ready))) ⊗ L(α@listening))

recv : U∀α:TYPE. sock α U−→ L(α@ready) U−−◦ L(L(α@ready) ⊗ Ustring)
close : U∀α:TYPE. U∀β:PRETYPE. sock α U−→ L(α@β) U−−◦ U1

(Sugar: σ ξ−−◦ τ, ξ(σ(τ) and σ ξ−→ τ, Uσ
ξ−−◦ τ)

Figure 2.5: Sockets API in λURAL

an object allocated in a particular stack frame becomes inaccessible once that

frame is removed from the stack.

Tofte and Talpin propose regions as a way to allow more flexible object

lifetimes, without giving up memory safety or adding tracing garbage collection.

In their formulation, a region is a subspace of the heap in which objects may be

allocated, like a stack frame, and region lifetimes are nested like stack frames.

However, objects are not always allocated in the top-most enclosing region, but

rather in the top-most (and thus shortest-lived) region whose lifetime contains

the necessary lifetime of the object. Tofte and Talpin give a type-and-effect

system for nested regions and an algorithm for annotating any typeable ML

program with two kinds of region operations:

• letregion ρ in e end allocates a new, lexically-scoped region, binding the

region variable ρ to it, and evaluates expression e in its context.

• e at ρ allocates the value of expression e in the region named by ρ.

They prove that the annotation algorithm, under a suitable dynamic semantics

for regions, preserves the meaning of the original ML program.

24 CHAPTER 2. STATEFUL TYPE SYSTEMS

Tofte and Talpin’s (1997) region system is implemented in the ML Kit

(Birkedal et al. 1993) compiler for Standard ML (Milner et al. 1997). Tofte and

Talpin found that programs ported from Standard ML of New Jersey (Appel

and MacQueen 1991) to the ML Kit often ran slower and used more memory

than before. With some profiler-guided refactoring, however, their benchmarks

could be made to use less memory than under SML/NJ.

2.3.2 Calculus of Capabilities

Walker et al. (2000) introduce capability-based regions as a more flexible

alternative to the nested regions of Tofte and Talpin. They observe that nested

regions are efficient provided that object lifetimes mostly follow the lexical

structure of a program, but that for other programs, nested regions may result

in holding onto memory long after it is actually needed. Seemingly benign

changes in program structure can have radical effects on a program’s memory

usage. Some program transformations have especially bad consequences; for

example, transforming a program to continuation-passing style results in

delaying all deallocation until the end of the program. To fix the fragility of

nested region inference, Walker et al. propose a calculus of capabilities, CL,

which no longer relies on lexical nesting to manage region lifetimes.

Unlike Tofte and Talpin, Walker et al. wish to support safe, explicit memory

management. (Explicit memory management is possible in Tofte and Talpin’s

internal, annotated language, but not in their ML-like source language.) For

low-level applications where tracing garbage collection is inappropriate or

unavailable, such as when implementing a garbage collector, manual control

over memory allocation and deallocation is necessary. Capability-based regions

provide a way to gain that control without giving up memory safety.

In CL, the lexical letregion form is split into two separate operations,

newrgn for region allocation and freergn for region deallocation. Furthermore,

the representation of regions is split into run-time region handles, which are

ordinary values, and their corresponding compile-time region capabilities,

which are threaded through a program similarly to how Vault’s type system

2.3. REGION-BASED MEMORY MANAGEMENT 25

threads keys.4 Allocating in or freeing a region requires both the run-time

handle value and the compile-time capability to that region. Accessing values

allocated in a region does not require the run-time handle, but does require

that the region’s capability be held, which ensures that no value is accessed

after its region and associated capability have been released.

Walker et al. want to support manual deletion of regions (which deallocates

all of a region’s contents), but they also want maximal flexibility when using

regions. As an example of the desired flexibility, they discuss the problem

of a function that takes two heap-allocated values that may be (but are not

necessarily) in different regions. The function needs to take a capability to

access the regions, and to return the capability so that the rest of the program

can continue to access the region. They point out that linear regions will not

work for this example, because if the two values happen to be in the same

region then the region capability must become aliased to pass it for each value.

Walker et al. solve the problem in CL as follows. First, they observe that

allocating in a region or accessing pointers to a region requires only that the

region be live, not that the reference to the region be unaliased at that point.

However, deleting a region requires a unique capability, to ensure that after

the region is deleted no other capabilities to it exist. To express this distinction,

Walker et al. distinguish unique region capabilities •capρ from shared region

capabilities ×capρ.5 CL has a capability subtyping relation that, among other

things, allows a unique capability to become shared (as in uniqueness types)

and allows duplication of shared capabilities:

•capρ ≤ ×capρ ×capρ ≤ ×capρ⊗×capρ

Region deletion then requires a unique capability, but all other region opera-

tions work with either a unique or shared capability.

Capability subtyping alone is insufficient to solve the example problem.

On the one hand, if the function takes (and returns to its continuation) shared

4This is no coincidence; Vault’s type system is based on Walker et al.’s capability calculus.
5This is not precisely CL’s syntax for capabilities, but instead follows the treatment of

uniqueness types in §2.1.2.

26 CHAPTER 2. STATEFUL TYPE SYSTEMS

capabilities to the regions,

∀α1:RGN,α2:RGN. (×capα1 ⊗×capα2, . . . , (×capα1 ⊗×capα2, . . .)→ 0)→ 0,

then the regions can never be freed, since the unique capabilities to the regions

cannot be recovered. On the other hand, if the function takes (and returns)

unique capabilities to the regions,

∀α1:RGN,α2:RGN. (•capα1 ⊗ •capα2, . . . , (•capα1 ⊗ •capα2, . . .)→ 0)→ 0,

then the two regions cannot be the same, since unique capabilities cannot be

aliased. Instead, Walker et al. use CL’s bounded quantification to get this type:

∀α1:RGN,α2:RGN.∀β≤ ×capα1 ⊗×capα2. (β, . . . , (β, . . .)→ 0)→ 0.

That is, the function takes (and returns) a capability that subsumes shared

capabilities to access the two regions. If the two regions are distinct, then

the capability to access both of them clearly subsumes the capability granting

shared access to both of them, and thus the function may be called; if there is

only one region, then subsumption allows sharing and duplicating the region,

so the function may be called with the single region capability. In either case,

the continuation gets the original capability back.

2.3.3 Regions in Vault

Walker et al.’s (2000) region capabilities provide very flexible, safe, manual

control over memory management, but the essentials of substructural regions

are realizable in other systems as well. For example, DeLine and Fähndrich

give an interface for regions in Vault, which appears in figure 2.6. In the Vault

interface, function create allocates a new region, tracked by a new key R, and

function delete destroys a region and its key.

An example using Vault regions, also from DeLine and Fähndrich (2001),

appears in figure 2.7. The first line allocates a new region, rgn, tracked by new

key R. To allocate values in a region and use those values, Vault allows the

new operator to be parametrized by the region in which to allocate the value.

The second line allocates a new point object in region rgn. The new value has

2.3. REGION-BASED MEMORY MANAGEMENT 27

module Region : {
type region;
tracked(R) region create() [new R];
void delete(tracked(R) region) [−R];

}

Figure 2.6: Vault region API

tracked(R) region rgn = Region.create();
R:point pt = new(rgn) point { x = 1; y = 2; };
pt.x++;
Region.delete(rgn);

Figure 2.7: Vault region client example

newrgn : U(L1(L∃α.L(Lcapα⊗Uhndα))
freergn : U∀α.U(L(Lcapα⊗Uhndα)(L1)

new : U∀α.U∀γ.U(L(Lcapα⊗Uhndα⊗Uγ)(L(Lcapα⊗U(refαUγ)))
read : U∀α.U∀γ.U(L(Lcapα⊗U(refαUγ))(L(Lcapα⊗Uγ))
write : U∀α.U∀γ.U(L(Lcapα⊗U(refαUγ)⊗Uγ)(L(Lcapα⊗U1))

Figure 2.8: λrgnUL region API

the guarded type R:point, which means that key R must be in the held key set

to access the point. The third line mutates a field in the new point, and the

fourth line deletes the region, thereby removing key R from the held key set.

Any attempt to access point pt after deleting the region would be a type error.

2.3.4 Linear Regions

Unsurprisingly, a linear type system is sufficient to support regions. Fluet

et al. (2006) describe λrgnUL, a derivative of λURAL with linear regions. The

λrgnUL interface to regions appears in figure 2.8.

28 CHAPTER 2. STATEFUL TYPE SYSTEMS

The style is similar to the λURAL rendering of typestate in figure 2.5, in

that both static capabilities and dynamic region handles are represented

as ordinary values that share an existentially quantified type parameter.

Type Lcapα is a static capability to access a region identified by type tag α, and

type Uhndα is a run-time region handle to the same region. Type U(refαUγ) is

a reference to an unlimited value of type Uγ allocated in region α.

Functions newrgn and freergn correspond to Vault functions Region.create
and Region.delete of figure 2.6. Function newrgn returns a pair of a region

capability (which corresponds to the key in Vault) and a region handle (which

corresponds to the actual region value); these are tied together with a shared,

existentially quantified type variable. Function freergn takes a linear region

capability and matching region handle, and consumes the linear capability,

thereby revoking access to the region.

Functions new, read, and write allocate and access references in a region.

(Because this interface supports only unlimited references, there is no opera-

tion to free an individual reference, but of course references are deallocated

when their region is freed.) All three operations take a linear region capability,

which witnesses that the region is still live, and returns the same capability to

allow further operations on the region. Allocating a new reference requires

both the capability and the unlimited region handle, which contains the actual

run-time information necessary to allocate a reference in a region. As in

previous versions of regions in this section, reading and writing a reference

requires the region capability, again to witness liveness, and the reference

value, but does not require the region handle.

Linear and affine references, which support strong updates, as well as

references to non-unlimited data, are available in rgnURAL, another extension

to λURAL (Fluet 2007).

2.4 Session Types

As a final instance of a stateful type system, I consider session types, a

technique for checking communication protocols in the context of message-

passing concurrency. As a simple example, Honda et al. (1998) consider a

2.4. SESSION TYPES 29

protocol that an automatic teller machine (ATM) might use to communicate

with a bank. This protocol, from the perspective of the ATM, begins with a

three-way branch from which the ATM may choose to make a balance inquiry,

a deposit, or a withdrawal. Following that choice, there is a different protocol

for each kind of transaction:

deposit The ATM sends the bank the amount to deposit as an integer, the

bank responds with a transaction number (an integer), and the session

ends.

balance The bank sends the ATM the account balance as an integer, and the

session ends.

withdraw The ATM sends the bank the amount to withdraw. The bank then

can select from a two-way branch:

success The withdrawal has succeeded. The bank sends a transaction

number and the session ends.

failure The withdrawal has failed. The bank sends the reason for failure

as a string and the session ends.

A state diagram summarizing the ATM protocol appears in figure 2.9.

Notation in the diagram is as follows. Each branch node is labeled by one of

two symbols:
⊕

indicates an internal choice, which means that the ATM selects

which branch to take and the bank must follow; or & indicates an external

choice, which means that the ATM must be prepared to follow whichever

branch the bank selects. (The similarity of these symbols to connectives of

linear logic is no coincidence.) Edges following a branch have labels (e.g.,
deposit), which name the branches. Other edges are labeled either ↑τ for some

type τ, meaning that the ATM sends a value of type τ, or ↓τ, meaning that the

ATM receives a value of type τ.

Such a protocol can be implemented in a typed, message passing language

such as Concurrent ML (Reppy 1999, henceforth CML), but the types in such

a language will do little or nothing to enforce the protocol. In CML, threads

communicate over bidirectional channels of type τ chan, where τ is the type of

30 CHAPTER 2. STATEFUL TYPE SYSTEMS

⊕
&

deposit ↑int ↓int

balance ↓int

withdraw ↑int
success ↓int

failure ↓string

Figure 2.9: State diagram for ATM–bank protocol

messages that can be sent over the channel. For the ATM protocol, messages

need to include the client’s choice of transaction type, integers, the server’s

withdrawal response, and strings. One way to encode the messages for the

protocol appears in figure 2.10, and a client that uses the protocol to retrieve

an account balance appears in figure 2.11. The communication channel has

type atm_message chan, which means that upon receiving a message from the

server, the client needs to pattern match to extract the expected message type.

This leaves room for two kinds of protocol errors: a thread can send (or expect

to receive) the wrong kind of message at some point, or a thread can attempt

to receive (or send) when the protocol requires it to send (or receive).

2.4.1 Session Types

In order to enforce statically that message-passing communication proceeds

according to consistent protocols, Honda et al. (1998) introduce the notion

of session types. A session type describes a protocol as a regular expression,

using the following syntax:6

χ ∈ SVar session variables

l ∈ Lab labels

S,T ::= ↑τ;S | ↓τ;S | ↑T;S | ↓T;S | µχ.S | χ | end session types

| ⊕〈
l1 : S1 ‖ · · · ‖ lk : Sk

〉 | &〈
l1 : S1 ‖ · · · ‖ lk : Sk

〉
6I underline type constructors ⊕ and & to distinguish these session type constructors from

the usual connectives of linear logic. Similarly, I use ↑ and ↓ for sending and receiving, rather
than the usual ! and ?, to avoid confusion.

2.4. SESSION TYPES 31

datatype atm_message = Deposit of int
| TransId of int
| GetBalance
| Balance of int
| Withdraw of int
| Failure of string

Figure 2.10: Message type for ATM protocol in CML

fun getBalance (chan : atm_message chan) : int =
(send (chan, GetBalance);
case recv chan of

Balance x → x
| _ → raise ProtocolError)

Figure 2.11: ATM client code for getting the balance in CML

We assume denumerable sets of session variables χ and labels l. Type ↑τ;S
(resp. ↓τ;S) represents a protocol in which the next step is to send (resp.

receive) a value of type τ, followed by protocol S. Session delegation is given by

types ↑T;S and ↓T;S—rather than sending and receiving values, they allow a

thread to send or receive a session over a channel. Recursive sessions, which

represent protocols with cycles, are written using µχ.S and χ in the style

of equirecursive types. Type end represents the completed session. Finally,

type
⊕〈

l1 : S1 ‖ · · · ‖ lk : Sk
〉

is a k-way internal choice, in which the thread

must select some label l i (1≤ i ≤ k), followed by performing protocol Si; dually,

&
〈

l1 : S1 ‖ · · · ‖ lk : Sk
〉

is a k-way external choice, whereby a thread must be

prepared to follow whichever label is chosen by the other thread in the session.

Using session types, the ATM protocol may be written as

atm_prot = ⊕〈
deposit : ↑int;↓int;end ‖
balance : ↓int;end ‖
withdraw: ↑int;&〈

success : ↓int;end ‖ failure : ↓string;end
〉〉

.

32 CHAPTER 2. STATEFUL TYPE SYSTEMS

↑τ;S = ↓τ;S ↓τ;S = ↑τ;S ↑T;S = ↓T;S ↓T;S = ↑T;S

χ= χ µχ.S =µχ.S end= end⊕〈
l1 : S1 ‖ · · · ‖ lk : Sk

〉=&
〈

l1 : S1 ‖ · · · ‖ lk : Sk
〉

&
〈

l1 : S1 ‖ · · · ‖ lk : Sk
〉=⊕〈

l1 : S1 ‖ · · · ‖ lk : Sk
〉

Figure 2.12: Session type duality

Session type duality. For a session to run smoothly, the two communicating

threads must speak not the same protocol, but dual protocols. Session type

duality is defined in figure 2.12. Duality exchanges sending with receiving and

external choice with internal choice. Note that duality is an involution.

In order to initiate sessions with two threads speaking dual protocols,

session types languages often include rendezvous values of type [S], where S
is a session type, along with operations request and accept. These operations

each take a rendezvous value of type [S], but they return different types:

request returns a channel for the client-side protocol S, and accept returns a

channel for the server-side protocol S. Either operation blocks until it can

be paired with the complementary operation on the same rendezvous value,

which guarantees that the new channel will be typed at S on one side and

S on the other side. The details of how this works, however, depend on the

particular language.

Functional session types. Session types were originally developed in the

context of the π calculus, but here I follow Vasconcelos et al.’s (2004) version

of session types in a λ-calculus setting. Assume a denumerable set (CVar) of

channel names (c); then a session environment (Σ) associates channel names

with sessions, tracking the protocol state of each channel. Types include

chan c, which is the run-time value for channel c; function types of the form

(Σ,σ) → (Σ′,τ), where σ and τ are the domain and codomain of the function,

and Σ and Σ′ are a precondition and postcondition giving the state of the

channels used by the function; and [S], which is the type of rendezvous values

as described above.

2.4. SESSION TYPES 33

c,d ∈ CVar channel names

Σ ::= c1 : S1, . . . , ck : Sk session environments

ρ,σ,τ ::= ·· · | chan c | (Σ,σ)→ (Σ′,τ) | [S] types

One way to understand this system of session types is by analogy to

typestate in Vault. Channel names c function like Vault keys, where a value

of type chan c is tracked by key c. A channel environment Σ is like the held

key set, threaded linearly through the program. Thus, channels are unlimited,

and may be shared, but may only be used according to the session recorded in

the current channel environment.

Vasconcelos et al. (2004) provide operations for creating rendezvous values,

requesting and accepting sessions, sending, receiving, selecting on internal

choices, dispatching on external choices, and closing sessions. For example,

expression send v on v′ sends value v on channel v′. The expression is typed

using one of two rules, depending on whether v is a non-channel or channel

value:

Γ` v : τ ¬(∃d)τ= chan d Γ` v′ : chan c

Γ`Σ, c : ↑τ;SBsend v on v′ : 1CΣ, c : S

Γ` v : chan d Γ` v′ : chan c

Γ`Σ, c : ↑T;S,d : TBsend v on v′ : 1CΣ, c : S
.

(The expression typing judgment has the form Γ ` ΣB e : τCΣ′, where Σ

and Σ′ are the precondition and postcondition for e, respectively.) The first

rule is for sending a non-channel value of type τ. It requires that value v′

have type chan c for some channel name c, where the session of c in the

precondition says to send τ, followed by some session S; then the postcondition

has channel c at session S. The second rule is for when the value to send is

some channel d. It requires that the precondition has d at session T, and that

the channel on which to send, c, has the protocol to send session T followed by

some protocol S. Then the postcondition has channel c at session S, and no

longer mentions channel d, since d is delegated to another thread.

34 CHAPTER 2. STATEFUL TYPE SYSTEMS

λ(c : atm_prot; chan : chan c).
select balance on chan;
let result = receive chan in
close chan;
result

Figure 2.13: ATM client code in Vasconcelos et al.’s (2004) language

↑· ; · : TYPE ⇒ SESSION ⇒ SESSION

↓· ; · : TYPE ⇒ SESSION ⇒ SESSION

·& · : SESSION ⇒ SESSION ⇒ SESSION

· ⊕ · : SESSION ⇒ SESSION ⇒ SESSION

end : SESSION

[·] : SESSION ⇒ PRETYPE

chan · : CHANNEL ⇒ PRETYPE

·@ · : CHANNEL ⇒ SESSION ⇒ PRETYPE

newRendezvous : U∀γ.U1 U−−◦ U[γ]
request : U∀γ.U[γ] U−−◦ L∃α.L(Uchanα⊗L(α@γ))
accept : U∀γ.U[γ] U−−◦ L∃α.L(Uchanα⊗L(α@γ))

send : U∀αβγ.L(Uchanα⊗L(α@(↑β;γ))⊗β) U−−◦ L(α@γ)
receive : U∀αβγ.L(Uchanα⊗L(α@(↓β;γ))) U−−◦ L(β⊗L(α@γ))
follow : U∀αγ1γ2.L(Uchanα⊗L(α@(γ1&γ2))) U−−◦

L(L(α@γ1)⊕L(α@γ2))
selectL : U∀αγ1γ2.L(Uchanα⊗L(α@(γ1 ⊕γ2))) U−−◦ L(α@γ1)
selectR : U∀αγ1γ2.L(Uchanα⊗L(α@(γ1 ⊕γ2))) U−−◦ L(α@γ2)
close : U∀α.L(Uchanα⊗L(α@end)) U−−◦ U1

Figure 2.14: Session types in λURAL

A client that uses the ATM protocol to retrieve an account balance, written

in Vasconcelos et al.’s (2004) session types language, appears in figure 2.13.

2.4. SESSION TYPES 35

2.4.2 Linear Session Types

As with the previous examples of stateful type systems described in this

chapter, a session types interface is expressible using linear types, given

the right set of types and constants (Pucella and Heller 2008).7 Figure 2.14

contains an interface for session types in λURAL. I assume two new kinds,

SESSION and CHANNEL; it works if both of those are replaced with TYPE, but

distinguishing them makes things clearer. The interface contains types for

sending, receiving, choice, and the finished session. Instead of k-way labeled

choice, I use a two-way unlabeled choice for simplicity. Unlike in Vasconcelos

et al. (2004), there is no need for distinguished session types for sending and

receiving sessions, since session capabilities are now ordinary values.

Rendezvous values have unlimited type U[γ], where γ is the session type

available for requesting or accepting. Function newRendezvous creates a new

rendezvous value for any protocol. A channel, of unlimited type Uchanα, has

type parameter α to associate it with a linear session capability of type L(α@γ),

where γ is the session state of that channel. (This is the same technique used

to associate sockets with their states in figure 2.5 on p. 23.) Functions request
and accept each take a rendezvous value and return an existentially quantified

pair of a channel and a session capability; given a rendezvous value of type

[S], request returns a capability for session S, and accept returns a capability

for dual session S. The operations for running a session all evolve the session

capability in the expected way. For example, the type of send is

U(U∀αβγ.L(Uchanα⊗L(α@(↑β;γ))⊗β)(L(α@γ)).

That is, for any channel α, type β, and session γ, send takes a linear triple

having these components: an unlimited channel of type Uchan α; a linear

capability of type L(α@(↑β;γ)), which means that the protocol of channel α

requires sending a value of type β, followed by protocol γ; and a value of type β.

7There is one additional requirement beyond adding the right types and constants: The
type system needs some way to check session type duality. A proof system for session duality
is expressible in almost any polymorphic type system (Pucella and Tov 2008), but session
types are more convenient to use if the type system proves duality automatically. I assume
such a mechanism here.

36 CHAPTER 2. STATEFUL TYPE SYSTEMS

It returns a linear capability of type L(α@γ), witnessing that γ is the remaining

protocol for channel α.

2.4.3 Session Types Are ILL

While session types are expressible by adding the right types and constants to

a linear type system, there is also a direct correspondence between formulae

of ILL and session types (Caires and Pfenning 2010). In particular, session

types (with binary choice) may be encoded in ILL as follows:8

J↑τ;SK= τ(JSK J↓τ;SK= τ⊗ JSK
J↑T;SK= JTK(JSK J↓T;SK= JTK⊗ JSK
JT ⊕SK= JTK& JSK JT &SK= JTK⊕ JSK

A function of type τ(JSK represents a capability to consume (that is, send) a

value of type τ, followed by JSK; this clearly corresponds to a protocol which

requires sending τ followed by JSK. Similarly, a value of type τ⊗JSK represents

the capability to produce values of types τ and JSK, which is similar to receiving

a value of type τ followed by protocol JSK. A value of type JTK&JSK represents

the capability to produce either a value of type JTK or a value of type JSK, at

the client’s option, which corresponds to the internal choice T ⊕S; dually for

JTK⊕ JSK.
The exponential connective has a session type interpretation as well. We

can represent the ability to get any number of channels at session S as a

value of type !JSK. This means that a rendezvous value of type [S] may

be represented as a value of linear type !(JSK& JSK), which can produce an

arbitrary number of channels for protocol S or dual protocol S.

Caires and Pfenning (2010) give a typed π calculus that uses the session

type interpretation of linear types as the types of processes, and prove that

communication does not go wrong. In more recent work, Toninho et al. (2011)

8This represents a view of session types as channel values, whereas Caires and Pfenning
take the dual view of a session type as the type of a process that implements it. This means
that they can translate JT⊕SK= JTK⊕JSK, which may be more congenial but is less consistent
with the presentation of session types heretofore.

2.4. SESSION TYPES 37

extend the session type interpretation of linear logic to a dependent, linear

type theory, yielding dependent session types.

CHAPTER 3

Programming in Alms

ALMS IS A typed, call-by-value, impure functional language with a full set

of high-level language features: algebraic data types, pattern matching, open

records and variants, reference cells, exceptions, global type inference, first-

class polymorphism (via type annotations), and modules with opaque signature

ascription. Unlike most other ML-like languages, Alms supports affine types,
which allow it to express the stateful type systems of the previous chapter.

Alms provides several novel features that facilitate designing resource-

aware abstractions. In this chapter, I introduce these features in a series of

examples and argue, in support of my thesis, that these language features

help make Alms a practical, general-purpose programming language.

3.1 Alms by Example

Consider a simple OCaml (Leroy et al. 2011) function, deposit, that updates

one element of an array by adding an integer:

let deposit (arr : int array) (acct : int) (amt : int) =
Array.set arr acct (Array.get arr acct + amt)

In a concurrent setting, function deposit suffers from a race condition between

the read and the write. One way to solve this problem is to use a lock to enforce

39

40 CHAPTER 3. PROGRAMMING IN ALMS

module type AF_ARRAY = sig
type ’a array : A
val new : int → ’a → ’a array
val set : ’a array → int A−→ ’a A−→ ’a array
val get : ’a array → int A−→ ’a × ’a array

end
module AfArray : AF_ARRAY

Figure 3.1: Affine array interface in Alms

mutual exclusion:

let deposit (arr : int array) (acct : int) (amt : int) (lock : lock) =
Lock.acquire lock;
Array.set arr acct (Array.get arr acct + amt);
Lock.release lock

Affine data. Locks can ensure mutual exclusion, but using them correctly

is error-prone. A rather coarse alternative to ensure mutual exclusion is to

forbid aliasing altogether. If we have the only reference to an array then no

other process can operate on it concurrently.

Both versions of the OCaml function deposit are valid Alms functions as

well. In Alms, unlike in OCaml, we can prohibit aliasing statically using

the type system. We do this by declaring an interface that includes a new,

abstract array type (figure 3.1). The base kinds of Alms are use qualifiers,
which indicate how many times values of that type may be used. The syntax

“: A” specifies that type ’a AfArray.array has kind A, as in affine, which means

that any attempt to duplicate a reference to such an array is a type error. Two

points about the types of AfArray.get and AfArray.set are worth noting:

• Each function must return an array because the caller cannot reuse the

reference to the array supplied as an argument.

• Function types of the form τ1
A−→ τ2 have kind A, which means that

3.1. ALMS BY EXAMPLE 41

module AfArray : AF_ARRAY = struct
type ’a array = ’a Array.array

let new = Array.new
let set arr ix v = Array.set arr ix v; arr
let get arr ix = (Array.get arr ix, arr)

end

Figure 3.2: Affine array implementation in Alms

such a function can be applied at most once.1 This is necessary because

reusing a function partially applied to an affine value would reuse that

value.

We can now rewrite deposit to use the AF_ARRAY interface:

let deposit (arr : int AfArray.array) (acct : int) (amt : int) =
let (balance, arr) = AfArray.get arr acct in

AfArray.set arr acct (balance + amt)

If we attempt to use an AfArray.array more than once, rather than single-

threading it, we get a type error:

let deposit (arr : int AfArray.array) (acct : int) (amt : int) =
let (balance, _) = AfArray.get arr acct in

AfArray.set arr acct (balance + amt)

In this case, Alms reports that affine variable arr is duplicated.

Abstract affine types. Implementing AfArray is merely a matter of wrap-

ping the primitive array type and operations and sealing the module with

an opaque signature ascription (figure 3.2). The underlying, primitive array

type, ’a Array.array, has kind U, as in unlimited, because it places no limits on

duplication. We can use it to represent an abstract type of kind A, however,

because qualifier U is a subkind of qualifier A, and Alms’s kind subsumption

rule allows assigning an abstract type a greater kind than that of its concrete

representation.
1It is tempting to call function types of kind A “affine,” but in the standard terminology,

an “affine function” is one that uses its argument at most once, not a function that itself
may be used at most once, which is what the kind indicates. I refer to functions of kind A as
“one-shot.”

42 CHAPTER 3. PROGRAMMING IN ALMS

module type CAP_ARRAY = sig
type (’a,’b) array
type ’b arraycap : A
val new : int → ’a → ∃∃ ’b. (’a,’b) array × ’b arraycap
val set : (’a,’b) array → int → ’a → ’b arraycap → ’b arraycap
val get : (’a,’b) array → int → ’b arraycap → ’a × ’b arraycap

val dirtyGet : (’a,’b) array → int → ’a
end

Figure 3.3: Interface for unlimited arrays with affine capabilities

We need not change new at all, and get and set are modified slightly to

return the array as required by the interface.

Affine capabilities. The affine array interface is quite restrictive. Because

it requires single-threading an array through the program, it cannot ade-

quately support operations that do not actually require exclusive access to the

array. However, Alms supports creating a variety of abstractions to suit our

needs. One way to increase the flexibility of the interface is to separate the

reference to the array from the capability to read and write the array, in the

same style as the capabilities used to implement typestate in λURAL (figure 2.5

on p. 23). Only the capability, not the array itself, needs to be affine.

For example, we may prefer an interface that supports “dirty reads,” which

do not require exclusive access but are not guaranteed to observe a consistent

state, as in figure 3.3. In signature CAP_ARRAY, type (’a,’b) array is now

unlimited and ’b arraycap is affine. Type constructor array’s second parameter,

’b, is a “stamp” used to tie it to its capability, which must have type ’b arraycap
(where type ’b matches). In particular, the type of new indicates that it returns

an existential containing an array and a capability with matching stamps. The

existential guarantees that the stamp on an array can only match the stamp

on the capability created by the same call to new.

Operations set and get allow access to an array only when presented with

the matching capability. This ensures that set and get have exclusive access

3.1. ALMS BY EXAMPLE 43

module CapArray : CAP_ARRAY = struct
module A = Array

type (’a,’b) array = ’a A.array
type ’b arraycap = unit

let new size init = (A.new size init, ())
let set arr ix v _ = A.set arr ix v
let get arr ix _ = (A.get arr ix, ())

let dirtyGet = A.get
end

Figure 3.4: Implementation of unlimited arrays with affine capabilities

with respect to other set and get operations. They no longer return the array,

but they do need to return the capability. On the other hand, dirtyGet does not

require a capability and thus must not return one.

For example, the CAP_ARRAY interface allows shuffling an array while

simultaneously computing an approximate sum:

let shuffleAndDirtySum arr cap =
let th1 = Thread.fork (λλ _ → inPlaceShuffle arr cap) in
let th2 = Thread.fork (λλ _ → dirtySumArray arr) in

(Thread.wait th1, Thread.wait th2)

To implement CAP_ARRAY, we need suitable representations for its two

abstract types. We represent CAP_ARRAY’s arrays by the primitive array type,

and capabilities by type unit, which is adequate because these capabilities have

no run-time significance. Type unit has kind U, but as in the previous example,

type abstraction subsumes it to A to match the kind of ’b CapArray.arraycap.

The implementation of the operations is in terms of the underlying array

operations, with some shuffling to ignore capability arguments (in set and get)
and to construct tuples containing value () to represent the capability in the

result (in new and get).

Capabilities are values. Capabilities such as ’b CapArray.arraycap often

represent the state of a resource, but in Alms they are also ordinary values.

They may be stored in immutable or mutable data structures, packed into

44 CHAPTER 3. PROGRAMMING IN ALMS

exceptions and thrown, or sent over communication channels like any other

value. For example, suppose we would like a list of array capabilities. Lists

are defined thus in the standard library:

type ‘a list = (::) of ‘a × ‘a list | []

The type variables we have seen until now could only be instantiated with

unlimited types, but the type variable in the definition of ‘a list is different,

because it may be instantiated to any type, unlimited or affine. Type variables

in Alms indicate their kind lexically. Unlimited type variables, of kind U, are

written with a normal quotation mark: ’a ’b ’c. Affine type variables, of kind

A, are written with a backquote: ‘a ‘b ‘c.

Whether a list is affine or unlimited depends on whether the elements of

the list are affine or unlimited. Alms represents this fact by giving the list

type constructor a dependent kind, where kind 〈‘a〉 stands for the actual kind

of type variable ‘a:

list : Π(‘a+). 〈‘a〉

That is, the kind of a list is the same as the kind of its element type: Type

int list has kind U, whereas ’b CapArray.arraycap list has kind A. (The + is a

variance annotation that indicates that list is covariant in its parameter.)

In the concrete syntax used for abstract types in Alms signatures, the kind

of list is written thus:

type +‘a list : ‘a

Abstract type declarations must include kind annotations in that form (except

where the kind is the default, U), and the kind of an abstract type must

be greater than or equal to the kind of its concrete implementation during

signature matching. For concrete type definitions, however, Alms infers a

principal kind. In general, the kind of a type is the join of the kinds of the

types that occur directly in its representation.

Some examples of concrete type definitions and their inferred kinds appear

in figure 3.5. Because both ‘a and ‘b are part of the representation of (‘a,‘b) r,
it must be affine if either of its parameters is affine, hence its kind is the least

upper bound of the kinds of the type parameters: ‘a ∨ ‘b. On the other hand,

3.1. ALMS BY EXAMPLE 45

type (‘a,‘b) r = ‘a × ‘b : ‘a ∨ ‘b
type (‘a,‘b) s = int × ‘b : ‘b
type (‘a,‘b) t = T1 of ‘a | T2 of (‘b,‘a) t : ‘a ∨ ‘b
type (‘a,‘b) u = U1 | U2 of (‘b,‘a) u : U
type (‘a,‘b) v = ‘a × (unit → ‘b) : ‘a
type (‘a,‘b) w = ‘a × (unit ‘b−→ unit) : ‘a ∨ ‘b

Figure 3.5: Some type definitions and inferred qualifier kinds

phantom parameter ‘a is not part of the representation of type (‘a,‘b) s, so that

has kind ‘b.

Types t and u are recursive, which means that they are part of their own

representations. Following the same rule that the kind of a type is the join of

the kinds of its possible representations, this sets up a flow equation for each

type:

T (‘a,‘b) = ‘a (by constructor T1 of ‘a)
∨ T (‘b,‘a) (by constructor T2 of (‘b,‘a) t)

U (‘a,‘b) = U (by constructor U1)
∨ U (‘b,‘a) (by constructor U2 of (‘b,‘a) t)

The kinds of (‘a,‘b) t and (‘a,‘b) u are given by the least fixpoints of T and U ,

respectively, which are easily found by iteration.

Type variable ‘b does not appear in the kind of (‘a,‘b) v because the domain

and codomain of a function type are not part of the function’s representation.

Instead, function types carry their kind in a superscript as in the definition of

type (‘a,‘b) w. This generalizes the one-shot function type (A−→) that we have

seen already to allow any base kind on a function arrow. (All the superscript-

free arrows (→) that we have seen thus far have stood for the unlimited arrow

(U−→). Alms fills in omitted arrow superscripts using a rule described in §3.2.2.)

Principal promotion. Unlike other type constructors, the kind of a function

type cannot be derived from the domain and codomain. Whether a function is

safe to duplicate depends on whether values referenced from its closure are

46 CHAPTER 3. PROGRAMMING IN ALMS

safe to duplicate. Thus, the qualifier kind of a function type must upper bound

the kinds of the types of the function’s free variables. Function types carry

this kind as a third parameter.

For example, int A−→ int is the type of an integer-to-integer function that

cannot be duplicated and may be applied only once. Some functions have more

elaborate types. For example, Alms infers that λλ x y → x has type ‘a U−→ ‘b ‘a−→ ‘a.

(Using implicit arrow superscript rules described in §3.2.2, the type may be

written ‘a → ‘b → ‘a.) The second arrow has superscript ‘a because a partial

application of this function closes over a value of type ‘a, and thus must be as

restricted as that value.

In general, the qualifier inferred for a function type is the least upper bound

of the qualifiers of the types of its free variables. This is a generalization of

the promotion rule of ILL, whereby a proposition may be made unlimited

if all the resources from which it is derived are unlimited (Bierman 1993).

Theorem 5.3 on p. 118 shows that my model of Alms always infers the least

kinds for function types

Dereliction subtyping. The principal promotion property guarantees that

every inferred function type has the least (safe) qualifier kind. What makes

this property especially useful is that Alms extends the subkinding relation to

subtyping between functions. This is safe because a function’s use invariant

cannot be violated by using it in a context where its actual treatment will be

more restricted than required by its qualifier.

For example, consider an operation for starting a new thread:

val Thread.fork : (unit A−→ unit) U−→ Thread.thread

The type promises that Thread.fork will apply its argument function only once,

but there is no reason that we should not be able to pass it a function that is

allowed to be applied more than once. We may do so because type unit U−→ unit
is a subtype of unit A−→ unit.

Alms extends the subtyping relation over functions in the usual way, as

well as through algebraic and abstract data types based on the variances of

their type parameters as reflected in their kinds (as in the variance annotation

3.1. ALMS BY EXAMPLE 47

+ in the kind of list). Compared to a strict stratification between unlimited and

affine types, dereliction subtyping provides many opportunities for code reuse.

The kinds of type variables. As described above, type variables in Alms

may be unlimited (’a) or affine (‘a). Alms infers which kind to give each type

variable based on its usage. As an example of how the kinds of type variables

work in Alms, consider these two function definitions. Given the definitions

let swap (x, y) = (y, x)
let dup (x, _) = (x, x)

Alms infers the following types:

val swap : ‘a × ‘b → ‘b × ‘a
val dup : ’a × ‘b → ’a × ’a

Both functions destructure a pair and return a pair, but they treat the

components of the pair differently. Because swap uses each component once in

its result, Alms infers that both components have affine types. On the other

hand, dup uses the first component of the pair twice and discards the second

component. The first component must therefore be unlimited, but the second

component can be affine, since it is not used more than once. Thus, swap may

be applied to any pair (by subkinding), but dup must be applied to pair whose

first component is unlimited.

Qualifier inference extends smoothly to other language features, such as

algebraic data types, as well. Consider, for example, the standard definition of

a left fold for lists:

let rec foldl f z xs = match xs with
| x :: xs′ → foldl f (f x z) xs′

| [] → z

Alms infers type (‘a → ‘b A−→ ‘b) → ‘b → ‘a list ‘b−→ ‘b for foldl. Both type vari-

ables are affine, because foldl duplicates neither the elements of the list nor

z. We can understand the arrow qualifiers as follows. The first argument has

type ‘a → ‘b A−→ ‘b. This type means that f is unlimited, but partial applications

48 CHAPTER 3. PROGRAMMING IN ALMS

module type CAP_ARRAY = sig
type (‘a,’b) array
type ’b arraycap : A

val new : int → (int → ‘a) → ∃∃ ’b. (‘a,’b) array × ’b arraycap

val set : (‘a,’b) array → int → ‘a → ’b arraycap ‘a−→ ’b arraycap
val get : (’a,’b) array → int → ’b arraycap → ’a × ’b arraycap
val swap : (‘a,’b) array → int → ‘a → ’b arraycap ‘a−→ ‘a × ’b arraycap

val dirtyGet : (’a,’b) array → int → ’a
end

Figure 3.6: Interface for arrays with potentially affine elements

of f are affine, because foldl duplicates f to apply it to each element of the

list but does not duplicate partial applications of f. The last arrow in the

type of foldl has kind ‘b, because duplicating the partial application foldl f z
effectively duplicates z.

By contrast, consider the definition of scanl, a variant of foldl that accumu-

lates a list of all the intermediate results:

let rec scanl f z xs = match xs with
| x :: xs′ → z :: scanl f (f x z) xs′

| [] → [z]

Alms infers type (‘a → ’b A−→ ’b) → ’b → ‘a list → ’b list for scanl. Type variable

’b is now inferred to be unlimited because scanl uses z twice in the first case.

The last arrow in the type is now unlimited as well, because duplicating the

(well typed) partial application scanl f z is always safe, because f and z are

unlimited.

The kinds of Alms type variables and the subkinding relation can also

be used to make interfaces more precise. For example, figure 3.6 contains

an improved version of the CAP_ARRAY signature that supports arrays of

affine elements. Note that the kind of the array elements in the types of get
and dirtyGet is unlimited, whereas array elements for new, set, and swap
may be affine. Thus, all operations in the signature are permitted for arrays

3.1. ALMS BY EXAMPLE 49

module type CAP_LOCK_ARRAY = sig
include CAP_ARRAY

val new : int → (int → ‘a) → ∃∃ ’b. (‘a,’b) array
val acquire : (‘a,’b) array → ’b arraycap
val release : (‘a,’b) array → ’b arraycap → unit

end

Figure 3.7: Interface to arrays with capabilities and locks

with unlimited elements, but read operations, which effectively duplicate an

element by both leaving it in the array and returning it, may be used only on

arrays with unlimited elements. To read from arrays with affine elements, one

must use the new function swap, which takes a new element to swap in place

of the element that it reads.

More possibilities. The type system of Alms is sufficiently flexible to ex-

press a wide variety of stateful interface designs. For example, figure 3.7

contains an interface that mixes dynamic locking with the static capabilities

of CAP_ARRAY. In signature CAP_LOCK_ARRAY, function new returns

an array (with unique tag ’b) but no capability. As before, array operations

require a capability, and a capability is obtained by requesting it using acquire.

Subsequent attempts to acquire a capability for the same array block until the

capability is released. Thus, access to the capability is granted dynamically,

and the capability, once granted, is tracked statically. Since accessing the

array or releasing the lock requires the capability, it is not possible to access

the array without holding the lock or to release the lock when one does not

own it.

The ability to store affine capabilities in data structures makes it possible to

implement signature CAP_LOCK_ARRAY in terms of CapArray without any

privileged knowledge about the representation of CapArray.arraycap. The im-

plementation relies on mvars (signature in figure 3.8), which are synchronized

variables based on Id’s M-structures (Barth et al. 1991). An ‘a mvar may hold a

value of type ‘a or it may be empty. While an mvar may contain an affine value,

the mvar itself is always unlimited. This is safe because calling MVar.take on

50 CHAPTER 3. PROGRAMMING IN ALMS

module MVar : sig
type ‘a mvar

val new : ‘a → ‘a mvar
val take : ‘a mvar → ‘a
val put : ‘a mvar → ‘a → unit

end

Figure 3.8: Interface to mvars (synchronized variables)

module CapLockArray : CAP_LOCK_ARRAY = struct
module A = CapArray

type ’b arraycap = ’b A.arraycap
type (‘a,’b) array = (‘a,’b) A.array × ’b arraycap mvar

let new size init =
let (arr, cap) = A.new size init in

(arr, MVar.new cap)

let acquire (_, mv) = MVar.take mv
let release (_, mv) cap = MVar.put mv cap

let set (arr, _) = A.set arr
let get (get, _) = A.get arr
· · ·

end

Figure 3.9: Implementation of to arrays with capabilities and locks

a non-empty mvar removes the value and returns it, while MVar.take on an

empty mvar blocks until another thread MVar.puts a value into it.

To implement CAP_LOCK_ARRAY, we represent an array as a pair of the

underlying (’a,’b) CapArray.array and an mvar to store its capability (figure 3.9).

The new operation creates a new array-capability pair, stores the capability in

a new mvar, and returns the array and the mvar as a pair. Operations acquire
and release use the mvar component of the pair, while the old operations such

as set must be lifted to project the underlying CapArray.array out of the pair.

There are many more possibilities. Figures 3.10 and 3.11 show two

3.1. ALMS BY EXAMPLE 51

module type RW_LOCK = sig
type (‘a,’b) array
type excl
type shared
type ’b@’c : A

val new : int → (int → ‘a) → ∃∃ ’b. (‘a,’b) array

val acquireW : (‘a,’b) array → ’b@excl
val acquireR : (‘a,’b) array → ’b@shared
val release : (‘a,’b) array → ’b@’c → unit

val set : (‘a,’b) array → int → ‘a → ’b@excl ‘a−→ ’b@excl
val get : (’a,’b) array → int → ’b@’c → ’a × ’b@’c
val swap : (‘a,’b) array → int → ‘a → ’b@excl ‘a−→ ‘a × ’b@excl

end

Figure 3.10: Reader-writer locks with capabilities

module type FRACTIONAL = sig
type (‘a,’b) array
type 1
type 2
type ’c/’d
type (’b,’c) arraycap

val new : int → (int → ‘a) → ∃∃ ’b. (‘a,’b) array × (’b,1) arraycap

val split : (’b,’c) arraycap → (’b,’c/2) arraycap × (’b,’c/2) arraycap
val join : (’b,’c/2) arraycap × (’b,’c/2) arraycap → (’b,’c) arraycap

val set : (‘a,’b) array → int → ‘a → (’b,1) arraycap ‘a−→ (’b,1) arraycap
val get : (’a,’b) array → int → (’b,’c) arraycap → ’a × (’b,’c) arraycap
val swap : (‘a,’b) array → int → ‘a → (’b,1) arraycap ‘a−→ ‘a × (’b,1) arraycap

end

Figure 3.11: Fractional reader-writer capabilities

52 CHAPTER 3. PROGRAMMING IN ALMS

interfaces for reader-writer capabilities, which at any one time grant either

exclusive read-write access or shared read-only access.

Signature RW_LOCK (figure 3.10) describes dynamic reader-writer locks.

The signature declares types excl and shared and an affine, binary type con-

structor (·@ ·). Capabilities have type ’b@’c, where ’b ties the capability to a

particular array and ’c records whether the held lock is exclusive or shared.

Operations set and swap require an exclusive lock (’b@excl), but get allows ’c
to be excl or shared.

Signature FRACTIONAL (figure 3.11) describes fractional reader-writer

capabilities (Boyland 2003). As in the previous example, the capability

type (’b,’c) arraycap has a second parameter, which in this case tracks what

fraction of the whole capability is held. The fraction is represented using type

constructors 1, 2, and (·/ ·). A capability of type (’b,1) arraycap grants exclusive

access to the array with tag ’b, while a fraction less than 1 such as 1/2 or 1/2/2
indicates shared access. For managing capabilities, function split divides a

capability whose fraction is ’c into two capabilities of fraction ’c/2, and join
combines two ’c/2 capabilities back into one ’c capability. Again, set and swap
require exclusive access but get does not.

3.2 Syntax Matters

The design of Alms balances two sometimes contradictory goals: sufficient

expressiveness to support a wide variety of resource management disciplines,

but without making the language too unwieldy to use. Type system features

such as dependent kinds and dereliction subtyping help with the latter, because

they make types and functions applicable in more cases. Another way to

increase usability is to decrease noise by optimizing the concrete syntax for

the common case. In this section, I describe two such syntactic optimizations.

3.2.1 Implicit Threading Syntax

Given CapLockArray as defined above, we can rewrite function deposit (the

initial example in this chapter) to take advantage of it:

3.2. SYNTAX MATTERS 53

open CapLockArray

let deposit arr acct amt =
let cap = acquire arr in
let (balance, cap) = get arr acct cap in
let cap = set arr acct (balance + amt) cap in
release arr cap

While this gets the job done, the explicit threading of the capability is inconve-

nient to write and hard to read. To address this, Alms supports an alternate

syntax for implicit threading of values:

let deposit arr acct amt =
let cap = acquire arr in
set arr acct (get arr acct cap + amt) . cap;
release arr / cap

Pattern cap binds cap not as an ordinary variable, but as an implicitly
threaded variable. This initiates a syntactic transformation that automatically

single-threads cap through the code in its scope, based on the assumption that

a function taking an implicitly threaded variable (or tuple of such variables) as

an argument will return a pair of the function’s direct result and a new value

for the implicitly threaded variable. Function get follows this convention, as it

returns a pair of the value read from the array and the array capability.

Functions set and release, however, do not return pairs: set returns the

capability only, and release consumes the capability and returns unit. Infix

operators (.) and (/) are not treated specially by the transformation, but are

ordinary functions that lift other functions to follow the return convention:

let (.) f x = ((), f x)
let (/) f x = (f x, ())

That is, we use (.) to lift a function that returns only the new threaded

variable value to return () as its direct result, as with function set, which

returns only a capability, not a pair. We use (/) to lift a function that returns

only a direct result to return () as the new value for the threaded variable, as

with function release, which consumes a capability but does not return it.

The transformation works by locating uses of implicitly threaded variables

and rebinding function results make the new values of implicitly threaded

54 CHAPTER 3. PROGRAMMING IN ALMS

variables available for subsequent uses. In the case of deposit, the implicit

threading transformation yields this rewritten definition:2

let deposit arr acct amt =
let cap = acquire arr in
let (r1, cap) = let (r2, cap) = get arr acct cap in

set arr acct (r2 + amt) . cap in
release arr / cap

Because the transformation happens on syntax before type checking, it cannot

compromise type safety.

The implicit threading transformation handles a variety of language fea-

tures, including patterns that bind multiple implicitly threaded variables and

pattern matching on implicitly threaded variables. An especially interesting

case is how it handles functions with free implicitly threaded variables, by

adding such variables as parameters and results, and modifying uses of such

functions to thread the variables. For example, function deposits takes an

array, a list of accounts, and a list of amounts to deposit:

let deposits arr accts0 amts0 =
let cap = acquire arr in
let rec loop accts amts =

match (accts, amts) with
| (acct :: accts′, amt :: amts′) →

set arr acct (get arr acct cap + amt) . cap;
loop accts′ amts′

| _ → release / cap in
loop accts0 amts0

The capability is bound to the implicitly threaded variable cap, which then

appears free in the body of function loop. The transformation adds cap as a

2The implemented transformation generates several administrative redexes omitted here.

3.2. SYNTAX MATTERS 55

parameter to loop and threads it through calls to loop:

let deposits arr accts0 amts0 =
let cap = acquire arr in
let rec loop accts amts cap =

match (accts, amts) with
| (acct :: accts′, amt :: amts′) →

let (r1, cap) =
let (r2, cap) = get arr acct cap in
set arr acct (r2 + amt) . cap in

loop accts′ amts′ cap
| _ → release / cap in

loop accts0 amts0 cap

Several more examples of the implicit threading syntax appear in chapter 4.

3.2.2 Arrow Qualifier Inference

Dependent kinds eliminate the need for almost all qualifiers from the syntax

of types, with one major exception: function types. In the code examples in

this chapter thus far, I have often omitted writing qualifiers on function types

when the qualifier is U (though sometimes I included it for emphasis). The

simple rule that U superscripts may be omitted means that most arrows do

not require superscripts, because most functions, in practice, are unlimited.

However, Alms actually uses a stronger heuristic for filling in missing function

type qualifiers that allows omitting around two-thirds of the non-U arrow

superscripts, while adding very few required U superscripts.3

Alms’s rule for filling in missing function qualifiers relies on a simple

observation about the common case in function types: For a curried function

that uses all its arguments, each argument is part of the closure of the partial

application through that argument (or equivalently, each argument is in the

free variables of its λ’s body), which means that by the principal promotion

3In order to select a qualifier inference rule, I tested five candidate rules against Alms’s
standard library and evaluated the rules for efficacy and predictability. Using the rule that I
chose, there was exactly one case of a mandatory U superscript in the corpus of Alms types
that I analyzed. All types written to this point actually conform to both Alms’s actual rule and
the simple missing-means-U rule, because the qualifier superscripts required by the latter
rule have been a subset of the former.

56 CHAPTER 3. PROGRAMMING IN ALMS

rule, the kind of each argument becomes part of the qualifier of all arrows

subsequent to the arrow immediately following the argument. That is, arrow

types typically follow a pattern like this:

‘a → ‘b ‘a−→ ‘c ‘a∨‘b−−−→ ‘d ‘a∨‘b∨‘c−−−−−→ . . .

Of course, not all arrow types follow such a pattern, but in practice, most do.

The inferred type will follow such a pattern when the function has this form

(where all the arguments are used in the body):

λλ w x y z. . . .

Functions with more unusual forms have types that do not follow the pattern:

λλ w x. let r = aref w in λλ y. let w′ = swap r () in λλ z. . . .
: ‘a → ‘b A−→ ‘c ‘a∨‘b−−−→ ‘d ‘a∨‘b∨‘c−−−−−→ ·· ·

However, the goal is to optimize the syntax for the common case, and the

simple function λλ w x y z. . . . is the common case.

The rule. The actual rule for filling missing function type qualifiers in type

annotations relies on inspecting the context. Given a sequence of superscript-

free arrows (as in the type of a curried function), the qualifier of each arrow

is the join of the kinds of the arguments before that arrow, as in the pattern

above. When some arrow has an explicit superscript, that supersedes the

kinds of prior arguments and is included in the join instead. To be precise,

given an arrow type like

t1
q1−→ t2

q2−→ ·· · qk−2−−−→ tk−1
qk−1−−−→ tk

?−→ ·· ·

where each qi may be missing or present, the qualifier at ? is inferred as

follows. Choose the largest i such that q j is missing for all j > i; in case i = 0,

consider q0 to be U. Then the inferred qualifier is

qi ∨ 〈ti〉 ∨· · ·∨ 〈tk−1〉,

where 〈t〉 stands for the kind of t.

Some examples. A comparison of several types written using two qualifier

inference rules appears in figure 3.12. On the left, types are written using the

simple rule that all missing superscripts are replaced with qualifier U. On the

3.2. SYNTAX MATTERS 57

Implicit U Rule Actual Rule
’a AfArray.array → int A−→

’a A−→ ’a AfArray.array
’a AfArray.array → int →

’a → ’a AfArray.array
(1)

(‘a,’b) RWLock.array → int →
‘a → ’b@excl ‘a−→ ’b@excl

(‘a,’b) RWLock.array → int →
‘a → ’b@excl → ’b@excl

(2)

(unit A−→ unit) → Thread.thread (unit A−→ unit) → Thread.thread (3)

(‘a → ‘b A−→ ‘b) → ‘b → ‘a list ‘b−→ ‘b (‘a → ‘b A−→ ‘b) → ‘b → ‘a list → ‘b (4)

‘a → ‘b ‘a−→ ‘c ‘a∨‘b−−−→ ‘d ‘a∨‘b∨‘c−−−−−→ ·· · ‘a → ‘b → ‘c → ‘d → ··· (5)

(‘a A−→ ‘b) → ‘a → ‘b (‘a A−→ ‘b) → ‘a U−→ ‘b (6)

Figure 3.12: Comparison of missing-means-U rule to actual rule

right, types are written using the actual rule in Alms, which takes advantage

of the observation about the common patterns of qualifiers on function types.

The first five rows contains types that appeared earlier in this chapter, and

the sixth row contains an interesting type from the standard basis library.

In row (1), the two A superscripts on the left are not necessary on the right,

because the kind of ’a AfArrayarray is A, and that propagates to subsequent

arrows. Row (2) is similar, in that the superscript on the final arrow is ‘a on

the left but omitted on the right, because it is implied by the argument of type

‘a.

The types are the same on both sides of row (3), because the superscript

A is not inferred by the rule—it is specific to the invariant that Thread.fork
applies its argument only once. Row (4) has two superscripts on the left and

one on the right. The first superscript, A, is again required, because the

implied superscript at that point is ‘a, but foldl makes a stronger guarantee

for how it uses its first argument. The second superscript is implied by the

argument of type ‘b, so it is omitted on the right.

Row (5) shows the prototypical case that suggests the rule, which allows

all superscripts to be omitted.

Finally, row (6) has the type of a function from the standard library that

coerces a one-shot function to an unlimited function by adding a dynamic

check (as described in chapter 7). This is an atypical case where the right

58 CHAPTER 3. PROGRAMMING IN ALMS

column requires a superscript that the left does not. The actual rule requires

superscript U because the affine argument type would otherwise imply A on

the final arrow as well. Of course, the library function of this type is doing

something unusual, so it is reasonable that the type should appear unusual as

well.

CHAPTER 4

Expressiveness of Alms

THE STATEFUL TYPE systems introduced in chapter 2 are similar to one

another in that they all rely on some notion of linear or affine resources. They

are not, however, generally interchangeable or interexpressible. Despite the

similarity between session types and typestate, session types are not cleanly

expressible in Vault, and Vault-style typestate protocols become awkward

when encoded using session types. Similarly, while Vault offers region-based

memory management, it does not provide the flexibility with respect to aliasing

possible in the Calculus of Capabilities.

The language Vault (DeLine and Fähndrich 2001) provides one, fixed

notion of typestate; the language Sing# (Fähndrich et al. 2006) provides one,

fixed notion of session types. Alms has no built-in typestate or session types

mechanisms, but both can be implemented—in multiple ways. In this chapter,

I show how Alms can elegantly express the examples from chapter 2.

4.1 Typestate

Several of the Alms code examples in the previous chapter are reminiscent

of typestate. In this section, I describe a more extended typestate example

implementing the Berkeley sockets API introduced in §2.2, which ensures that

socket setup operations follow the correct protocol. In the Alms version of the

interface, I include both the client and server protocols for setting up a socket,

and I show how to handle error states.

59

60 CHAPTER 4. EXPRESSIVENESS OF ALMS

raw named listening ready

closed

socket() bind() listen()
⊗

accept() recv(), send()

connect()

close()
close() close()

close() server

client

both

Figure 4.1: States and transitions for Berkeley sockets TCP

module type SOCKET_CAP = sig
type ’a socket

type ’a @ ’c : A
type raw
type named
type listening
type ready

val socket : unit → ∃∃ ’a. ’a socket × ’a@raw
val bind : ’a socket → int → ’a@raw → ’a@named
val connect : ’a socket → string → string →

’a@raw + ’a@named → ’a@ready
val listen : ’a socket → ’a@named → ’a@listening
val accept : ’a socket → ’a@listening →

(∃∃ ’b. ’b socket × ’b@ready) × ’a@listening
val send : ’a socket → string → ’a@ready → ’a@ready
val recv : ’a socket → int → ’a@ready → string × ’a@ready
val close : ’a socket → ’a@’c → unit

〈error handling in figure 4.3〉
end

Figure 4.2: Alms interface to Berkeley sockets TCP (i): basic operations

4.1. TYPESTATE 61

The interface. A diagram of states and transitions for Berkeley sockets

appears in figure 4.1 (reprinted from §2.2), and the corresponding Alms

signature (deferring details of error handling) appears in figure 4.2. We might

compare the Alms signature to the same interface written in Vault (figure 2.3

on p. 18) and λURAL (figure 2.5 on p. 23). For example, here are the types of

accept as written in the three languages:

(Vault)
tracked(N) sock accept(tracked(S) sock) [S@listening, new N@ready];

(λURAL)
accept : U∀α:TYPE. sock α U−→ L(α@listening) U−−◦

L(L(∃β:TYPE. L(U(sock β) ⊗ L(β@ready))) ⊗ L(α@listening))

(Alms)
val accept : ’a socket → ’a@listening →

(∃∃ ’b. ’b socket × ’b@ready) × ’a@listening

In Vault, accept takes a socket and returns a new socket, clearly different from

the argument socket because it is tracked by a different key. The state change

appears as a side condition, which indicates the (unchanged) state of the old

socket and the initial state of the new socket. Neither λURAL nor Alms has a

built-in notion of tracked keys and states, so instead the states of the sockets

are witnessed by linear or affine values whose types reflect the state of the

socket. Unlike Vault, where @ is part of the primitive syntax for states and

keys, in λURAL and Alms @ is an ordinary infix, binary type constructor.1 Both

λURAL and Alms use essentially the same encoding of typestate, whereby a

socket is associated with its capability using an existentially quantified type

variable as a parameter to both the socket value and the capability. Between

λURAL and Alms the major difference is one of legibility, since the type in Alms

does not require qualifier annotations as it does in λURAL.

Error handling. DeLine and Fähndrich (2001) point out that in a realistic

Vault interface to Berkeley sockets, operations should return a variant value

1λURAL, being a core model, includes no facility for defining a type within the language,
but I introduce @ extralinguistically as an abstract type constructor by giving its kind. Thus
λURAL does not treat it at all specially.

62 CHAPTER 4. EXPRESSIVENESS OF ALMS

type ’a dynamicCap = Raw of ’a@raw
| Named of ’a@named
| Listening of ’a@listening
| Ready of ’a@ready

exception Socket of (∃∃ ’a. ’a socket × ’a dynamicCap) option × string

val isSame : ’a socket → ’b socket → (’a@’c → ’b@’c) option

val catchRaw : (unit A−→ ‘r) → ’a socket × (’a@raw A−→ ‘r) → ‘r
val catchNamed : (unit A−→ ‘r) → ’a socket × (’a@named A−→ ‘r) → ‘r
val catchListening : (unit A−→ ‘r) → ’a socket × (’a@listening A−→ ‘r) → ‘r
val catchReady : (unit A−→ ‘r) → ’a socket × (’a@ready A−→ ‘r) → ‘r

Figure 4.3: Alms interface for TCP (ii): error handling

indicating success or failure. This means every socket operation must be

followed by an explicit pattern match to check for an error. Such an interface is

easily expressible in Alms as well, but I choose a different approach: Berkeley

sockets operations in this Alms interface signal errors by raising exceptions,

which contain the resources necessary to recover the prior state of the socket.

The portion of signature SOCKET_CAP for error handling appears in

figure 4.3. The signature begins with type ’a dynamicCap and exception Socket,
which are used by socket operations to signal errors. In particular, type

’a dynamicCap is a four-way sum over the four possible capability states, which

allows dynamically checking which state a socket is in. When a socket

operation fails, it raises a Socket exception. In cases where no socket yet

(or still) exists, the exception contains only an error message, but in other

cases, the exception carries an existentially quantified pair of a socket and its

dynamic state, which can be used to recover from the failed operation.

Because the socket and capability are existentially quantified in the excep-

tion, this means that the association of the capability with any other references

to the socket in the program is lost. In order to re-associate the capability with

an existing socket type, the signature provides an operation isSame, which

dynamically checks whether two sockets with apparently different type tags,

4.1. TYPESTATE 63

’a and ’b, are in fact identical. If the sockets are the same, then isSame returns

a coercion to tie a capability typed for socket ’a to work instead with (the same

socket) ’b.

The basic error-handling interface described thus far can be inconvenient,

because when catching an exception it requires checking both which socket

it goes with and what state the socket is in. The last four functions in the

signature specify a higher-level error-handling interface that supports catching

exceptions containing a specified socket in a specified state. For example,

catchRaw can be used as follows:
catchRaw

(λλ _ → ebody)
(sock, λλ cap → ehandler)

Function catchRaw evaluates expression ebody in the context of an exception

handler that catches exceptions for socket sock in state raw, in which case it

invokes the handler with cap as the raw socket capability. There are three

additional functions for catching exceptions in the three other socket states.

The implementation. An implementation of signature SOCKET_CAP ap-

pears in figure 4.4. It begins with type declarations for sockets, capabilities,

and states. Sockets are represented by an underlying, non-typestate socket

type S.socket; capabilities, as usual, are represented by type unit, since they

need not represent any information at run time. The four types representing

socket states, raw, named, listening, and ready, are purely abstract. Because the

parameters to the capability type ’a@’c are phantom, the states themselves

need not be represented at all.

Type dynamicCap and exception Socket, both used for error handling, are

described above.

The first operation, socket, uses function S.socket provided by the under-

lying, non-typestate sockets structure, to create a socket, and if successful

returns it in a pair along with value () representing the capability. If S.socket
fails, it raises an IOError exception carrying an error message; socket catches

that exception and throws instead a Socket exception with the same message.

The exception also contains None, because there is no socket yet to include as

the first component of the pair.

64 CHAPTER 4. EXPRESSIVENESS OF ALMS

module SocketCap : SOCKET_CAP = struct
module S = Socket

type ’a socket = S.socket
type ’a @ ’c = unit
type raw and named and listening and ready

type ’a dynamicCap = Raw of ’a@raw
| Named of ’a@named
| Listening of ’a@listening
| Ready of ’a@ready

exception Socket of (∃∃ ’a. ’a socket × ’a dynamicCap) option × string

let socket _ : ∃∃ ’a. ’a socket × ’a@raw =
try (S.socket (), ())
with IOError msg → raise (Socket (None, msg))

let lift thunk sock mkcap =
try thunk ()
with IOError msg → raise (Socket (Some (sock, mkcap ()), msg))

let bind sock port _ = lift (λλ _ → S.bind sock port) sock Raw
let listen sock _ = lift (λλ _ → S.listen sock) sock Named
let accept sock _ =

lift (λλ _ → ((S.accept sock, ()) : ∃∃ ’a. ’a socket × ’a@ready, ()))
sock Listening

let connect sock host port cap =
lift (λλ _ → S.connect sock host port)

sock (match cap with Left _ → Raw | Right _ → Named)

let send sock data _ = lift (λλ _ → S.send sock data; ()) sock Ready
let recv sock len _ = lift (λλ _ → (S.recv sock len, ())) sock Ready
let close sock _ =

try S.close sock
with IOError msg → raise (Socket (None, msg))

〈error handling in figure 4.5〉
end

Figure 4.4: Alms implementation of TCP (i): basic operations

4.1. TYPESTATE 65

The next several operations follow a similar pattern, catching any IOError
exception thrown by the underlying operation and throwing a Socket exception

containing the socket and its capability instead. This pattern is abstracted

into helper function lift, which takes three arguments: first, a thunk for the

desired operation; second, the socket to include in an exception, should one be

raised; and third, a data constructor for the dynamic capability in the correct

state should the operation fail.

The next six functions, starting with bind, demonstrate a simple use of

lift. Each passes lift a function that performs the underlying socket operation,

the socket itself, and the data constructor for the current state of the socket.

Function bind, if successful, takes a socket in the raw state and transitions it

to the named state. If bind fails, the socket remains in the raw state, so the

third argument to lift in the definition of bind is data constructor Raw. Thus,

if S.bind fails, then bind raises a Socket exception containing the socket and

a dynamicCap value with a raw capability. Functions listen, accept, send, and

recv all follow the same pattern. Function connect is slightly more complicated,

because the socket given to connect may be in either state raw or named; it

determines which state the capability is in by pattern matching on the sum

of capabilities given as its final parameter, and passes lift the appropriate

constructor. The final function in the figure, close, does not use lift, but instead

raises an exception with None on failure.

The implementation of module SocketCap continues in figure 4.5 with the

error-handling functions whose interface appeared in figure 4.3. Function

isSame checks whether two sockets are identical; if so, it returns a witness

function, and if not it returns None. The four high-level error-handling

functions share a similar structure, abstracted into helper function catchBy.

Function catchBy adds a second argument to the state-specific functions to

specify which state to catch, represented (as in lift) as a data constructor for

type dynamicCap. It invokes the body computation with an exception handler

catching Socket exceptions. It then checks whether the caught dynamic

capability is in the expected state and whether the caught socket matches the

expected socket. If so, then it invokes the handler, but otherwise it re-raises

the exception. The four state-specific error-handling functions are defined

66 CHAPTER 4. EXPRESSIVENESS OF ALMS

let isSame sock sock′=
if sock == sock′

then Some (λλ _ → ())
else None

let catchBy body state (sock′, handler) =
try body ()
with Socket ((Some (sock, dyncap), msg) as se) →

if dyncap == state () && sock == sock′

then handler ()
else raise (Socket se)

let catchRaw body = catchBy body Raw
let catchNamed body = catchBy body Named
let catchListening body = catchBy body Listening
let catchReady body = catchBy body Ready

Figure 4.5: Alms implementation of TCP (ii): error handling

simply as catchBy instantiated with the correct state constructor for each.

In general, implementing a typestate interface requires a trusted kernel

that is not checked to obey the desired abstraction. Sometimes, it is possible

to reduce the size of the trusted code by providing the right operations to

untrusted code. For example, note that making catchBy available to clients

of the sockets library would not be safe, as it trusts the caller that the given

data constructor matches the type of the given exception handler. Thus, the

implementation of figure 4.5 relies on the type of each of the four state-specific

functions in the interface matching the data constructors passed by each in

the implementation. There is an alternate design in which catchBy and the

four state-specific functions are kept outside the trusted kernel, as they are

expressible using isSame. This implementation of the error-handling functions,

which is more complicated than the trusted version, appears in figure 4.6.

4.1.1 A Socket Example

4.1. TYPESTATE 67

let catchBy body
(prj : ∀∀ ’a. ’a dynamicCap →

’a dynamicCap + (’a@’c A−→ ’a dynamicCap) × ’a@’c)
(sock′, handler) =

try body ()
with Socket (Some (sock, dyncap), msg) →

match prj dyncap with
| Left dyncap → raise (Socket (Some (sock, dyncap), msg))
| Right (uncap, cap) →

match isSame sock sock′ with
| None → raise (Socket (Some (sock, uncap cap), msg))
| Some witness → handler (witness cap)

let catchRaw body =
catchBy body (function Raw cap → Right (Raw, cap)

| dyncap → Left dyncap)

let catchNamed body =
catchBy body (function Named cap → Right (Named, cap)

| dyncap → Left dyncap)

let catchListening body =
catchBy body (function Listening cap → Right (Listening, cap)

| dyncap → Left dyncap)

let catchReady body =
catchBy body (function Ready cap → Right (Ready, cap)

| dyncap → Left dyncap)

Figure 4.6: Alternate, untrusted implementation of error handling

68 CHAPTER 4. EXPRESSIVENESS OF ALMS

module EchoServer = struct
open SocketCap

let bufSize = 1024

let rec clientLoop sock cap =
let str = recv sock bufSize cap in

send sock str . cap;
clientLoop sock cap

let rec acceptLoop sock cap =
let (clientsock, clientcap) = accept sock cap in

putStrLn "Opened␣connection";
Thread.fork (λλ _ →

catchReady
(λλ _ → clientLoop clientsock clientcap)
(clientsock, λλ clientcap →

close clientsock clientcap;
putStrLn "Closed␣connection"));

acceptLoop sock cap

let serve port =
let (sock, cap) = socket () in

bind sock port . cap;
listen sock . cap;
acceptLoop sock cap

end

let main = function
| [port] → EchoServer.serve (int_of_string port)
| _ → failwith "Usage:␣echoServer.alms␣PORT"

in main (getArgs ())

Figure 4.7: An echo server using SocketCap

4.2. REGIONS 69

Figure 4.7 contains an example program that uses the SocketCap struc-

ture to implement a simple echo server. The echo server accepts incoming

connections, and for each client echoes back whatever data the client sends

until the client disconnects. The program is structured as two loops—one for

accepting incoming connections and one for handling each client—and some

initialization code.

Function clientLoop defines the loop for interacting with each client, which

repeatedly reads a string from the socket and writes the string back. The

function binds the capability using the implicit threading syntax (§3.2.1); it

does not need to explicitly thread the capability because that is handled by the

implicit threading transformation.

Function acceptLoop defines the outer loop that waits for incoming connec-

tions and calls clientLoop in a new thread for each; this function too binds cap
as an implicitly threaded variable. After a new connection is accepted, a new

thread is started to service the client. The client loop is run in the context

of an exception handler that catches Socket exceptions for socket clientsock
in the ready state. When the client disconnects, then either send or recv (in

the client loop) raises a Socket exception containing a socket and capability in

state ready. The exception handler catches this, uses the capability to close the

socket, and prints a message that the connection was closed.

The initial setup for the server happens in function serve, which creates

a socket (binding the capability to an implicitly threaded variable, as usual),

then binds the socket to a port and begins queueing incoming connections,

calling acceptLoop to accept clients.

Finally, function main parses the command line arguments. Given a single

argument, it starts the server on that port; otherwise, it prints an error

message and exits.

4.2 Regions

As a high-level language with affine rather than linear types, Alms assumes

that the run-time system uses tracing garbage collection to reclaim memory.

However, regardless of run-time support for manual memory management,

70 CHAPTER 4. EXPRESSIVENESS OF ALMS

module type SIMPLE_REGION = sig
type ’r region
type ’r regcap : A
type (’r, ‘a) ref

val create : unit → ∃∃ ’r. ’r region × ’r regcap
val delete : ’r region → ’r regcap → unit

val new : ‘a → ’r region → ’r regcap → (’r, ‘a) ref × ’r regcap
val swap : (’r, ‘a) ref → ‘a → ’r regcap → ‘a × ’r regcap
val write : (’r, ‘a) ref → ‘a → ’r regcap → ’r regcap
val read : (’r, ’a) ref → ’r regcap → ’a × ’r regcap

end

Figure 4.8: Simple, Vault-style regions

Alms’s type system can express both simple and more advanced interfaces

for regions. Throughout this section, we assume that we are allocating only

mutable references in regions, rather than allocating arbitrary heap values in

regions in the style of Walker et al. (2000).

Vault-style regions. A simple interface to regions similar those provided

in Vault (see figures 2.6 and 2.7 on page 27) appears in figure 4.8. In this

interface, regions are unlimited values and capabilities to access regions are

affine. Because operations to access or free a region require an affine capability,

this interface ensures that a region cannot be accessed after it is freed.

Regions are identified by type variables, which correspond to keys in Vault.

That is, a region value of type ’r region corresponds to a region value in Vault

of type tracked(’r) region; the capability ’r regcap corresponds to having ’r in

the held key set. The type (’r, ‘a) ref of a value of type ‘a allocated in region ’r
corresponds to the Vault guarded type ’r:‘a.

Temporary aliasing. It is not surprising that Alms can support Vault-style

regions, since they are a simple application of typestate. However, Alms can

support more flexible kinds of regions as well. In §2.3.2, I discussed how

Walker et al. (2000) use uniqueness subtyping and bounded quantification to

4.2. REGIONS 71

module type FRAC_REGION = sig
type ’r region
type (’r, ’c) regcap : A

type 1
type 2
type ’n/’d

val create : unit → ∃∃ ’r. ’r region × (’r, 1) regcap
val delete : ’r region → (’r, 1) regcap → unit

val split : (’r, ’c) regcap → (’r, ’c/2) regcap × (’r, ’c/2) regcap
val join : (’r, ’c/2) regcap × (’r, ’c/2) regcap → (’r, ’c) regcap

type (’r, ‘a) ref

val new : ‘a → ’r region → (’r, ’c) regcap → (’r, ‘a) ref × (’r, ’c) regcap
val swap : (’r, ‘a) ref → ‘a → (’r, ’c) regcap → ‘a × (’r, ’c) regcap
val write : (’r, ‘a) ref → ‘a → (’r, ’c) regcap → (’r, ’c) regcap
val read : (’r, ’a) ref → (’r, ’c) regcap → ’a × (’r, ’c) regcap

end

Figure 4.9: Regions with fractional capabilities

support temporarily aliasing regions. For example, here is the type of a CL

function that takes a capability granting shared access to two regions and

passes the same capability to its continuation:

∀α1:RGN,α2:RGN.∀β≤ ×capα1 ⊗×capα2. (β, . . . , (β, . . .)→ 0)→ 0.

This type allows passing a unique capability to a single region, temporarily

aliasing it as α1 and α2, such that the continuation then recovers the original,

unique capability.

While Alms does not support uniqueness subtyping and bounded quantifi-

cation, the same concept can be expressed in Alms using fractional capabilities

(as in figure 3.11 on p. 51). The idea is that the type of a region capability

includes a fraction that specifies “how much” of the capability is held. The full

capability grants exclusive access and all that entails, whereas a partial

capability grants only shared access. A signature for fractional regional

72 CHAPTER 4. EXPRESSIVENESS OF ALMS

capabilities appears in figure 4.9. Region capabilities now have a second

type parameter, which represents the fraction of the capability using types 1
and 2 and binary type constructor ·/ ·. Function create returns a full capability

(fraction 1), and delete likewise requires a full capability in order to delete the

region. Functions split and join are used to manage capabilities by splitting

a capability of fraction ’c into two of fraction ’c/2 each and rejoining a pair of

the latter back into the former. Operations on references are polymorphic in

the fraction of the capability that they require and return, because none of the

reference operations requires exclusive access.

Using this interface, the example from Walker et al. (2000) may be written

in Alms as a function that takes two potentially-shared region capabilities,

having this type:

· · · → (’r1, ’c1) regcap × (’r2, ’c2) regcap →
··· × (’r1, ’c1) regcap × (’r2, ’c2) regcap

To call such a function by aliasing a single region capability, the caller must

split the capability, and the caller can recover the original capability by joining

the capabilities in the result. This split-join pattern is easily abstracted into a

function that performs the splitting and joining:

let withSplit f cap =
let (result, cap1, cap2) = f (split cap) in

(result, join (cap1, cap2))

Adoption and focus. In the region examples presented thus far, the types of

values in references are tracked by the reference type itself, which means that

regions contain values of multiple types. Another approach is homogeneous
regions, where the region capability tracks the type of references to the region,

and thus all values in a region have the same type (Walker et al. 2000;

Charguéraud and Pottier 2008). A signature for simple homogeneous regions

appears in figure 4.10.

Fähndrich and DeLine (2002) propose a pair of operations, adoption and

focus, for dealing with unlimited objects that point to linear objects; Pottier

(2007) reinterprets these operations as acting on homogeneous regions. Pottier

distinguishes singleton regions, which contain a single reference, from group

4.2. REGIONS 73

module type HOMOGENEOUS_REGION = sig
type ’r region
type (’r, ‘a) regcap : A
type ’r ref

val create : unit → ∃∃ ’r. ’r region × (’r, ‘a) regcap
val delete : ’r region → (’r, ‘a) regcap → unit

val new : ‘a → ’r region → (’r, ‘a) regcap → ’r ref × (’r, ‘a) regcap
val swap : ’r ref → ‘a → (’r, ‘a) regcap → ‘a × (’r, ‘a) regcap
val write : ’r ref → ‘a → (’r, ‘a) regcap → (’r, ‘a) regcap
val read : (’r, ’a) ref → (’r, ‘a) regcap → ’a × (’r, ‘a) regcap

end

Figure 4.10: Simple homogeneous regions

regions, which may contain a number of references. References in both group

and singleton regions support the usual reference operations such as reading,

writing, and swapping. References in singleton regions also support strong
updates, whereby writing a reference changes its type. Group regions do not

support strong updates because the same region capability tracks the type

of all references to the region. A signature for singleton and group regions

appears in figure 4.11.

The adoption and focus operations support managing singleton and group

regions. Each new reference is allocated in a new, singleton region. A group

region may permanently adopt a singleton region, at which point the capability

for the singleton region is lost and the type of the reference is updated to

indicate that it now belongs to the group region. Group regions do not support

strong updates, but focus allows carving out one reference from a group region

and temporarily assigning it to a singleton region. Since the type of the

reference may then be changed by a strong update, the old group capability

must be temporarily disabled to avoid accessing the reference at its old type.

So, focus does not return the old group capability, but instead returns a defocus

function, which converts the new singleton region capability back into the old

group region capability.

74 CHAPTER 4. EXPRESSIVENESS OF ALMS

module type FOCUS_REGION = sig
type (’r, ’k, ‘a) rgn : A
type singleton
type group
type (’r, ‘a) rgn1 = (’r, singleton, ‘a) rgn
type (’r, ‘a) rgnG = (’r, group, ‘a) rgn
type ’r ref

val new : ‘a → ∃∃ ’r. ’r ref × (’r, ‘a) rgn1
val newGroup : unit → ∃∃ ’r. (’r, ‘a) rgnG
val delete : (’r, ’k, ‘a) rgn → unit

val read : ’r ref → (’r, ’k, ’a) rgn → ’a × (’r, ’k, ’a) rgn
val write : ’r ref → ‘a → (’r, ’k, ‘a) rgn → (’r, ’k, ‘a) rgn
val swap : ’r ref → ‘a → (’r, ’k, ‘a) rgn → ‘a × (’r, ’k, ‘a) rgn
val strongWrite : ’r ref → ‘b → (’r, ‘a) rgn1 → (’r, ‘b) rgn1
val strongSwap : ’r ref → ‘b → (’r, ‘a) rgn1 → ‘a × (’r, ‘b) rgn1

type (’r, ‘a, ’s) defocus = (’s, ‘a) rgn1 → (’r, ‘a) rgnG

val adopt : ’r ref → (’r, ‘a) rgn1 → (’s, ‘a) rgnG →
’s ref × (’s, ‘a) rgnG

val focus : ’r ref → (’r, ‘a) rgnG →
∃∃ ’s. ’s ref × (’s, ‘a) rgn1 × (’r, ‘a, ’s) defocus

end

Figure 4.11: Homogeneous regions with adoption and focus

None of the region interfaces in this section are especially useful in a

high-level language like Alms, though they do demonstrate the flexibility of

Alms’s type system and its potential applicability for managing memory in a

lower-level language. However, regions are not limited to managing memory. I

return to regions with adoption and focus at the end of this chapter (§4.3.4),

where I discuss an application of regions to session types.

4.3. SESSION TYPES 75

type 1
type +’a ; +’s rec ’s
type ↑ −‘a
type ↓ +‘a
type +’s ⊕ +’t
type +’s & +’t

Figure 4.12: Binary session types

4.3 Session Types

In this section, I describe three designs for session types in Alms. The first

provides binary, anonymous branches—in other words, every protocol branch

goes two ways, with labels amounting to left and right. The second take on

session types provides k-way, labeled branches, though unlike the first it relies

on explicit protocol declarations. Finally, the third subsection combines session

types with regions. In each case, the value that tracks the state of the session,

whether the channel itself or a capability, is affine, which ensures that as each

step in a protocol is taken, the ability to erroneously repeat that step is lost.

4.3.1 Anonymous, Binary Session Types

Type definitions for binary session types appear in figure 4.12. The session

type for a finished session is 1. Sequencing is written using the binary type

constructor ·; ·. Both parameters are covariant, and the annotation “rec ’s”

specifies that equirecursion is allowed through the second parameter, in order

to represent recursive session types.2 The next two type constructors, ↑· and

↓·, are used in the first parameter of ·; · to indicate sending and receiving,

respectively. (There is no need for special cases for sending and receiving

sessions, since session-typed channels are ordinary values.) Thus, ↑int; ↓bool; 1
is the protocol to send an int and then receive a bool.

2Alms has equirecursive types, but in order to prevent the spurious typings that
equirecursion introduces, it infers equirecursive types only when cycles are guarded by
a type constructor that is declared to allow recursion.

76 CHAPTER 4. EXPRESSIVENESS OF ALMS

type 1 dual = 1
| (↑‘a; ’s) dual = ↓‘a; ’s dual
| (↓‘a; ’s) dual = ↑‘a; ’s dual
| (’s & ’t) dual = ’s dual ⊕ ’t dual
| (’s ⊕ ’t) dual = ’s dual & ’t dual

Figure 4.13: Duality for binary session types

Binary choice is written using type constructors ·⊕ · for internal choice and

·& · for external choice. For example, µµ ’a. ↑int; ’a & 1 is the type of a protocol

to send any number of ints, where the length of the sequence is determined by

the receiver.

Figure 4.13 defines a type function dual, which computes session type

duality. Alms supports the definition of type functions defined by recursion and

pattern matching on types. Type patterns are built out of type variables and

type constructors (which cannot be type functions or type synonyms themselves

to ensure coherence). Type function applications are evaluated by checking

the patterns in each clause in order until one matches, then substituting

in the right-hand side of the matching clause. Type function application is

non-strict, so that recursive functions such as dual may be applied to recursive

types. (Evaluation is forced when it is necessary to check subtyping between

applications of different type constructors.) Type function dual matches five

potential patterns, in each case transforming a session type to its dual (defined

in figure 2.12 on p. 32).

The remainder of the interface for binary session types appears in fig-

ure 4.14. Type ’s rendezvous is an unlimited rendezvous object for protocol ’s,

which servers and clients can synchronize on to start sessions; function

newRendezvous creates a new rendezvous object for any protocol. To start

a new session, a client uses function request on a rendezvous object for some

protocol ’s to get an affine channel of type ’s channel. The client blocks until

paired with a server calling function accept on the same rendezvous object, at

which point accept returns a channel for the dual protocol ’s dual.
The last five functions in signature BINARY_SESSION implement the

4.3. SESSION TYPES 77

module type BINARY_SESSION = sig
〈session types in figure 4.12〉
〈duality in figure 4.13〉
type ’s rendezvous
type +’s channel : A

val newRendezvous : unit → ’s rendezvous

val request : ’s rendezvous → ’s channel
val accept : ’s rendezvous → ’s dual channel

val send : ‘a → (↑‘a; ’s) channel → ’s channel
val recv : (↓‘a; ’s) channel → ‘a × ’s channel
val sel1 : (’s ⊕ ’t) channel → ’s channel
val sel2 : (’s ⊕ ’t) channel → ’t channel
val follow : (’s & ’t) channel → ’s channel + ’t channel

end

Figure 4.14: Interface for binary session types

operations for communicating in a session. Functions send and recv send

and receive values, in each case taking a channel where the protocol says to

send (or receive) a value, and returning a channel for the remaining protocol.

Internal choice is done with functions sel1 and sel2, which given a channel

whose protocol is an internal choice, return a channel for the left or right

protocol of the choice, respectively. Function follow implements external choice

by turning a channel with an external choice protocol into either a channel for

the left protocol or a channel for the right protocol, depending on the selection

made on the other end of the channel.

Implementation. My implementation of the binary session types interface

uses monomorphic, synchronous channels (figure 4.15). Because these chan-

nels allow communicating values of only one type, implementing session-typed

channels on top of monomorphic channels requires some way to send multiple

types. One possibility is channel-passing style, whereby each message includes

a fresh channel to use for the next message, but this is complicated and

likely inefficient. Instead, I use a coercion, Unsafe.unsafeCoerce, which has

78 CHAPTER 4. EXPRESSIVENESS OF ALMS

module Channel : sig
type ‘a channel

val new : unit → ‘a channel
val send : ‘a channel → ‘a → unit
val recv : ‘a channel → ‘a

end

Figure 4.15: Monomorphic, synchronous channels

module BinarySession : BINARY_SESSION = struct
〈session types in figure 4.12〉
〈duality in figure 4.13〉
module C = Channel

type ’s channel = bool C.channel
type ’s rendezvous = ’s channel C.channel

let newRendezvous = C.new
let request = C.recv
let accept rv = let c = C.new () in C.send rv c; c

let send c a = C.send (Unsafe.unsafeCoerce c) a; c
let recv c = (C.recv (Unsafe.unsafeCoerce c), c)
let sel1 c = C.send c true; c
let sel2 c = C.send c false; c
let follow c = if C.recv c then Left c else Right c

end

Figure 4.16: Implementation of binary session types

type ∀∀ ‘a ‘b. ‘a → ‘b. Using an unsafe coercion can easily violate type safety;

thus, safety relies on the correctness of both the signature and the structure

implementing it. (I showed elsewhere (Pucella and Tov 2008) how session

types implemented using unsafe underlying channels protected by the right

signature can be proved type safe.)

Signature BINARY_SESSION is implemented in figure 4.16. Session chan-

nels are represented by type bool C.channel; the type parameter is not im-

4.3. SESSION TYPES 79

portant, since we are using unsafe coercions, but bool simplifies the code

somewhat. A rendezvous object for protocol ’s is represented by a monomorphic

channel for sending channels. Creating a new rendezvous object merely

requires creating a new channel, and requesting a session is done by receiving

the channel for the session over a rendezvous channel. Thus, at the other end

of a request, accept needs to create a new session channel, send it over the

rendezvous channel, and return it.

Session communication is straightforward except for the coercions. To send

or receive on a session-typed channel, we coerce the channel to the right type

for the value to be sent or received, send or receive the value, and return the

channel. For choice, the internal choice side sends a boolean to the external

choice side, where true indicates the left branch and false indicates the right.

Thus, sel1 and sel2 send true and false, respectively. Function follow receives

a bool is returns the channel injected to the left or right depending on the

branch chosen by the other side.

4.3.2 Labeled, k-ary Session Types

The changes from binary to k-ary session types are small (figure 4.17). The

complete session 1, sequencing, sending, and receiving, are written as be-

fore; only the treatment of branching changes. Whereas before we declared

branching as part of the syntax of session types, instead branching will be

done using Alms’s built-in algebraic data types. Internal choice is now written

with type ∼⊕‘c, which is merely a type synonym for sending a value of type ‘c
and completing the session; external choice, written ∼&‘c is done by receiving

the value of type ‘c. Type variable ‘c will be instantiated with an algebraic

data type representing the available choices in some branch. The branching

operations thus work as follows. Function choose takes a constructor to wrap

a channel for some protocol ’s in the algebraic data type ‘c, which choose then

sends over the ∼⊕‘c channel; choose returns the other end of the sent channel as

an ’s dual channel. On the other end, follow receives the value of the algebraic

data type, which the receiver must pattern match to get a channel with the

protocol of the sender’s choice. Recursive sessions are written using algebraic

80 CHAPTER 4. EXPRESSIVENESS OF ALMS

module type SESSION_TYPE = sig
type 1
type +’a ; +’s
type ↑ −‘a
type ↓ +‘a

type 1 dual = 1
| (↑‘a; ’s) dual = ↓‘a; ’s dual
| (↓‘a; ’s) dual = ↑‘a; ’s dual

type ’s rendezvous
type +’s channel : A

val newRendezvous : unit → ’s rendezvous

val request : ’s rendezvous → ’s channel
val accept : ’s rendezvous → ’s dual channel

val send : ‘a → (↑‘a; ’s) channel → unit × ’s channel
val recv : (↓‘a; ’s) channel → ‘a × ’s channel

type ∼⊕ ‘c = ↑‘c; 1
type ∼& ‘c = ↓‘c; 1

val choose : (’s channel A−→ ‘c) → ∼⊕‘c channel → unit × ’s dual channel
val follow : ∼&‘c channel → unit × ‘c

end

Figure 4.17: Interface for k-ary session types

data types as well.

If this approach to branching seems mystifyingly general, consider the

following example. The ATM–bank protocol (originally from figure 2.9 on

p. 30) appears in figure 4.18, and a sample client using the protocol appears

in figure 4.19. The protocol starts with an internal choice, whereby the ATM

sends the bank a value of type choose_trans, which is a three-way labeled sum

over channels for the protocols for each choice. From the ATM’s perspective,

the sent channels are for a protocol dual to its own, since they will be used

by the bank side of the transaction. Within the Withdraw branch, there is an

external choice, which indicates where the bank selects Success or Failure by

4.3. SESSION TYPES 81

type atm_prot = ∼⊕choose_trans

and choose_trans = Deposit of (↑int; ↓int; 1) dual channel
| Balance of (↓int; 1) dual channel
| Withdraw of (↓int; ∼&status) dual channel

and status = Success of (↓int; 1) channel
| Failure of (↓string; 1) channel

Figure 4.18: ATM–bank protocol in k-ary session types

let performWithdrawal amt (rv : atm_prot rendezvous) =
let c = request rv in

choose Withdraw c;
send amt c;
follow c;
match c with
| Success c → recv c
| Failure c → failwith (recv c)

Figure 4.19: Client for ATM–bank protocol

sending a channel for the remaining protocol in one of those data constructors.

The client implements the ATM side of the protocol for making a withdrawal

in function performWithdrawal. The arguments to performWithdrawal are

the amount to withdraw and a rendezvous object for connecting to the bank.

The client connects, chooses the Withdraw branch, sends the amount, and

then must follow whichever branch of type status chosen by the other side. On

Success, the client receives and returns the transaction number; on Failure,

the client receives the reason for failure and throws it as an exception.

Implementation. An implementation of labeled, k-ary session types ap-

pears in figure 4.20. The implementation is very similar to the implementation

of binary session types in figure 4.16, except that there is less code for

implementing choice because choice is handled by clients to the library using

algebraic data types and pattern matching. Function choose simply takes the

82 CHAPTER 4. EXPRESSIVENESS OF ALMS

module SessionType : SESSION_TYPE = struct
〈session types and duality in figure 4.17〉
module C = Channel

type ’s channel = bool C.channel
type ’s rendezvous = ’s channel C.channel

let newRendezvous = C.new
let request = C.recv
let accept rv =

let c = C.new () in
C.send rv c;
c

let send a c = (C.send (Unsafe.unsafeCoerce c) a, c)
let recv c = (C.recv (Unsafe.unsafeCoerce c), c)
let choose ctor c = send (ctor c) c
let follow c = ((), fst (recv c))

end

Figure 4.20: Implementation of k-ary session types

constructor for the chosen branch and the channel, and sends the constructor

applied to the channel over the channel; follow receives the chosen branch

over the channel and returns it in place of the channel for pattern matching

by the client code.

4.3.3 Example: Parallel Polygon Clipping

As an example, I give an implementation of Sutherland and Hodgman’s (1974)

reentrant polygon clipping algorithm using session types. A sample input and

output for the algorithm appears in figure 4.21. (The actual algorithm works

with planes and points in R3, but the figure is limited to two dimensions for

readability.) The input to the algorithm is a set of planes, which represent

a convex, plane-faced volume, and a sequence of points, which represent a

polygon. In the diagram, the input appears on the left: there are two planes

(perpendicular to the page), representing the volume to their right; and four

4.3. SESSION TYPES 83

plane

plane

p3p0

p1 p2

p′
4p′

5

p′
0

p′
1

p′
2 p′

3

clip

Figure 4.21: Example of polygon clipping

points, representing a rectangle. The output is the polygon clipped within the

plane-faced volume, as appears on the right in figure 4.21.

Sutherland and Hodgman’s algorithm clips a polygon against a single plane

independently of the other planes, which means that it is easily parallelized

with a separate process for each plane. The original sequence of points is sent

to a process for the first plane, which clips against that plane and sends the

modified sequence of points to a process for the next plane, and so on, where

the process for the final plane outputs the final, clipped polygon.

In the example of figure 4.21, the first plane runs from the lower left to

the upper right, labeled in the lower left, and the second plane runs from the

upper left to lower center. The original polygon is represented by the sequence

of points p0, p1, p2, p3. When sent to the process for the first plane, the result

is the sequence p0, p′
1, p′

2, p2, p3. That sequence is sent to the clipper process

for the second plane, which yields p′
0, p′

1, p′
2, p′

3, p′
4, p′

5. Each clipper process

holds onto at most two points at a time and begins producing points right away,

which means that the algorithm is highly parallel.

A geometry library. A signature for a simple 3-D geometry library appears

in figure 4.22. The library defines types representing points and planes.

The record { x, y, z } represents the Cartesian coordinate (x, y, z); the record

{ a, b, c, d } represents the either the plane {(x, y, z) | ax+by+ cz+d = 0} or the

volume {(x, y, z) | ax+by+ cz+d > 0}, depending on context. A line segment is

represented as a pair of points.

84 CHAPTER 4. EXPRESSIVENESS OF ALMS

module Geometry : sig
type point = { x, y, z : float }
type plane = { a, b, c, d : float }
type segment = point × point

val string_of_point : point → string
val string_of_plane : plane → string

val point_of_string : string → point
val plane_of_string : string → plane

val is_point_above_plane
: point → plane → bool

val intersect : segment → plane → point option
end

Figure 4.22: Interface for a simple 3-D geometry library

The Geometry structure provides functions for printing and parsing points

and planes, and two additional functions for doing geometry. The first function,

is_point_above_plane, takes a point and a plane representing the volume

“above” the plane, and returns whether the point is in the volume. Function

intersect takes a plane and a line segment and returns the point where the

segment intersects the plane, or None if they do not intersect.

The protocol. The protocol used by the polygon clipping program is defined

in figure 4.23. The first protocol, ‘a stream, specifies receiving a sequence of

values of type ‘a, where the length of the sequence is determined by the sender.

This is the protocol used to communicate sequences of points between clipping

processes. The second protocol, main_prot, is used to communicate the whole

input to the algorithm, as it specifies receiving a sequence of planes (whose

length is determined by the sender) followed by a sequence of points (protocol

point stream).

Parsing and printing. The remaining code in figure 4.23 implements the

program’s communication with the outside world.

The result of the algorithm is printed to the standard output by function

4.3. SESSION TYPES 85

open Geometry

(∗ Protocol for receiving a sequence of ‘a: ∗)
type ‘a stream = ∼&(‘a step)
and ‘a step = Done of 1 channel

| Next of (↓‘a; ‘a stream) channel

(∗ The main protocol: receive a sequence of planes followed by a
∗ sequence of points: ∗)
type main_prot = ∼&choice
and choice = Planes of (↓plane; main_prot) channel

| Points of point stream channel

(∗ Print sequence of points read from ic: ∗)
let rec printer (ic : point streamchannel) =

follow ic;
match ic with
| Done ic → ()
| Next ic → putStrLn (string_of_point (recv ic)); printer ic

(∗ Parse the input planes and points; send to a channel: ∗)
let parser (oc : main_protdual channel) =

let rec plane_loop () = match getLine () with
| "" → choose Points oc;

point_loop ()
| s → choose Planes oc;

send (plane_of_string s) oc;
plane_loop ()

and point_loop () = match getLine () with
| "" → choose Done oc
| s → choose Next oc;

send (point_of_string s) oc;
point_loop ()

in plane_loop ()

Figure 4.23: Implementation of polygon clipping (part 1 of 3)

(continued in figure 4.24)

86 CHAPTER 4. EXPRESSIVENESS OF ALMS

printer, which receives a sequence of points from a point stream channel and

prints them, in their external form, as they are read.

The input to the algorithm is read from the standard input and parsed by

function parser, which sends the sequence of planes and sequence of points

over a main_prot dual channel. The external form of the input is a sequence

of planes on separate lines, then a blank line, and then a sequence of points,

one per line, and finally terminating with a blank line. The parser reads

this external input format and sends values of types plane and point over the

channel provided as its argument.

Clipping. The polygon clipping program is structured as a chain of stream

transducers, with a parser as the source, a clipper process for each plane, and

a printer as the sink. Function clipper (figure 4.24) implements a clipper

process for a single plane. The function takes a plane representing the

space to clip within and two channels: a point stream channel for input and a

point stream dual channel for output.

The definition of clipper begins with several helper functions. Helper

function put informs the next clipper (or the printer) on the output channel

that it will be sending another point by selecting branch Next, and then sends

the point over the same channel. It does not take channel oc as an explicit

argument, because the outer binding of oc as an implicitly-threaded variable

is in scope; thus, the implicit threading transformation takes care of threading

the output channel through put. The next helper, putCross, takes a line

segment and sends the intersection of the segment with the clipping plane, if

they intersect. The final helper, putVisible, takes a point and sends it only if

the point is within the space delimited by the clipping plane.

The main body of clipper works as follows. First, if the input sequence of

points is empty then so is the output; otherwise, it reads the first point p0,

which it needs to retain, as the first vertex of a closed polygon is also the last.

It then loops through the remaining input points, outputting those points or

their intersections with the plane as appropriate. It finishes by connecting the

last point received to p0.

4.3. SESSION TYPES 87

(continued from figure 4.23)

(∗ Read a polygon from ic and send it, clipped by plane, to oc: ∗)
let clipper plane

 (ic : point stream channel, oc : point stream dual channel) =

(∗ Send point p on channel oc: ∗)
let put p = choose Next oc; send p oc in

(∗ If segment intersects plane then send the point of intersection: ∗)
let putCross segment =

match intersect segment plane with
| Some p → put p
| None → () in

(∗ Send point p if in semi-space “above” the plane: ∗)
let putVisible p =

if is_point_above_plane p plane
then put p
else ()

in
follow ic;
match ic with
| Done ic → choose Done oc
| Next ic →
let p0 = recv ic in
let rec loop p =

putVisible p;
follow ic;
match ic with
| Done ic → putCross (p, p0); choose Done oc
| Next ic → let p′ = recv ic in putCross p p′; loop p′

in
loop p0

Figure 4.24: Implementation of polygon clipping (part 2 of 3)

(continued in figure 4.25)

88 CHAPTER 4. EXPRESSIVENESS OF ALMS

(continued from figure 4.24)

let main () =
let rec get_planes (acc : plane list) (ic : main_prot channel) =

follow ic;
match ic with
| Points ic → rev acc
| Planes ic → get_planes (recv ic :: acc) ic in

let rec connect plane (ic : point stream channel) =
let outrv = newRendezvous () in

Thread.fork (λλ _ → clipper plane (ic, accept outrv); ());
request outrv in

let rv = newRendezvous () in
Thread.fork (λλ _ → parser (accept rv); ());
let (planes, ic) = get_planes [] (request rv) in
let ic = foldl connect ic planes
in

printer ic

Figure 4.25: Implementation of polygon clipping (part 3 of 3)

Putting it all together. Function main (figure 4.25) sets up the chain of

stream transducers, creating the necessary threads and connecting them

with session-typed channels. The definition of main begins with two helper

functions. Helper function get_planes accumulates a list of planes read from

a main_prot channel, returning the list of planes and the channel, which has

by that point become a point stream channel. Helper function connect takes a

plane and a point stream channel, and creates a clipper for that plane in a new

thread, connecting the given channel as the clipper’s input and creating a new

channel for its output; it returns the other end of the new channel, from which

the next transducer in the chain can read the sequence of points as clipped by

the new clipper.

Then the whole chain of stream transducers is set up as follows. First,

a rendezvous object is created for communicating with the parser, which

is started in a new thread. The parser accepts a connection on the new

rendezvous object, and the main thread requests a connection on the same

rendezvous and passes the resulting channel to get_planes in order to obtain

4.3. SESSION TYPES 89

the list of planes that represent the clipping space. Then, folding connect over

the list of planes starts a clipper for each plane, yielding a channel connected

to the final clipper, which is passed to the printer for printing the result.

4.3.4 Session Type Regions

As I observed at the end of §4.2, while Alms is capable of expressing interfaces

for regions, region-based memory management is not especially useful in Alms.

Charguéraud and Pottier (2008) suggest understanding regions not as sets of

memory locations but as sets of values. From that perspective, regions become

more widely applicable. In this section, I show how regions may be combined

with session types, in order to allow a single region capability to track the

state of any number of channels.

A signature for binary session types with regions appears in figure 4.26.

The main idea is to separate channels from their sessions, tracking the

current session with a capability. Thus, the type parameter on the channel

type ’r channel is not a session, but a region variable tying the channel to a

capability of either type ’r@’s or ’r@@’s, where ’s is the protocol for channel ’r.

Regions here are homogeneous, and as in the previous example with adoption

and focus, there are singleton regions with capabilities of type ’r@’s, and group

regions with capabilities of type ’r@@’s. Channels are initially created paired

with a singleton region, and all channel operations require a singleton region

for the channel as well.

Group regions of type ’r@@’s, created by function newGroup, allow associ-

ating multiple channels having the same session with a single region, which

means that they are all tracked by the same capability. There are no direct

channel operations for channels belonging to group regions, so to use such a

channel requires first focusing on the channel to get a temporary singleton

region, then performing the desired channel operations, and finally defocusing

to regain access to the group region that owns the channel.

Implementation. The implementation of signature SESSION_REGION is

straightforward (figure 4.27), and mostly similar to the implementation of

BINARY_SESSION. Channels are represented by bool C.channel, which means

90 CHAPTER 4. EXPRESSIVENESS OF ALMS

module type SESSION_REGION = sig
type 1
type +’a ; +’s rec ’s
type ↑−‘a
type ↓+‘a
type +’s ⊕ +’t
type +’s & +’t

type 1 dual = 1
| (↑‘a; ’s) dual = ↓‘a; ’s dual
| (↓‘a; ’s) dual = ↑‘a; ’s dual
| (’s & ’t) dual = ’s dual ⊕ ’t dual
| (’s ⊕ ’t) dual = ’s dual & ’t dual

type ’s rendezvous
type ’r channel
type ’r @ ’s : A
type ’r @@ ’s : A

val newRendezvous : unit → ’s rendezvous

val request : ’s rendezvous → ∃∃ ’r. ’r channel × ’r@’s
val accept : ’s rendezvous → ∃∃ ’r. ’r channel × ’r@’s dual

val send : ‘a → ’r channel → ’r@(↑‘a; ’s) → ’r@’s
val recv : ’r channel → ’r@(↓‘a; ’s) → ‘a × ’r@’s

val sel1 : ’r channel → ’r@(’s ⊕ ’t) → ’r@’s
val sel2 : ’r channel → ’r@(’s ⊕ ’t) → ’r@’t
val follow : ’r channel → ’r@(’s & ’t) → ’r@’s + ’r@’t

type (’r1, ’s, ’r2) defocus = ’r2@’s → ’r1@@’s

val newGroup : unit → ∃∃ ’r. ’r@@’s
val adopt : ’r1 channel → ’r1@’s → ’r2@@’s →

’r2 channel × ’r2@@’s
val focus : ’r1 channel → ’r1@@’s →

∃∃ ’r2. ’r2 channel × (’r1, ’s, ’r2) defocus × ’r2@’s
end

Figure 4.26: Interface to session types with regions

4.3. SESSION TYPES 91

module SessionRegion : SESSION_REGION = struct
〈session types in figure 4.12〉
〈duality in figure 4.13〉

module C = Channel

type ’s rendezvous = bool C.channel C.channel
type ’r channel = bool C.channel
type ’r @ ’s = unit
type ’r @@ ’s = unit

let newRendezvous = C.new
let request rv : ∃∃ ’r. ’r channel × unit = (C.recv rv, ())
let accept rv : ∃∃ ’r. ’r channel × unit =

let c = C.new () in
C.send rv c;
(c, ())

let send a c _ = C.send (Unsafe.unsafeCoerce c) a
let recv c _ = (C.recv (Unsafe.unsafeCoerce c), ())

let sel1 c _ = C.send c true
let sel2 c _ = C.send c false
let follow c _ = if C.recv c then Left () else Right ()

type (’r1, ’s, ’r2) defocus = ’r2@’s → ’r1@@’s

let newGroup _ : ∃∃ ’r. ’r@@’s = ()

let adopt c _ _ = (c, ())
let focus c _ : ∃∃ ’r2. ’r2 channel × (unit → unit) × unit = (c, id, ())

end

Figure 4.27: Implementation of session types with regions

92 CHAPTER 4. EXPRESSIVENESS OF ALMS

that communication requires an unsafe coercion. Region capabilities are

represented by type unit. All channel operations now take an additional pa-

rameter representing the region capability, and return value () as appropriate

to represent the region capability in the result.

The new operations are straightforward as well. Function newGroup
returns the unit value to represent a new group region capability. Function

adopt takes a channel and ignores its two capability arguments, and returns a

pair of the channel (which, by the signature, has a different region tag on its

type) and () for the capability. Finally, focus take a channel and capability, and

returns a triple of the channel, the identity function to represent the defocus

operation, and () as the new region capability.

A session type region example. A program using session type regions

appears in figures 4.28 and 4.29.

The server side. Figure 4.28 begins with two protocols for a server that

broadcasts messages of some type ’a to multiple subscribers. The server

receives two kinds of commands over a control channel with protocol ’a control.
In the left branch of the protocol, the server receives a value of type ’a to

broadcast to all of its subscribers. In the left branch, the server receives a

new subscriber, represented as a pair of a channel and a singleton capability.

The subscriber communicates with the server by protocol ’a subscription: first

the subscriber receives a welcome message from the server, and then the

subscriber can choose the left branch to disconnect, or the right branch to

subscribe to the sequence of broadcast messages.

Because the server needs to maintain an arbitrary number of subscribers,

all of which speak the same protocol, it uses a group region to track all

subscribers with a single capability. Thus, to communicate with a subscriber,

the server must focus that subscriber’s channel. Before the definition of the

server itself, two functions that help the server communicate with subscribers

are defined. Function deliver takes a message, the channel for a subscriber, and

the group region capability for the channel. It focuses the channel, sends the

message, and then defocuses in order to return the group capability. Function

broadcast takes a message, a list of subscriber channels, and the group region

4.3. SESSION TYPES 93

open SessionRegion

type ’a subscription = ↓string; (1 ⊕ µµ ’s. ↓’a; ’s)

type ’a control =
↓’a; ’a control

&
↓(∃∃ ’r. ’r channel × ’r@’a subscription dual); ’a control

let deliver msg subChan (subRgn : ’rs@@(µµ ’s. ↑’a; ’s)) =
let (subChan, defocus) = focus subChan subRgn in

send msg subChan . subRgn;
defocus subRgn

let broadcast msg subChans (subRgn : ’rs@@(µµ ’s. ↑’a; ’s)) =
foldl (deliver msg) subRgn subChans

let server (ctlChan, ctlRgn) =
let rec loop subChans

 (ctlRgn : ’r@’a control, subsRgn : ’q@@(µµ ’s. ↑’a; ’s)) =
follow ctlChan . ctlRgn;
let subChans = match ctlRgn with

| Left ctlRgn →
let msg = recv ctlChan ctlRgn in
broadcast msg subChans . subsRgn;
subChans

| Right ctlRgn → fst $
let (subChan, subRgn) = recv ctlChan ctlRgn in
send "Hello." subChan . subRgn;
follow subChan . subRgn;
match subRgn with
| Left _ → subChans
| Right subRgn →

(adopt subChan / subRgn) subsRgn :: subChans
in loop subChans (ctlRgn, subsRgn)

in loop [] (ctlRgn, newGroup ())

Figure 4.28: Broadcasting using session type regions (part 1 of 2)

(continued in figure 4.29)

94 CHAPTER 4. EXPRESSIVENESS OF ALMS

capability for all the subscribers; it uses deliver to send the message to every

subscriber in the list.

The server is defined by function server, which takes as arguments a control

channel and the singleton region capability for the channel. Before entering

its loop for handling commands, the server creates a new group region for

subscribers, and starts the loop with an empty list of subscriber channels.

The server then reads commands from the control channel. Given a message

command (left), the server broadcasts the message to all the subscribers using

function broadcast. Given a subscriber command (right), the server first

announces itself to the potential subscriber, and then follows whether the

potential subscriber elects to subscribe. If not, then the server is done with

that command; if so, then it adds the subscriber to the subscriber group region

and adds the subscriber channel to the list of subscribers.

The client side. Function subscriber, in figure 4.29, implements a sub-

scriber. It takes two parameters: each is a function to apply to each received

message, and rv is a rendezvous value on which to request a subscription. After

requesting a subscription, the client prints the welcome message read from the

channel, elects to subscribe by choosing the right branch of the ’a subscribtion
protocol, and enters a loop to read messages from the channel, applying each
to each.

Function client implements a line-based user interface with three possible

commands. If the user types +, then the client creates a new subscriber in a

new thread and connects it to the server. If the user types q, then the client

exits the program. Anything else typed by the user is sent to the server as a

message to broadcast to its subscribers.

Finally, function main ties it all together. It starts the server in a new

thread and connects it to the client started in the main thread.

4.4 Discussion

In this chapter, I have demonstrated approaches to typestate, regions, and

session types in Alms. Several notable benefits of Alms should stand out.

4.4. DISCUSSION 95

(continued from figure 4.28)

let subscriber each (rv : ’a subscription rendezvous) =
let (subChan, subRgn) = request rv in
let rec loop () =

each (recv subChan subRgn);
loop () in

putStrLn (recv subChan subRgn);
sel2 subChan . subRgn;
loop ()

let rec client ctlChan (ctlRgn : ’r@string control dual) =
match getLine () with
| "+" →

let rv = newRendezvous () in
Thread.fork (λλ _ → subscriber putStrLn rv);
sel2 ctlChan . ctlRgn;
send (accept rv) ctlChan . ctlRgn;
client ctlChan ctlRgn

| "q" →
exit 0

| msg →
sel1 ctlChan . ctlRgn;
send msg ctlChan . ctlRgn;
client ctlChan ctlRgn

let main () =
let rv = newRendezvous () in
Thread.fork (λλ _ → server (request rv));
uncurry client (accept rv)

Figure 4.29: Broadcasting using session type regions (part 2 of 2)

96 CHAPTER 4. EXPRESSIVENESS OF ALMS

First, the interfaces are reasonably concise and the implementations simple.

None of the examples in this chapter relies on an elaborate encoding. They do,

however, rely on the module system’s hiding of implementation details, which

forces clients to abide by usage restrictions; for example, clients are prevented

from duplicating affine capabilities, even though these capabilities are usually

represented by an unlimited nonce value.

Second, the sample programs written using the libraries defined in this

chapter are not significantly more complicated than the same programs would

be if written in languages with special-purpose stateful type systems; for

example, the echo server written with the typestate Berkeley sockets library

looks similar to how it would in Vault.

Third, the examples in this chapter demonstrate how affine types combine

with other language features to support defining and using abstractions in

new ways. For example, the use of exceptions in the Berkeley sockets library

simplifies client code that uses the interface because it eliminates the need

for explicit error checks; yet it maintains the possibility of handling errors if

desired. As another example, algebraic data types combine with session types

to support k-ary, labeled session types.

Fourth, and perhaps most importantly, this chapter shows off Alms’s

flexibility. Because none of these stateful type systems is built in to Alms,

each can be defined in a variety of different ways to suit different needs.

Furthermore, they can be combined in ways that were not anticipated when

the language was designed, such as in the final example of session types with

regions.

CHAPTER 5

A Model of Alms

ALMS HAS SEVERAL new type system features to make programming with

affine types practical, such as dereliction subtyping, automatic selection of

function usage qualifiers, dependent kinds, and abstract affine types. To

validate the soundness of this approach, I have constructed a core model for

Alms and established two results demonstrating its beneficial properties: a

standard, syntactic type soundness theorem and a theorem that Alms always

selects the best usage qualifier for function types. In this chapter, I describe

the syntax, semantics, and theory of the model.

The model, aλms, is based on System Fω
<:, the higher-order polymorphic

λ calculus with subtyping (Pierce 2002), with affine types and several other

changes to make it a more faithful model of Alms. Like Fω
<:, it features

subtyping and type operators. Subtyping models Alms’s dereliction subtyping,

whereby a function whose qualifier is unlimited may be used where a one-

shot function is expected; indeed, all of aλms’s subtyping relation arises from

function qualifier subtyping. Like Fω
<:,

aλms has type operators, but unlike

Fω
<:, type operators are restricted to first-order kinds, which means that the

arguments to type operators cannot be type operators themselves. The kind

system of aλms is enriched with dependent kinds, which succinctly describe the

relationship between the qualifier of a type operator and the qualifiers of its

parameters. Additionally, kinds in aλms carry variance information (Steffen

1997), which allows abstract type constructors to specify how their results

vary in relation to their parameters.

97

98 CHAPTER 5. A MODEL OF ALMS

The calculus aλms also includes more types and expressions than a minimal

presentation of Fω
<:. Because I am interested in practical issues, I believe it is

important for the model to include products,1 sums, mutable references, and

non-termination.

While aλms does not model Alms’s module system directly, the combination

of universal types, type operators, and subkinding is sufficient to support

abstract affine types in the style of Alms. These features make aλms a suitable

target for the first-order fragment of Rossberg et al.’s (2010) “F-ing modules”

translation, which compiles a language with modules to System Fω.

5.1 Syntax and Semantics of aλms

The syntax of aλms begins in figure 5.1. Expressions (e) include the usual

expressions from System F (variables, abstractions, applications, type ab-

stractions, and type applications), several forms for data construction and

elimination (nil, sum injections, sum elimination, pairs, and pair elimination),

recursion (fix e), and several operations on reference cells (allocation, linear

swap, and deallocation). Location names (`) appear at run time but are not

present in source terms.

Types (τ, figure 5.2) include type variables, type-level abstraction and

application, universal quantification, function types, and type constructor

constants for sums, products, unit, and references. As in Alms, the function

arrow carries a usage qualifier (ξ), which specifies whether the function is

unlimited or one-shot.

The two constant usage qualifiers (q), U for unlimited and A for affine, are

the bottom and top of the two-element lattice in figure 5.3. To see why the con-

stant usage qualifiers are insufficient for describing the most general usage con-

straints of functions, consider the K combinator Λα:〈α〉.Λβ:〈β〉.λx:α.λy:β. x

1In linear logic terms, my calculus supplies multiplicative conjunction (⊗) and additive
disjunction (⊕) directly. Additive conjunction (&) is easily encoded by

τ1 &τ2,∀α:A. (τ1
A−−◦α)⊕ (τ2

A−−◦α) ξ1tξ2−−−−−◦α
[v1,v2],Λα:A.λx:(τ1

A−−◦α)⊕ (τ2
A−−◦α). case x of inl y1 → y1 v1; inr y2 → y2 v2,

where ξ1 and ξ2 are the kinds of τ1 and τ2.

5.1. SYNTAX AND SEMANTICS 99

α, β ∈ TVar type variables
x, y ∈ Var variables
` ∈ Loc locations (run time only)

e ::= expressions
| x variable
| λx:τ. e abstraction
| e1 e2 application
| Λα:κ.v type abstraction
| eτ type application
| fix e recursion
| 〈〉 nil value
| inl e left sum injection
| inr e right sum injection
| case e of inl x → e1; inr y→ e2 sum elimination
| 〈e1, e2〉 pair construction
| let〈x, y〉 = e1 in e2 pair elimination
| new e reference allocation
| swap e1 e2 reference access
| delete e reference deallocation
| ` location (run time only)

Figure 5.1: Syntax (i): expressions

τ, σ ::= types
| α type variable
| λα.τ type-level abstraction
| τ1τ2 type-level application
| ∀α:κ.τ universal type
| τ1

ξ−−◦ τ2 function type
| χ type constructor constant

χ ::= type constructor constants
| (⊕) additive disjunction
| (⊗) multiplicative conjunction
| 1 unit of (⊗)
| ref mutable reference

Figure 5.2: Syntax (ii): types

100 CHAPTER 5. A MODEL OF ALMS

(q,v,t,u)

A

U

(v,v,t,u)

±

+−

�

v1 ·v2 = v

· ± − + �
± ± ± ± �
− ± + − �
+ ± − + �
� � � � �

Figure 5.3: Syntax (iii): Qualifier constants, variances, and variance
composition

ξ ::= usage qualifier expressions
| q qualifier constant
| 〈α〉 qualifier of type variable
| ξ1 tξ2 least upper bound
| ξ1 uξ2 greatest lower bound

κ ::= kinds
| ξ kind of proper type
| Παv.κ kind of type operator

Figure 5.4: Syntax (iv): kinds

instantiated with two types and partially applied to a value: Kτ1τ2 v. Whether

it is safe to duplicate this expression depends on whether it is safe to duplicate

v, and this is reflected in the instantiation of α by τ1. To express this

relationship, I introduce usage qualifier expressions (ξ), which form a bounded,

distributive lattice over type variables—qualifier 〈α〉 is the kind of type α—

with U and A as bottom and top. We can thus give K type ∀α:〈α〉.∀β:〈β〉.α U−−◦
β

〈α〉−−−◦α.

Qualifier expressions (figure 5.4) are the base kinds of aλms—that is, the

kinds that classify proper types that may in turn classify values. To classify

type operators, kinds (κ) also include dependent product kinds, written Παv.κ.

This is the kind of a type operator that, when applied to a type with kind

ξ, gives a type with kind {ξ/α}κ. For example, the kind of the Alms list type

constructor is Πα+.〈α〉, which means that a list has the same usage qualifier

5.1. SYNTAX AND SEMANTICS 101

as its elements.

The superscript + in kind Πα+.〈α〉 means that the list type constructor is

covariant (or monotone): if τ1 is a subtype of τ2 then a list of τ1 is a subtype of

a list of τ2. Variances (v) form a four-point lattice (figure 5.3). A type operator

may also be contravariant (−), where the result varies inversely with the

argument; omnivariant (�), where argument may vary freely without affecting

the result; or invariant (±), where the argument may not vary at all without

producing a subtyping-unrelated result. We define a composition operation (·)
on variances, where v1 ·v2 is the variance of the composition of type operators

having variances v1 and v2.

The kinds of the type constructors for sums and references may aid un-

derstanding. The sum type constructor (⊕) has kind Πα+.Πβ+.〈α〉t〈β〉. This

means that the kind of a sum type is at least as restrictive as the kinds of

its disjuncts. It is covariant in both arguments, which means that τ1 ⊕τ2 is

a subtype of τ′1 ⊕ τ′2 if τ1 is a subtype of τ′1 and τ2 is a subtype of τ′2. The

reference type constructor, on the other hand, has kind Πα±.A. This means

that reference cells are always affine and that their types do not support

subtyping in either direction.

5.1.1 Operational Semantics

The operational semantics of aλms is mostly a standard call-by-value reduction

semantics. The reduction rules are given in figure 5.5. The reduction relation

(7−→) relates configurations, (s, e), comprising a store and an expression. A

store maps locations (`) to values (v). Stores are taken to be unordered and do

not repeat location names.

The rules for reference operations are worth noting. In store s, new v
chooses a fresh location `, adding v to the store at location ` and reducing to

the reference `. The operation swap `v2 requires that the store have location

` holding some value v1. It swaps v2 for v1 in the store, returning a pair of a

reference to ` and value v1. Finally, delete ` also requires that the store contain

`, which it then removes from the store. This means that freeing a location

can result in a dangling pointer, which would cause subsequent attempts to

102 CHAPTER 5. A MODEL OF ALMS

v ::= λx:τ. e | Λα:κ.v | fix v | 〈〉 | inl v | inr v | 〈v1,v2〉 | ` values

s ::= {} | {` 7→ v} | s1] s2 stores

(s, e) 7−→ (s′, e′) (reduction)

(βv) (s, (λx:τ. e)v) 7−→ (s, {v/x} e)
(Bτ) (s, (Λα:κ.v)τ) 7−→ (s, {τ/α}v)
(FIXv) (s,fix v1 v2) 7−→ (s,v1 (fix v1)v2)
(CASEL) (s,case inl v of inl x → e1; inr y→ e2) 7−→ (s, {v/x} e1)
(CASER) (s,case inr v of inl x → e1; inr y→ e2) 7−→ (s, {v/y} e2)
(LETPAIR) (s, let〈x, y〉 = 〈v1,v2〉 in e) 7−→ (s, {v1/x} {v2/y} e)
(NEW) (s,new v) 7−→ (s] {` 7→ v},`)
(SWAP) (s] {` 7→ v1},swap `v2) 7−→ (s] {` 7→ v2},〈`,v1〉)
(DELETE) (s] {` 7→ v},delete `) 7−→ (s,〈〉)

(CXT)
(s, e)

(s,E[e])
7−→ (s′, e′)
7−→ (s′,E[e′])

where E ::= [] | E e | vE | Eτ | fix E
| inl E | inr E | case E of inl x → e1; inr y→ e2

| 〈E, e〉 | 〈v,E〉 | let〈x, y〉 =E in e
| new E | swap E e | swap vE | delete E

Figure 5.5: Operational semantics

access that location to get stuck. Because aλms references are affine, the type

system prevents this.

5.1.2 Static Semantics

The type system of aλms involves a large number of judgments, which I

summarize in figure 5.6.

Typing contexts (Γ or Σ; figure 5.7) associate type variables with their

kinds, variables with their types, and locations with the types of their contents.

By convention, I use Γ for typing contexts that include neither affine variables

5.1. SYNTAX AND SEMANTICS 103

Γ` κ kind κ is well formed (fig. 5.8)
`Γ kinds in context Γ are well formed (fig. 5.8)
Γ |= ξ1 v ξ2 qualifier ξ1 subsumes ξ2 (def. 5.2)
Γ` κ1 <: κ2 kind κ1 subsumes κ2 (fig. 5.8)
Γ`α ∈ τ l v type τ varies v-ly when α increases (fig. 5.9)
Γ` τ : κ type τ has kind κ (fig. 5.9)
τ1 τ2 types τ1 and τ2 are β-equivalent (fig. 5.10)
Γ` τ1 <:v τ2 type τ1 is v-related to type τ2 (fig. 5.10)
Γ`Σ¹ ξ context Σ is bounded by qualifier ξ (fig. 5.11)
`Γ;Σ dual contexts Γ;Σ are well formed (fig. 5.11)
` (Γ0;Σ0),Σ′ Γ;Σ extending Γ0;Σ0 with Σ′ gives Γ;Σ (fig. 5.11)
Γ;Σ. e : τ expression e has type τ (fig. 5.12)
Σ1 . s :Σ2 store s has type Σ2 (fig. 5.13)
. (s, e) : τ configuration (s, e) has type τ (fig. 5.13)

Figure 5.6: Type system judgments

Γ, Σ ::= typing contexts
| • empty
| Γ1,Γ2 concatenation
| α:κ kind of type variable
| x:τ type of variable
| `:τ type of location

Figure 5.7: Syntax of typing contexts

nor locations, and I use Σ for typing contexts that may include locations and

affine (or indeterminate) variables.

Kind judgments. Judgments on kinds appear in figure 5.8. The first

judgment, Γ ` κ , determines whether a kind κ is well formed in context

Γ. A base kind (i.e., a usage qualifier expression) is well formed if it is closed.

A dependent product kind Παv.κ is well formed if whenever the bound type

variable α is free in κ—that is, when the kind is truly dependent—then

variance v must be + or ±. This rules out incoherent kinds such as Πα−.〈α〉
that classify no useful type operator but whose presence breaks the kinding

relation’s monotonicity property (see lemma 5.4).

104 CHAPTER 5. A MODEL OF ALMS

Γ` κ (kind well-formedness)

OK-QUAL

`Γ
Γ` q

OK-VAR
α:ξ ∈Γ `Γ

Γ` 〈α〉

OK-JOIN
Γ` ξ1 Γ` ξ2

Γ` ξ1 tξ2

OK-MEET
Γ` ξ1 Γ` ξ2

Γ` ξ1 uξ2

OK-OPER
if α ∈FTV(κ) then +v v Γ,α:〈α〉 ` κ

Γ`Παv.κ

`Γ (kind context well-formedness)

WF-NIL

` •

WF-CONSA
`Γ Γ` κ

`Γ,α:κ

WF-CONSAREC
`Γ

`Γ,α:〈α〉

WF-CONSX
`Γ

`Γ, x:τ

WF-CONSL
`Γ

`Γ,`:τ

Γ` κ1 <: κ2 (subkinding)

KSUB-QUAL

Γ |= ξ1 v ξ2 Γ` ξ1 Γ` ξ2

Γ` ξ1 <: ξ2

KSUB-OPER
v1 v v2 Γ,α:〈α〉 ` κ1 <: κ2

Γ`Παv1 .κ1 <:Παv2 .κ2

Figure 5.8: Statics (i): kinds

The second judgment is well-formedness for kinding contexts, which en-

sures that all kinds in a context Γ are well-formed. Note that there are two

rules for type variable bindings: rule WF-CONSA handles general bindings of

the form α:κ for well formed kinds κ that do not refer to α, whereas rule WF-

CONSAREC handles recursive bindings of the form α:〈α〉. This judgment does

not check the well-formedness of types in the context.

The third judgment is subkinding: Γ` κ1 <: κ2. As we will see, if a type

has kind κ1, then it may be used where κ1 or any greater kind is expected. For

dependent product kinds the subkinding order is merely the product order on

the variance and the result kind, but for base kinds the relation relies on an

interpretation of qualifier expressions, which clarifies the meaning of free type

5.1. SYNTAX AND SEMANTICS 105

variables in base kinds.

We interpret qualifier expressions via a valuation V , which is a map

from type variables to qualifier constants. We extend V ’s domain to qualifier

expressions:

V (q)= q V (ξ1 tξ2)= V (ξ1)tV (ξ2)

V (〈α〉)= V (α) V (ξ1 uξ2)= V (ξ1)uV (ξ2)

We need to interpret qualifier expressions under a typing context:

DEFINITION 5.1 (Consistent valuations).

A valuation V is consistent with a typing context Γ if for all α:ξ ∈ Γ, V (α) v
V (ξ).

Thus, a valuation is consistent with a context if it corresponds to a potential

instantiation of the type variables, given that context.

DEFINITION 5.2 (Qualifier subsumption).

A qualifier expression ξ1 subsumes ξ2 in Γ, written Γ |= ξ1 v ξ2, if for all
valuations V consistent with Γ, V (ξ1)v V (ξ2).

In other words, in all possible instantiations of the type variables in Γ, qualifier

ξ1 being A implies that ξ2 is A.

Kinding and variance. The two judgments in figure 5.9, for computing

variances and giving kinds to types, are defined by mutual induction. It

should be clear on inspection that the definitions are well founded. Judgment

Γ ` α ∈ τ l v means that type variable α appears in type τ at variance v, or

in other words, that type operator λα.τ has variance v. Rules V-VARPRE,

V-VARABS, and V-CON say that type variables appear positively with respect

to themselves and omnivariantly with respect to types in which they are not

free. Rule V-ABS says that a type variable appears in a type operator λβ.τ at

the same variance that it appears in the body τ. The remaining three rules

are more involved:

106 CHAPTER 5. A MODEL OF ALMS

Γ`α ∈ τ l v (variance of type variables with respect to types)

V-VARPRE
Γ`α : κ

Γ`α ∈α l +

V-VARABS
Γ`β : κ α 6=β
Γ`α ∈β l �

V-CON
`Γ

Γ`α ∈ χ l �

V-ABS
Γ,β:〈β〉 `α ∈ τ l v
Γ`α ∈λβ.τ l v

V-APP
Γ`α ∈ τ1 l v1 Γ`α ∈ τ2 l v2 Γ` τ1 :Πβv3 .κ3

Γ`α ∈ τ1τ2 l v1 t (v2 ·v3)

V-ALL
Γ,β:κ`α ∈ τ l v1

v2 =
{
± α ∈FTV(κ)
� α 6∈FTV(κ)

Γ`α ∈∀β:κ.τ l v1 tv2

V-ARR
Γ`α ∈ τ1 l v1 Γ`α ∈ τ2 l v2

v3 =
{
+ α ∈FTV(ξ)
� α 6∈FTV(ξ)

Γ`α ∈ τ1
ξ−−◦ τ2 l −v1 tv2 tv3

Γ` τ : κ (kinding of types)

K-VAR
α:κ ∈Γ
`Γ

Γ`α : κ

K-ABS
Γ,α:〈α〉 ` τ : κ

Γ,α:〈α〉 `α ∈ τ l v
Γ`λα.τ :Παv.κ

K-APP
Γ` τ1 :Παv.κ
Γ` τ2 : ξ

Γ` τ1τ2 : {ξ/α}κ

K-ALL
Γ,α:κ` τ : ξ

Γ`∀α:κ.τ : {A/α}ξ

K-ARR
Γ` τ1 : ξ1 Γ` τ2 : ξ2 Γ` ξ

Γ` τ1
ξ−−◦ τ2 : ξ

K-SUM
`Γ

Γ` (⊕) :Πα+.Πβ+.〈α〉t〈β〉

K-PROD
`Γ

Γ` (⊗) :Πα+.Πβ+.〈α〉t〈β〉

K-UNIT
`Γ

Γ` 1 : U

K-REF
`Γ

Γ` ref :Πα±.A

Figure 5.9: Statics (ii): types

5.1. SYNTAX AND SEMANTICS 107

• By rule V-APP, the variance of a type variable in a type application comes

from both the operator and the operand. The variance of α in τ1τ2 is at

least the variance of α in τ1 and at least the variance of α in τ2 composed

with the variance of operator τ1. This makes sense: if τ is a contravariant

type operator, then α appears negatively in τα but positively in τ (τα).

• By rule V-ALL, the variance of α in ∀β:κ.τ is at least its variance in τ.

However, if α appears in κ then it is invariant in ∀β:κ.τ. This reflects

the fact that universally quantified types are related only if their bounds

(κ) match exactly, so changing a type variable that appears in κ produces

an unrelated type. (This means that aλms is based on the kernel variant

of Fω
<: (Pierce 2002).)

• By rule V-ARR, the variance of α in a function type τ1
ξ−−◦ τ2 is at least

its variance in the codomain τ2 and at least the opposite (composition

with −) of its variance in the domain τ1. This reflects function argument

contravariance. The variance of α is at least + if it appears in the

qualifier expression ξ.

The second judgment, Γ` τ : κ, assigns kinds to well-formed types. Rule K-

VAR merely looks up the kind of a type variable in the context. Rules K-ABS

and K-APP are the usual rules for dependent abstraction and application,

with two small changes in rule K-ABS. First, it associates α with itself in the

context, as α:〈α〉, which ensures that occurrences of α in τ can be reflected

in κ. Second, it appeals to the variance judgment to determine the variance

of the type operator. Rule K-ALL assigns a universal type the same kind as

its body, but with A replacing α. This is necessary because the resulting kind

is outside the scope of α. Qualifier A is a safe bound for any instantiation

of α, and no terms have types that lose precision by this choice. The kind of

an arrow type, in rule K-ARR, is just the qualifier expression attached to the

arrow. The remaining rules give kinds for type constructor constants, where

(⊕) and ref are as discussed above and (⊗) has the same kind as (⊕).

Type equivalence and dereliction subtyping. The next two judgments

in figure 5.10 are type β equivalence and subtyping. The subtyping relation

108 CHAPTER 5. A MODEL OF ALMS

τ1 τ2 (type equivalence)

E-REFL

τ τ

E-SYM
τ1 τ2

τ2 τ1

E-TRANS
τ1 τ2 τ2 τ3

τ1 τ3

E-ARR
τ11 τ21 τ12 τ22

τ11
ξ−−◦ τ12 τ21

ξ−−◦ τ22

E-ALL
τ1 τ2

∀α:κ.τ1 ∀α:κ.τ2

E-ABS
τ1 τ2

λα.τ1 λα.τ2

E-APP
τ11 τ21 τ12 τ22

τ11τ12 τ21τ22

E-BETA

(λα.τ1)τ2 {τ2/α}τ1

Γ` τ1 <:v τ2 (subtyping)

TSUB-EQ

Γ` τ1 : κ Γ` τ2 : κ τ1 τ2

Γ` τ1 <:v τ2

TSUB-OMNI
Γ` τ1 : κ1 Γ` τ2 : κ2

Γ` τ1 <:� τ2

TSUB-TRANS
Γ` τ1 <:v τ2 Γ` τ2 <:v τ3 Γ` τ2 : κ

Γ` τ1 <:v τ3

TSUB-CONTRA
Γ` τ2 <:−v τ1

Γ` τ1 <:v τ2

TSUB-ABS
Γ,α:〈α〉 ` τ1 <:v τ2

Γ`λα.τ1 <:v λα.τ2

TSUB-APP
Γ` τ11 :Παv1 .κ1 Γ` τ21 :Παv2 .κ2

Γ` τ11 <:v τ21 Γ` τ12 <:v·(v1tv2) τ22

Γ` τ11τ12 <:v τ21τ22

TSUB-ALL
Γ,α:κ` τ1 <:v τ2

Γ`∀α:κ.τ1 <:v ∀α:κ.τ2

TSUB-ARR
Γ` τ11 <:−v τ21 Γ` τ12 <:v τ22 Γ` ξ1 <:v ξ2

Γ` τ11
ξ1−−◦ τ12 <:v τ21

ξ2−−◦ τ22

Figure 5.10: Statics (iii): subtyping

5.1. SYNTAX AND SEMANTICS 109

is parametrized by a variance v, which gives the direction of the subtyping:

Γ ` τ1 <:+ τ2 is the usual direction, judging τ1 a subtype of τ2. In terms of

subsumption, this means that values of type τ1 may be used where values of

type τ2 are expected. The other variances are useful in defining the relation

in the presence of v-variant type operators: (<:−) gives the inverse of the

subtyping relation, (<:±) relates only equivalent types, and (<:�) relates all

types. We can see how this works in rule TSUB-APP. To determine whether

τ11τ12 is a subtype of τ21τ22, we take v to be +, yielding

Γ` τ11 :Παv1 .κ1 Γ` τ21 :Παv2 .κ2

Γ` τ11 <:+ τ21 Γ` τ12 <:v1tv2 τ22

Γ` τ11τ12 <:+ τ21τ22

.

This means that for the subtyping relation to hold:

• The operators must be related in the same direction, so that τ11 is a

subtype of τ21.

• The operands must be related in the direction given by the variances

of the operators. For example, if both operators are covariant, then the

operands must vary in the same direction, so that τ12 is a subtype of

τ22. If both operators are contravariant, then the operands must vary in

the opposite direction. If the operators are invariant then the operands

cannot vary at all, but if they are omnivariant then τ11τ
′
12 is a subtype

of τ21τ
′
22 for any τ′12 and τ′22.

Rule TSUB-EQ says that subtyping includes type equivalence (τ1 τ2),

which is merely β equivalence on types. Rule TSUB-OMNI allows any pair of

types to be related by �-variant subtyping, and rule TSUB-CONTRA says that

the opposite variance sign gives the inverse relation. Rules TSUB-ABS and

TSUB-ALL specify that type operators and universally quantified types are

related if their bodies are.

Rule TSUB-ARR is more than the usual arrow subtyping rule. Beyond the

usual contravariance for arguments and covariance for results, it requires

that qualifiers ξ1 and ξ2 relate in the same direction. This rule is the source

110 CHAPTER 5. A MODEL OF ALMS

of non-trivial subtyping in aλms, without which subtyping would relate only

equivalent types. The rule has two important implications.

First, an unlimited-use function can always be used where a one-shot

function is expected. This corresponds to linear logic’s usual dereliction

rule, which says that the ! (“of course!”) modality may always be removed.

Intuitionistic linear logic (Bierman 1993), for example, has this rule:

ILL-DERELICTION

∆` e : !τ

∆` derelict e : τ
.

Dereliction is syntax-directed in this rule, but for practical programming I

consider that as too inconvenient. Thus, aλms’s subtyping relation supports

dereliction as needed.

For example, the function for creating a new thread in Alms, Thread.fork,

has type (unit A−→ unit) U−→ thread, which means that Thread.fork will not call

its argument more than once. However, this should not stop us from passing

an unlimited-use function to Thread.fork, and indeed we can. Dereliction

subtyping allows us to use a value of type unit U−→ unit where a value of type

unit A−→ unit is expected. Alternatively, by domain contravariance, we can use

Thread.fork where a value of type (unit U−→ unit) U−→ thread is expected. In this

case subsumption allows us to forget Thread.fork’s promise not to reuse its

argument.

The second important implication of dereliction subtyping will be clearer in

light of how qualifier expressions are assigned to function types. Subsumption

makes it reasonable to always assign functions the most permissive safe usage

qualifier, because subsumption then allows us to use them in a less permissive

context.

Dereliction subtyping applies only to function types because only function

types carry qualifiers, in both the aλms calculus and Alms language. For

instance, Alms has no separate types Uint for unlimited integers and Aint for

affine integers. Rather, integers are always unlimited. A programmer who

wants an affine integer type can define it in Alms using the module system.

5.1. SYNTAX AND SEMANTICS 111

Γ`Σ¹ ξ (bound of typing context)

B-NIL
`Γ

Γ` •¹U

B-CONSX
Γ`Σ¹ ξ1 Γ` τ : ξ2

Γ`Σ, x:τ¹ ξ1 tξ2

B-CONSL
Γ`Σ¹ ξ1 Γ` τ : ξ2

Γ`Σ,`:τ¹A

B-CONSA
Γ`Σ¹ ξ Γ` κ
Γ`Σ,α:κ¹ ξ

`Γ;Σ (dual context well-formedness)

WF
Γ`Γ¹U Γ`Σ¹ ξ

`Γ;Σ

` (Γ0;Σ0),Σ′ Γ1;Σ1 (environment extension)

X-NIL
`Γ;Σ

` (Γ;Σ),• Γ;Σ

X-CONSU
Γ0 ` τ : U ` (Γ0, x:τ;Σ0),Σ′ Γ1;Σ1

` (Γ0;Σ0), x:τ,Σ′ Γ1;Σ1

X-CONSA
Γ0 ` τ : ξ ` (Γ0;Σ0, x:τ),Σ′ Γ1;Σ1

` (Γ0;Σ0), x:τ,Σ′ Γ1;Σ1

Figure 5.11: Statics (iv): typing contexts

112 CHAPTER 5. A MODEL OF ALMS

Context judgments. Figure 5.11 defines three judgments on contexts. Judg-

ment Γ`Σ¹ ξ, which will be important in typing functions, computes an upper

bound ξ on the qualifiers of all the types in context Σ. If a context contains any

locations, it is bounded by A; otherwise, its bound is the least upper bound of

the qualifiers of all the types of variables in the context.

The typing judgment for terms will use two typing contexts in the style

of Dual Intuitionistic Linear Logic (Barber 1996): Γ holds environment infor-

mation that may be safely duplicated, such as type variables and variables

of unlimited type, whereas Σ holds information, such as location types and

affine variables, that disallows duplication. The other two judgments in

figure 5.11 deal with such pairs of contexts Γ;Σ. Judgment `Γ;Σ checks the

well-formedness of a pair of contexts: Context Γ must be bounded by U, and

context Σ must be bounded by some qualifier, which ensures that its contents

are well formed. The third judgment shows how environments are extended

by variable bindings. Given contexts Γ0 and Σ0, judgment ` (Γ0;Σ0),Σ′ Γ;Σ

extends them by the variables and types in Σ′ to get Γ and Σ. Any variables

may be placed in Σ, but only variables whose types are known to be unlimited

may be placed in Γ, since Γ may be duplicated.

Expression judgment. The typing judgment for expressions appears in

figure 5.12. The judgment, Γ;Σ. e : τ, uses two typing contexts as discussed

above: the unlimited environment Γ and the affine environment Σ. When

typing multiplicative expression forms such as application, the typing rules

distribute Γ to both subexpressions but partition Σ between the two:

Γ;Σ1 . e1 : τ1
ξ−−◦ τ2 Γ;Σ2 . e2 : τ1

Γ;Σ1,Σ2 . e1 e2 : τ2

T-APP.

Unlike DILL, not all types in Σ are necessarily affine. Since types whose usage

qualifier involves type variables are not known to be unlimited, those are

placed in Σ to ensure that we do not duplicate values that might turn out to be

affine once universally quantified types are instantiated.

The other multiplicative rules are T-PAIR for product introduction, T-

UNPAIR for product elimination, and T-SWAP for reference updates. Note that

5.1. SYNTAX AND SEMANTICS 113

Γ;Σ. e : τ (typing of expressions)

T-SUBSUME
Γ;Σ. e : τ′ Γ` τ′ <:+ τ Γ` τ : ξ

Γ;Σ. e : τ

T-WEAK
Γ;Σ. e : τ `Γ;Σ,Σ′

Γ;Σ,Σ′ . e : τ

T-VAR
x:τ ∈Γ,Σ Γ` τ : ξ `Γ;Σ

Γ;Σ. x : τ

T-PTR
`:τ ∈Σ • ` τ : ξ `Γ;Σ

Γ;Σ. ` : ref τ

T-ABS
` (Γ;Σ), x:τ1 Γ′;Σ′ Γ′;Σ′ . e : τ2 Γ`Σ¹ ξ Γ` τ1 : ξ1

Γ;Σ.λx:τ1. e : τ1
ξ−−◦ τ2

T-TABS
Γ,α:κ;Σ. v : τ Γ` κ
Γ;Σ.Λα:κ.v :∀α:κ.τ

T-APP
Γ;Σ1 . e1 : τ1

ξ−−◦ τ2 Γ;Σ2 . e2 : τ1

Γ;Σ1,Σ2 . e1 e2 : τ2

T-TAPP
Γ;Σ. e :∀α:κ.τ Γ` τ′ : κ′ Γ` κ′ <: κ

Γ;Σ. eτ′ : {τ′/α}τ

T-FIX
Γ;Σ. e : τ U−−◦ τ
Γ;Σ. fix e : τ

T-UNIT
`Γ;Σ

Γ;Σ. 〈〉 : 1

T-INL
Γ;Σ. e : τ1 Γ` τ2 : ξ

Γ;Σ. inl e : τ1 ⊕τ2

T-INR
Γ;Σ. e : τ2 Γ` τ1 : ξ

Γ;Σ. inr e : τ1 ⊕τ2

T-PAIR
Γ;Σ1 . e1 : τ1 Γ;Σ2 . e2 : τ2

Γ;Σ1,Σ2 . 〈e1, e2〉 : τ1 ⊗τ2

T-CASE
Γ;Σ. e : τ1 ⊕τ2

` (Γ;Σ′), x1:τ1 Γ1;Σ1 Γ1;Σ1 . e1 : τ
` (Γ;Σ′), x2:τ2 Γ2;Σ2 Γ2;Σ2 . e2 : τ

Γ;Σ,Σ′ . case e of inl x1 → e1; inr x2 → e2 : τ

T-UNPAIR
Γ;Σ1 . e : τ1 ⊗τ2 ` (Γ;Σ2), x1:τ1, x2:τ2 Γ′;Σ′ Γ′;Σ′ . e1 : τ

Γ;Σ1,Σ2 . let〈x1, x2〉 = e in e1 : τ

T-NEW
Γ;Σ. e : τ

Γ;Σ. new e : ref τ

T-SWAP
Γ;Σ1 . e1 : ref τ1 Γ;Σ2 . e2 : τ2

Γ;Σ1,Σ2 . swap e1 e2 : ref τ2 ⊗τ1

T-DELETE
Γ;Σ. e : ref τ

Γ;Σ. delete e : 1

Figure 5.12: Statics (v): expressions

114 CHAPTER 5. A MODEL OF ALMS

T-SWAP does not require that the type of the reference in its first parameter

match the type of the value in its second—in other words, swap performs a

strong update. To type the term let〈x, y〉 = e1 in e2, rule T-UNPAIR first splits

the affine environment into Σ1 for typing subterm e1 and Σ2 for subterm e2. It

invokes the context extension relation (figure 5.11) to extend Γ and Σ2 with

bindings for x and y in order to type e2. The context extension relation requires

that variables not known to be unlimited be added to Σ2.

The rule for sum elimination, T-CASE, is both multiplicative and additive:

The affine context is split between the term being destructed and the branches

of the case expression. However, the portion of the context given to the

branches is shared between them, because only one or the other will be

evaluated. Rule T-CASE also uses the context extension relation to bind

the pattern variables for the branches.

Rules T-NEW and T-DELETE introduce and eliminate reference types in

the usual way. Likewise, the sum introduction rules T-INL and T-INR and

type abstraction rule T-TABS are standard. Rules T-VAR, T-PTR, and T-UNIT

are standard for an affine calculus but not a linear one, as they implicitly

support weakening by allowing Σ to contain unused bindings. Rule T-FIX is

also standard, up to the reasonable constraint that its parameter function be

unlimited, since the reduction rule for fix makes a copy of the parameter.

The type application rule T-TAPP supports subkinding, because it requires

only that the kind of the actual type parameter be a subkind of that of the

formal parameter. This is the rule that supports the sort of type abstraction

that I used in the examples of chapter 3 to construct affine capabilities. For

example, the rule allows instantiating affine type variable α with unlimited

unit type 1:

Γ;Σ. (Λα:A.λx:α. e) :∀α:A.α ξ−−◦ τ Γ` 1 : U Γ`U<: A

Γ;Σ. (Λα:A.λx:α. e)1 : 1 ξ−−◦ τ
T-TAPP.

Within its scope, α is considered a priori affine, regardless of how it may

eventually be instantiated. This expression types only if x appears in affine

fashion in e.

5.1. SYNTAX AND SEMANTICS 115

This brings us finally to T-ABS, the rule for typing expression-level λ ab-

stractions. To type an expression λx:τ1. e, rule T-ABS uses the context exten-

sion relation to add x:τ1 to its contexts and types the body e in the extended

contexts. It also must determine the qualifier ξ that decorates the arrow.

Because abstractions close over their free variables, duplicating a function also

duplicates the values of its free variables. Therefore, the qualifier of a function

type should be at least as restrictive as the qualifiers of the abstraction’s free

variables. To do this, rule T-ABS appeals to the context bounding judgment

(figure 5.11) to find the least upper bound of the usage qualifiers of variables

in the affine environment, and it requires that the function type’s qualifier be

equally restrictive.

This refines linear logic’s usual promotion rule, which says that the !
modality may be added to propositions that in turn depend only on !-ed

resources. In ILL, we have

PROMOTION

!∆` e : τ

!∆` promote e : !τ
,

where !∆ is a context in which all assumptions are of the form x : !σ. As with

dereliction, in aλms it only makes sense to apply promotion to function types.

My treatment of promotion indicates why aλms needs the explicit weakening

rule T-WEAK, which allows discarding unused portions of the affine environ-

ment. In order to give a function type the best qualifier possible, we need to

remove from Σ any unused variables or locations that might otherwise raise

the bound on Σ, and the algorithmic version of the type system as implemented

in Alms does just that (chapter 6). In §5.2, I show that this implicit promotion

mechanism selects the best usage qualifier for function types.

Store and configuration judgments. In order to prove my type soundness

theorem, I need to lift the typing judgments to stores and run-time configura-

tions.

The type of a store is a typing context containing the names of the store’s

locations and the types of their contents. The store typing judgment Σ1 . s :Σ2

gives store s type Σ2 in the context of Σ1, which is necessary because values in

116 CHAPTER 5. A MODEL OF ALMS

Σ1 . s :Σ2 (store typing)

S-NIL

Σ. {} : •

S-CONS
Σ1 . s :Σ′ •;Σ2 . v : τ

Σ1,Σ2 . s] {` 7→ v} :Σ′,`:τ

. (s, e) : τ (configuration typing)

CONF
Σ1 . s :Σ1,Σ2 •;Σ2 . e : τ

. (s, e) : τ

Figure 5.13: Statics (vi): stores and configurations

the store may refer to other values in the store. Rule S-CONS shows that the

resources represented by context Σ1 (i.e., Σ11,Σ12) are split between the values

in s.

The preservation lemma in the next section concerns typing judgments

on configurations, . (s, e) : τ, which means that e has type τ in the context of

store s. To type the configuration by rule CONF, we type the store, splitting

its type into Σ1, which contains locations referenced from the store, and Σ2,

which contains locations referenced from expression e.

5.2 Theoretical Results

In this section I state and prove two main theorems about aλms: its principal

qualifiers property and syntactic type soundness.

5.2.1 Principal Qualifiers

Alms and aλms go to a lot of trouble to find the best usage qualifier expressions

for function types. To make programming with affine types as convenient as

possible, I want to maximize polymorphism between one-shot and unlimited

versions of functions. While writing the Alms standard library, I found that

5.2. THEORETICAL RESULTS 117

usage qualifier constants A and U, even with dereliction subtyping, were

insufficient to give some terms a principal type.

For example, consider an Alms function default, an eliminator for option

types:

let default def opt =
match opt with
| Some x → x
| None → def

Without usage qualifier expressions, default has at least two types:

default1 : ∀∀ ‘a. ‘a U−→ ‘a option A−→ ‘a

versus the incomparable

default2 : ∀∀ ’a. ’a U−→ ’a option U−→ ’a.

In the first case, because ‘a might be affine, the partial application of default1

must be a one-shot function, but in the second case we know that ’a is unlimited

so partially applying default2 and reusing the result is safe. Formally, these

types are incomparable because the universally quantified type variable ‘a in

the former has a different kind than ’a in the latter, and Alms uses the kernel
variant of rule TSUB-ALL. However, even were we to replace rule TSUB-ALL

with a rule analogous to Fω
<:’s full variant,

Γ,α:κ` τ1 <:v τ2 Γ,α:κ` κ1 <:−v κ2

Γ`∀α:κ1.τ1 <:v ∀α:κ2.τ2

TSUB-ALLFULL ,

the types would not be related by the subtyping order. More importantly,

neither type is preferable in an informal sense. The type of default1 allows

‘a to be instantiated to an affine or unlimited type, but the result of partially

applying it is a one-shot function even if ‘a is known to be unlimited:

default1 5 : int option A−→ int
default1 (aref 5) : int aref option A−→ int aref

If we choose default2, the result of partial application is unlimited, but

attempting to instantiate ’a to an affine type is a type error:

118 CHAPTER 5. A MODEL OF ALMS

default2 5 : int option U−→ int
default2 (aref 5) : TYPE ERROR!

Alms avoids both problems and instead discovers that the best usage

qualifier for the arrow is the kind of the type variable:

default : ∀∀ ‘a. ‘a U−→ ‘a option ‘a−→ ‘a
default 5 : int option U−→ int
default (aref 5) : int aref option A−→ int aref

Because this is an important property, I prove a theorem that every

typeable aλms function has a principal usage qualifier.

THEOREM 5.3 (Principal qualifiers).

If Γ;Σ.λx:τ. e : τ1
ξ−−◦ τ2, then it has a least qualifier expression ξ0; that is,

• Γ;Σ.λx:τ. e : τ1
ξ0−−◦ τ2 and

• Γ` ξ0 <: ξ′ for all ξ′ such that Γ;Σ.λx:τ. e : τ1
ξ′−−◦ τ2.

Proof. By assumption, Γ;Σ. λx:τ1. e : τ′1
ξ′−−◦ τ′2. Three rules apply at the root

of the typing derivation: the syntax-directed rule T-ABS, the subsumption

rule T-SUBSUME, and the weakening rule T-WEAK. Without loss of generality,

multiple subsumptions may be collapsed to one by transitivity of subtyping,

or zero subsumptions expanded to one by reflexivity of subtyping. Likewise,

multiple weakenings may be collapsed to one, and zero may be expanded

to one, which weakens by the empty context. Noting that weakening and

subsumption commute, it is only necessary to consider derivations of the form

A :` (Γ;Σ), x:τ1 Γ′;Σ′

B :Γ′;Σ′ . e : τ2

C :Γ`Σ¹ ξ
D :Γ` τ1 : ξ1

Γ;Σ.λx:τ1. e : τ1
ξ−−◦ τ2

T-ABS

J :Γ` τ1 <:− τ′1
K :Γ` ξ<: ξ′

L :Γ` τ2 <:+ τ′2

Γ` τ1
ξ−−◦ τ2 <:+ τ′1

ξ′−−◦ τ′2
TSUB-ARR

Γ;Σ.λx:τ1. e : τ′1
ξ′−−◦ τ′2

T-SUBSUME

Γ;Σ,Σw .λx:τ1. e : τ′1
ξ′−−◦ τ′2

T-WEAK.

5.2. THEORETICAL RESULTS 119

Now let Σ0 be Σ restricted to the free variables and locations of λx:τ1. e. If

(x:τ1) ∈Σ′ then let Σ′
0 =Σ0, x:τ1; otherwise let Σ′

0 =Σ0. Thus, ` (Γ;Σ0), x:τ1

Γ′;Σ′
0. By lemma A.8 (Unique context bounds), let ξ0 be the unique qualifier

expression such that Γ` Σ0 ¹ ξ0. By inspection of the typing rules, we may

strengthen B to Γ′;Σ′
0 . e : τ2, because we removed only irrelevant assumptions

from Σ′
0. Thus, we can derive:

A′ :` (Γ;Σ0), x:τ1 Γ′;Σ′
0

B′ :Γ′;Σ′
0 . e : τ2

C′ :Γ`Σ0 ¹ ξ0

D :Γ` τ1 : ξ1

Γ;Σ′ .λx:τ1. e : τ1
ξ0−−◦ τ2

T-ABS

J :Γ` τ1 <:− τ′1
K′ :Γ` ξ0 <: ξ0

L :Γ` τ2 <:+ τ′2

Γ` τ1
ξ0−−◦ τ2 <:+ τ′1

ξ0−−◦ τ′2
TSUB-ARR

Γ;Σ′ .λx:τ1. e : τ′1
ξ0−−◦ τ′2

T-SUBSUME

Γ;Σ,Σw .λx:τ1. e : τ′1
ξ0−−◦ τ′2

T-WEAK.

We now must show that ξ0 is the least usage qualifier that can be given to

λx:τ1. e. Since ξ0 is the least upper bound for Σ0, the only way to get a lower

qualifier would be to remove some variables from Σ0, but we defined Σ0 to

contain only variables relevant to λx:τ1. e, which means that nothing else can

be removed.

5.2.2 Type Soundness

The key obstacle in proving type soundness is establishing a substitution

lemma, which in turn relies on showing that the kind of the type of any value

accurately reflects the resources contained in that value, which itself comes

as a corollary to the proposition that the kinds of subtypes are themselves

subkinds.

LEMMA 5.4 (Monotonicity of kinding).

If Γ` τ1 <:+ τ2 where Γ` τ1 : ξ1 and Γ` τ2 : ξ2, then Γ` ξ1 <: ξ2.

This lemma is the reason for the premise in rule OK-OPER that for a kind

Παv.κ, variance v must be at least + if α ∈ FTV(κ). Otherwise, I could

construct a counterexample to lemma 5.4:

120 CHAPTER 5. A MODEL OF ALMS

• β:Πα−.〈α〉 `β (1 A−−◦ 1) <:+ β (1 U−−◦ 1),

• β:Πα−.〈α〉 `β (1 A−−◦ 1) : A, and

• β:Πα−.〈α〉 `β (1 U−−◦ 1) : U,

• but β:Πα−.〈α〉 `A<: U is not the case.

The kind well-formedness judgment rules out kinds like Πα−.〈α〉.

Proof of lemma 5.4. I define an extension of the subkinding relation, Γ` κ1/

κ2, which is insensitive to the variances decorating Π kinds. Observe that on

qualifier expressions this new relation coincides with subkinding. Generalize

the induction hypothesis—if Γ ` τ1 <:+ τ2 where Γ ` τ1 : κ1 and Γ ` τ2 : κ2,

then Γ` κ1/ κ2—and the proof follows by induction on the structure of the

subtyping derivation.

Please see p. 288 for details. B

LEMMA 5.5 (Kinding finds locations).

Suppose that Γ;Σ. v : τ and Γ` τ : ξ. If any locations appear in value v then
Γ`A<: ξ.

Proof. By induction on the typing derivation, using the previous lemma in the

case for the subsumption rule T-SUBSUME:

Case
Γ;Σ. v : τ′ Γ` τ′ <:+ τ Γ` τ : ξ

Γ;Σ. v : τ
.

By the induction hypothesis, Γ` τ′ : A, and by lemma 5.4 (Monotonicity

of kinding), Γ`A<: ξ.

Please see p. 291 for details. B

Lemma 5.5 lets me prove a substitution lemma.

LEMMA 5.6 (Substitution).

If

5.2. THEORETICAL RESULTS 121

• ` (Γ;Σ1), x:τ′ Γ′;Σ′
1,

• Γ′;Σ′
1 . e : τ, and

• •;Σ2 . v : τ′, where

• the domain of Σ2 contains only locations,

then Γ;Σ1,Σ2 . {v/x} e : τ.

Proof. By induction on the derivation of Γ′;Σ′
1 . e : τ. Please see p. 293 for

details. B

Now progress, preservation, and type soundness are standard.

LEMMA 5.7 (Progress).

If . (s, e) : τ then either e is a value, or there exist some s′ and e′ such that
(s, e) 7−→ (s′, e′).

Proof. Since . (s, e) : τ, by lemma A.46 (Faulty expressions), (s, e) is not faulty

(definition A.39 on p. 319). Furthermore, since it types, e must be closed. Then

by lemma A.40 (Uniform evaluation), either e is a value or the configuration

takes a step.

LEMMA 5.8 (Preservation).

If . (s, e) : τ and (s, e) 7−→ (s′, e′) then . (s′, e′) : τ.

Proof. By cases on the reduction relation. Please see p. 304 for details. B

THEOREM 5.9 (Type soundness).

If . ({}, e) : τ then either e diverges or there exists some store s and value v such
that ({}, e) ∗7−→ (s,v) and . (s,v) : τ.

Proof. By lemma 5.7 (Progress), lemma 5.8 (Preservation), and induction on

the length of the reduction sequence.

CHAPTER 6

Implementation of Alms

IN ORDER TO validate the practicality and expressiveness of Alms’s design,

I built a prototype implementation of the language and wrote libraries and

programs using it. Some of these programs appear in chapter 4. In this chapter,

I report on interesting aspects of the implementation.

Alms is implemented in around 23k lines of Haskell code, which I break

down by function in figure 6.1. The majority of the code is straightforward and

similar to any other language implementation, but one portion stands out as

non-obvious: type inference with affine types and subtyping.

In the implementation of Alms, type inference deals with a wide variety

of language features, including pattern matching, first-class polymorphism,

equirecursive types, and row types. In this chapter, however, I consider

inferring types for Core Alms, a simplified language of variables, applications,

abstractions, and let expressions.

6.1 Core Alms

The syntax of Core Alms appears in figure 6.2.1 Unlike the model of the

previous chapter, which is intended to reflect several features of Alms, Core

Alms is the smallest language suitable for explaining how type inference works
1A caveat: While I use mathematical notation throughout this chapter for clarity, the

treatment is essentially informal. My goal is to communicate interesting aspects of the
implementation sufficiently well that a reader could replicate it, but I have not proven
anything here correct, with the exception of §6.3.3.

123

124 CHAPTER 6. IMPLEMENTATION OF ALMS

Purpose Line Count % of Total
Type checking 8,290 36.4%
Abstract syntax 3,456 15.2%
Parsing and pretty printing 3,282 14.4%
Miscellaneous support code 2,631 11.5%
Types and values of primitives 1,655 7.3%
Implicit threading syntax 1,141 5.0%
Error handling infrastructure 956 4.2%
Dynamics 882 3.9%
REPL and library loading 499 2.2%
Total 22,792 100 %

Figure 6.1: Alms source code size by function

e ::= expressions
| x variable
| λx. e abstraction
| e1 e2 application
| let x = e1 in e2 let expression

τ ::= types
| α type variable
| τ1

ξ−−◦ τ2 function type
| χτ1 . . .τk applied type constructor

σ ::= type schemes
| τ monotype
| ∀α:q.σ universal type

ξ ::= usage qualifier expressions
| q qualifier constant
| 〈α〉 qualifier of type variable
| ξ1 tξ2 least upper bound

κ ::= kinds
| Π(αv1

1 , . . . ,αvk
k).ξ kind of arity-k type constructor

Figure 6.2: Syntax of Core Alms

6.1. CORE ALMS 125

C, D ::= constraints
| > the trivial constraint
| C∧D conjunction of constraints
| τ1 ≤ τ2 τ1 is a subtype of τ2
| ∃α.C existential quantification (freshness)
| . . . etc.

θ |= C (constraint satisfaction)

C-TRUE

θ |=>
C-SUBTYPE
` θτ1 ≤ θτ2

θ |= τ1 ≤ τ2

C-CONJ
θ |= C θ |= D

θ |= C∧D

C-EXISTS
θ ◦ {τ/α} |= C

θ |= ∃α.C

CD (constraint entailment)

C-ENTAILS
(∀θ) θ |= C =⇒ θ |= D

CD

Figure 6.3: Syntax and semantics of constraints

in Alms. As in ML, types (τ) do not contain quantifiers, but type schemes

(σ) are universally quantified. Bound type variables are bounded above by

qualifier constants (q ∈ {U,A}), which limit which types may instantiate them to

those whose qualifier is less than or equal to the upper bound. Type variables

bounded by U correspond to unlimited type variables (’a) in Alms, whereas

type variables bounded by A correspond to affine type variables (‘a). Like Alms,

function types carry a qualifier expression (ξ), which controls how many times

a function may be used. Types also include applications of (unspecified) type

constructors (χ), which have dependent kinds (κ) as in Alms.

6.1.1 Background: HM(X)

Type inference for (Core) Alms is based on HM(X) (Odersky et al. 1999), which

is the type system of Damas and Milner (1982) parametrized by a constraint

126 CHAPTER 6. IMPLEMENTATION OF ALMS

C;Γ` e : τ (expression typing)

HMX-VAR

x:∀αi[D].τ ∈Γ C {τi/αi}D

C;Γ` x : {τi/αi}τ

HMX-ABS
C;Γ, x:τ′ ` e : τ

C;Γ`λx. e : τ′ → τ

HMX-APP
C;Γ` e1 : τ1 C;Γ` e2 : τ2 C τ1 ≤ τ2 → τ

C;Γ` e1 e2 : τ

HMX-LET
C∧D;Γ` e1 : τ′ C;Γ, x:∀αi[D].τ′ ` e2 : τ αi ∉FTV(C)∪FTV(Γ)

C∧∃αi.D;Γ` let x = e1 in e2 : τ

Figure 6.4: HM(X) (syntax directed, with subtyping)

system. Before considering how to deal with affine types, I review the basics of

HM(X) for a non-affine language with subtyping.

Constraints (figure 6.3) include at least the trivial constraint (>), subtyping,

conjunction of constraints, and existential quantification (which represents

freshness). Constraints are considered up to equivalence, which includes

commutativity and associativity of conjunction, absorption of > as the identity

of conjunction, and α conversion and scope extrusion of existential quantifiers.

Figure 6.3 also gives two judgments that define the semantics of constraints.

Constraints are interpreted in the context of an idempotent substitution θ

mapping type variables to types; when θ |= C, we say that θ satisfies C.

Constraint C entails constraint D (judgment CD) when every substitution

satisfying C also satisfies D. Type schemes in HM(X) contain constraints:

σ ::= ∀αi[C].τ HM(X) type schemes

The substitution that instantiates a type scheme must satisfy the constraint.

Figure 6.4 contains a presentation of HM(X) based on Pottier and Rémy

(2005). Judgment C;Γ ` e : τ assigns type τ to expression e in the context

of constraint C and environment Γ, which maps variables to type schemes.

Rule HMX-VAR type checks a variable whose type scheme is ∀αi[D].τ. The

6.1. CORE ALMS 127

C, D ::= ·· · additional constraints
| ξ1 v ξ2 qualifier ξ1 is a subqualifier of ξ2

θ |= C (constraint satisfaction)

· · ·
C-SUBQUALIFIER

` θξ1 v θξ2

θ |= ξ1 v ξ2

Figure 6.5: Constraints for Substructural HM(X)

type scheme is instantiated by some types τi, and the scheme’s constraint D,

with types τi substituted for free type variables αi, must be entailed by

the context’s constraint C. The abstraction rule, HMX-ABS, is ordinary;

it requires the bound variable to have a monotype, not a universal type scheme.

Rule HMX-APP requires the type of the operator to be a subtype of the

function type whose domain is the type of the operand, rather than requiring

type equality.

Rule HMX-LET performs generalization and binds a variable to a type

scheme. In order to generalize some type variables αi, the context from

checking e1 is split into conjuncts C and D, such that αi are not free in

C. (The generalized type variables also must not be free in Γ.) Then the

body expression e2 is checked with variable x bound to a type scheme whose

constraint is D, which means that each use of x must instantiate αi to some

types that satisfy D. The presence of ∃αi.D in the constraint in the conclusion

of the rule ensures that constraint D is satisfiable even if x is not used in e2.

6.1.2 Substructural HM(X)

Before defining the type system for Core Alms, I extend HM(X) to infer

substructural types. The extension is remarkably straightforward. Constraints

are extended to include subsumption constraints between qualifiers, and

the satisfaction relation is extended for the new constraint form (figure 6.5).

Figure 6.6 defines the qualifier of a type and the qualifier of an environment.

128 CHAPTER 6. IMPLEMENTATION OF ALMS

〈τ〉 = ξ , 〈Γ〉 = ξ (qualifiers)

〈α〉 = 〈α〉
〈τ1

ξ−−◦ τ2〉 = ξ
〈χτi〉 = {〈τi〉/αi}ξ if kind(χ)=Π(αvi

i).ξ

〈•〉 =U

〈Γ, x:∀αi:qi.τ〉 = 〈Γ〉t {U/αi}〈τ〉

Figure 6.6: Qualifiers of types and environments

Substructural HM(X) defines a simple usage analysis to count the number

of occurrences of bound variables in their scopes. Metafunction occx(e) counts

the number of occurrences of variable x in expression e, yielding a usage

count u. A definition of occx for affine types appears in figure 6.7. In this

case, usage counts (u ∈ U) are an abstraction of the natural numbers, with

all numbers greater than 1 collapsed to many; usage counts map to qualifiers

in the obvious way. This approach extends smoothly to systems with more

qualifiers and additive expressions, as in figure 6.8. In order to handle additive

forms such as if expressions, usage counts in this case are subsets of U, and

addition is lifted to add sets of counts. The qualifier of a usage count set is

the greatest lower bound of the qualifiers of its elements. For Core Alms, the

affine occurrence analysis of figure 6.7 suffices.

The typing rules for Substructural HM(X) appear in figure 6.9. The rules

are changed from HM(X) to track occurrences of bound variables and to deal

with qualifiers on function types:

• In rule SHMX-ABS, the new premise C 〈τ′〉 v 〈occx(e)〉 ensures that

the qualifier of the argument type reflects its usage in expression e.

Likewise, in rule SHMX-LET, the new premise C 〈τ′〉 v 〈occx(e2)〉
bounds the qualifier of the type of bound variable x based on how many

times it occurs in e2.

• In rule SHMX-ABS, the qualifier of the function type is 〈Γ|FV(λx. e)〉;

6.1. CORE ALMS 129

u ∈ U= {0,1,many} usage counts

occx(e) = u (occurrence analysis)

occx(x)= 1
occx(y)= 0 (x 6= y)

occx(λy. e)= occx(e)
occx(e1 e2)= occx(e1)+occx(e2)

occx(let y= e1 in e2)= occx(e1)+occx(e2)

〈u〉 = q (qualifiers of usage counts)

〈0〉 =A 〈1〉 =A 〈many〉 =U

Figure 6.7: Occurrence analysis for affine types

n ∈ U= {0,1,many} atomic usage counts

u ∈ ℘(U) usage counts

u1 +̂u2 = u (usage count addition)

u1 +̂u2 = {n1 +n2 | n1 ∈ u1,n2 ∈ u2}

occx(e) = u (occurrence analysis)

occx(x)= {1}
occx(y)= {0} (x 6= y)

occx(λy. e)= occx(e)
occx(e1 e2)= occx(e1) +̂occx(e2)

occx(let y= e1 in e2)= occx(e1) +̂occx(e2)
occx(if e1 then e2 else e3)= occx(e1) +̂ (occx(e2)∪occx(e3))

〈n〉 = q , 〈u〉 = q (qualifiers of usage counts)

〈0〉 =A 〈1〉 = L 〈many〉 =R 〈u〉 =
l

n∈u
〈n〉

Figure 6.8: Occurrence analysis for URAL types, with additive if expression

130 CHAPTER 6. IMPLEMENTATION OF ALMS

C;Γ` e : τ (expression typing)

SHMX-VAR

x:∀αi[D].τ ∈Γ C {τi/αi}D

C;Γ` x : {τi/αi}τ

SHMX-ABS
C;Γ, x:τ′ ` e : τ C 〈τ′〉 v 〈occx(e)〉

C;Γ`λx. e : τ′ 〈Γ|FV(λx. e)〉−−−−−−−−◦ τ

SHMX-APP
C;Γ` e1 : τ1 C;Γ` e2 : τ2 C τ1 ≤ τ2

>−−◦ τ
C;Γ` e1 e2 : τ

SHMX-LET
C∧D;Γ` e1 : τ′ C;Γ, x:∀αi[D].τ′ ` e2 : τ

C 〈τ′〉 v 〈occx(e2)〉 αi ∉FTV(C)∪FTV(Γ)

C∧∃αi.D;Γ` let x = e1 in e2 : τ

Figure 6.9: Substructural HM(X) (syntax directed)

that is, the qualifier is the least upper bound of the types of the free

variables of the abstraction expression. In rule SHMX-APP, the type of

the operator must be a subtype of a function type whose qualifier is the

top of the qualifier lattice, because application expressions do not impose

any constraint on the qualifier of the function to be applied.

Substructural HM(X) allows arbitrary constraints, including subtyping

constraints and subqualifier constraints, in type schemes. In Alms, I chose not

to have such constraints in type schemes, because the constraints can grow

large and be difficult to read. Instead, Alms limits the constraints that appear

in type schemes, as described in the next section.

6.1.3 Core Alms

The type system of Core Alms is derived from Substructural HM(X) by placing

a syntactic restriction on the constraints that may appear in type schemes.

Internally, Core Alms uses the same language of constraints as Substructural

HM(X). However, in a type scheme that binds type variables αi, the constraint

is restricted to be a conjunction of subqualifier constraints of the form 〈αi〉 v q,

6.1. CORE ALMS 131

C;Γ` e : τ (expression typing)

CA-VAR

x:∀αi:qi.τ ∈Γ C 〈τi〉 v qi

C;Γ` x : {τi/αi}τ

CA-ABS
C;Γ, x:τ′ ` e : τ C 〈τ′〉 v 〈occx(e)〉

C;Γ`λx. e : τ′ 〈Γ|FV(λx. e)〉−−−−−−−−◦ τ

CA-APP
C;Γ` e1 : τ1 C;Γ` e2 : τ2 C τ1 ≤ τ2

A−−◦ τ
C;Γ` e1 e2 : τ

CA-LET

C∧〈αi〉 v qi;Γ` e1 : τ′ C;Γ, x:∀αi:qi.τ′ ` e2 : τ
C 〈τ′〉 v 〈occx(e2)〉 αi ∉FTV(C)∪FTV(Γ)

C;Γ` let x = e1 in e2 : τ

Figure 6.10: Core Alms (syntax directed)

where a universally quantified type variable is bounded above by a constant

qualifier. In particular, Core Alms type schemes may be read as sugar for

restricted Substructural HM(X) type schemes:

∀αi:qi.τ,∀αi[〈αi〉 v qi].τ.

Then the type rules for Core Alms (figure 6.10) are merely the rules for

Substructural HM(X), with type schemes restricted as described. (Note

that ∃αi.〈αi〉 v qi is not required in the conclusion of rule CA-LET because

constraints of that form are always satisfiable.)

The restriction of external constraints to constant upper bounds on uni-

versally quantified type variables significantly simplifies the type schemes

that are presented to users, but there is a downside: Unlike Substructural

HM(X), Core Alms does not enjoy principal type schemes. This is because

the principal constraint generated by checking a let-bound expression is not

always of the restricted form that may be included in a type scheme. Instead,

an algorithm for Core Alms type inference must sometimes guess when to

unify a type variable with a type, in order to get constraints in the right form.

132 CHAPTER 6. IMPLEMENTATION OF ALMS

Γ. e : τ ; θ ; C (expression typing)

CA-VAR-ALG
x:∀αi:qi.τ ∈Γ αi fresh

Γ. x : τ ; · ; 〈αi〉 v qi

CA-ABS-ALG
Γ, x:α. e : τ ; θ ; C α fresh

Γ.λx. e : θα 〈Γ|FV(λx. e)〉−−−−−−−−◦ τ ; θ ; C∧〈θα〉 v 〈occx(e)〉

CA-APP-ALG
Γ. e1 : τ1 ; θ1 ; C1 θ1Γ. e2 : τ2 ; θ2 ; C2 α fresh

Γ. e1 e2 :α ; θ2 ◦θ1 ; θ2C1 ∧C2 ∧θ2τ1 ≤ τ2
A−−◦α

CA-LET-ALG
Γ. e1 : τ1 ; θ1 ; C1

gen(C1 ∧〈τ1〉 v 〈occx(e2)〉,Γ,τ1) (〈αi〉 v qi,θ′1,C′
1)

θ′1θ1Γ, x:∀αi:qi.θ′1τ1 . e2 : τ2 ; θ2 ; C2

Γ. let x = e1 in e2 : τ2 ; θ2 ◦θ′1 ◦θ1 ; θ2C′
1 ∧C2

Figure 6.11: Type inference algorithm for Core Alms

6.2 A Type Inference Algorithm

The type inference algorithm for Core Alms captures the essence of the

algorithm used in the Alms implementation. While it does not infer principal

type schemes—since (Core) Alms does not have principal type schemes—

the algorithm works well in practice. By delaying constraint solving until

generalization time, it types more expressions than an algorithm that greedily

unifies subtyping constraints. Furthermore, compared to a hypothetical ML-

like algorithm that uses type equality rather than subtyping (and which has

principal type schemes), the types that my algorithm infers are, I conjecture,

as good or better. The examples in chapters 3 and 4, most of which do not rely

on explicit type annotations, support this conjecture.

Figure 6.11 defines the type inference algorithm. Judgment Γ. e : τ ; θ ; C
has two input parameters, an environment Γ and an expression e; its three

output parameters are a type τ, an idempotent substitution θ mapping type

variables to types, and a constraint C.

The first three rules are straightforward: Rule CA-VAR-ALG instantiates

6.2. A TYPE INFERENCE ALGORITHM 133

a type scheme with fresh type variables and returns a constraint that bounds

each of them by their qualifier bounds in the type scheme. Rule CA-ABS-ALG

binds the formal argument of a λ abstraction to a fresh type variable α, infers

a type for the body, and bounds the type of x in the resulting constraint based

on its occurrences in body expression e. Rule CA-APP-ALG infers types for the

operator and operand in an application expression, threading substitutions in

the standard way, and adds a subtyping constraint to relate the types of the

two subexpressions, as in rule CA-APP.

Rule CA-LET-ALG delegates to an as-yet-unspecified constraint-solving

and generalization procedure. First, it infers a type for expression e1, yielding

substitution θ1 and constraint C1. It then invokes the generalization procedure,

giving it a constraint (including the constraint for e1 and an upper bound for

the qualifier of the type of e1), the current environment (Γ), and the type

to generalize (τ1, henceforth the generalizee). The generalization procedure

returns a constraint consisting of qualifier bounds for some type variables to

generalize, a substitution recording any unification done during constraint

solving, and a remaining constraint C′
1. Finally, the rule uses the type variable

bounds computed by the generalization procedure to build a type scheme for

variable x for checking body expression e2.

6.2.1 Generalization

The core of the inference algorithm is the constraint-solving and generalization

procedure. The actual generalization procedure used in Alms is complicated

and relies heavily on heuristics; I do not attempt to formalize it completely,

but merely sketch it in the remainder of this chapter.

The first step to understanding generalization is to specify soundness

criteria that ensure that the algorithm implements the non-algorithmic type

system. Given input constraint C, environment Γ, and generalizee τ, if

generalization succeeds then the procedure produces a restricted constraint of

the form 〈αi〉 v qi, a substitution θ, and a constraint D:

gen(C,Γ,τ) (〈αi〉 v qi,θ,D)

134 CHAPTER 6. IMPLEMENTATION OF ALMS

Γ;τ` C1
θ7−→→ C2 (reflexive, transitive constraint rewriting)

CR-REFL

Γ;τ` C ·7−→→ C

CR-TRANS

Γ;τ` C θ7−→→ C′ θΓ;θτ` C′ θ′7−→→ C′′

Γ;τ` C θ′◦θ7−−→→ C′

CR-CXT

C ;Γ;τ` C θ7−→ C′

Γ;τ`C [C] θ7−→→ θ(C)[C′]

where C ::= [] | C ∧C | C∧C | ∃α.C

gen(C,Γ,τ) (〈αi〉 v qi,θ,C′) (generalization procedure)

GEN

Γ;τ` C θ7−→→ C′∧〈αi〉 v qi αi ∉FTV(C′)∪FTV(θΓ)
unspecified heuristic stop condition

gen(C,Γ,τ) (〈αi〉 v qi,θ,C′)

Figure 6.12: Constraint rewriting and generalization

Generalization is sound with respect to the non-algorithmic Core Alms type

system in figure 6.10 when

1. αi ∉FTV(D)∪FTV(θΓ) and

2. D∧〈αi〉 v qi θC.

The generalization procedure is partially specified by a rewriting system

for solving constraints. Judgment Γ;τ` C1
θ7−→→ C2 means that constraint C1

rewrites to C2, generating substitution θ, in the context of some environment

and generalizee type. This relation is reflexive and transitive, and is defined

in terms of a single-step rewriting relation C ;Γ;τ` C1
θ7−→ C2, which rewrites

under a constraint rewriting context C (figure 6.12). The generalization

procedure is defined in terms of constraint solving with an additional, unspec-

ified stop condition that uses several heuristics; for example, we would like

6.3. SOLVING SUBTYPE CONSTRAINTS 135

to generalize all the type variables in FTV(θτ) \ FTV(θΓ), but some may be

constrained in a way such that they are better left ungeneralized.

Does the definition of generalization in figure 6.12 satisfy the soundness

criteria for generalization? Of the two criteria that I listed, the first appears

as a premise to rule GEN, so it is satisfied. The second criterion must be

preserved by each rewrite step: For each rule with conclusion C ;Γ;τ` C θ7−→ C′,
we require that C [C′] θ(C)[C]. If this is the case, then the second criterion

is satisfied, by induction on the length of the rewriting sequence.

Constraint solving proceeds in two main phases. First, subtyping con-

straints are simplified and eliminated in order to make some type variables

available for generalization. Second, subqualifier constraints are simplified in

order to produce bounds for the type variables to be generalized. I describe

these two phases in the next two sections.

6.3 Solving Subtype Constraints

Heuristics play a significant role in the implementation of constraint solving

in Alms. As described here, constraint rewriting is non-deterministic, but in

practice, the heuristics make it deterministic and terminating. One heuristic

distinguishes “lossy” rules, which may guess to extend the substitution, from

“non-lossy” rules, which do not guess and thus do not lose any generality. The

constraint-solving algorithm prefers non-lossy rules to lossy rules whenever

possible.

The first phase of constraint solving deals with subtype constraints, which

are solved in five subphases:

1. Decomposition turns subtyping constraints into a graph whose nodes are

type variables and whose edges represent subtyping between those type

variables.

2. Reduction shrinks the subtyping graph by collapsing strongly connected

components and coalescing some type variables based on their polarities.

136 CHAPTER 6. IMPLEMENTATION OF ALMS

τ≤v τ′ = C (polarized subtyping constraints)

τ≤+ τ′, τ≤ τ′ τ≤− τ′, τ′ ≤ τ
τ≤± τ′, τ≤ τ′∧τ′ ≤ τ τ≤� τ′,>

C ;Γ;τ` C1
θ7−→ C2 (constraint rewriting)

CT-DECOMPOSE
kind(χ)=Π(αv1

1 , . . . ,αvk
k).ξ

C ;Γ;τ` χτ1 . . .τk ≤ χτ′1 . . .τ′k
·7−→ τ1 ≤v1 τ′1 ∧ . . .∧τk ≤vk τ′k

CT-EXPAND

βi 6∈FTV(C ,Γ,τ,α,τi) occurs check

C ;Γ;τ`α≤v χτi
{χβi/α}7−−−−−→ χβi ≤v χτi

Figure 6.13: Some decomposition rules (non-lossy)

3. Existential elimination gets rid of graph nodes that do not appear in the

environment or generalizee (which are thus existentially quantified in

the constraint), and turns some subtype constraints into subqualifier

constraints.

4. Guessing lossily unifies some type variables where a heuristic determines

that this is beneficial.

5. Candidate selection determines which type variables to attempt to gen-

eralize.

6.3.1 Decomposition

Two non-lossy rewriting rules for the decomposition subphase appear in

figure 6.13. This subphase repeatedly applies rules CT-DECOMPOSE and

CT-EXPAND as much as possible, along with analogous rules for function

types, until the subtyping constraint is decomposed into a subtyping graph

on type variables. The implementation actually applies the decomposition

6.3. SOLVING SUBTYPE CONSTRAINTS 137

varα(ξ) = v , varα(τ) = v , varα(C) = v (variance)

varα(ξ)= if α ∈FTV(ξ) then + else �

varα(β)= if α=β then + else �
varα(τ1

ξ−−◦ τ2)=−varα(τ1)tvarα(ξ)tvarα(τ2)

varα(χτi)=
⊔
i
vi ·varα(τi) where kind(χ)=Π(αvi

i).ξ

varα(>)= �
varα(τ1 ≤ τ2)= varα(τ1)t−varα(τ2)
varα(ξ1 v ξ2)= varα(ξ1)t−varα(ξ2)
varα(C∧D)= varα(C)tvarα(D)
varα(∃β.C)= varα(C)

Figure 6.14: Variance of type variables

rules eagerly, so that internally the subtyping portion of a constraint uses an

efficient graph representation.

Rule CT-DECOMPOSE implements structural subtyping by decomposing

a subtyping constraint between two types with the same constructor χ into

constraints on all the type parameters. The parameters are related in direc-

tions that depend on the variance of the type constructor. Rule CT-EXPAND

rewrites a subtyping constraint between a type variable α and an applied

type constructor χ by substituting χ applied to fresh type variables for α. The

usual occurs check that α ∉ FTV(χτi) is insufficient here because subtyping

allows cycles between multiple atomic constraints. Consider, for example,

repeatedly applying rules CT-DECOMPOSE and CT-EXPAND to constraint

χα≤ β∧χβ≤ α—the process diverges without ever failing the naïve occurs

check. Instead, the implementation maintains equivalence classes of “same-

sized” type variables and performs the occurs check on those.

138 CHAPTER 6. IMPLEMENTATION OF ALMS

C ;Γ;τ` C1
θ7−→ C2 (constraint rewriting)

CT-CYCLE

C ;Γ;τ`α0 ≤α1 ∧α1 ≤α2 ∧ . . .∧αk ≤α0
{α0/αi}7−−−−→>

CT-POSPRED
varβ(τ) = +

varβ(C)v+ β 6∈FTV(Γ)

C ;Γ;τ`α≤β {α/β}7−−−→>

CT-NEGSUCC
varβ(τ) = −

varβ(C)v− β 6∈FTV(Γ)

C ;Γ;τ`β≤α {α/β}7−−−→>

CT-POSSIB

varβj(τ) = + varβj(C)v+ βj 6∈FTV(Γ)

C ;Γ;τ`αi ≤βj
{β1/βj}7−−−−→αi ≤β1

CT-NEGSIB

varβj(τ) = − varβj(C)v− βj 6∈FTV(Γ)

C ;Γ;τ`βj ≤αi
{β1/βj}7−−−−→β1 ≤αi

Figure 6.15: Some constraint reduction rules (non-lossy)

6.3.2 Reduction

The reduction subphase attempts to reduce the size of the subtyping graph

built by the decomposition subphase. There are two ways that it does this:

coalescing strongly connected components, and coalescing similarly situated

nodes of a given variance in the generalizee. The variance of type variables

with respect to qualifiers, types, and constraints is defined in figure 6.14.

Rule CT-CYCLE (figure 6.15) identifies a cycle in the subtyping graph

and unifies all the type variables in the cycle. Applied repeatedly, this rule

collapses each strongly connected component of the graph to a single type

variable.

The remaining rules in figure 6.15 implement polarized constraint reduc-

tion, as described by Simonet (2003). Rule CT-POSPRED coalesces a type

variable β with its unique predecessor α if (1) β appears covariantly in the

6.3. SOLVING SUBTYPE CONSTRAINTS 139

C ;Γ;τ` C1
θ7−→ C2 (constraint rewriting)

CT-FRESH
α 6∈FTV(C ,Γ,τ)

C ;Γ;τ` C ·7−→ ∃α.C

Figure 6.16: Existential introduction (non-lossy)

generalizee type, (2) β has no other predecessors in the constraint context,

and (3) β does not appear in the environment; dually, rule CT-NEGSUCC

coalesces a contravariant type variable with a unique successor. Rule CT-

POSSIB coalesces several covariant type variables βj if each has exactly the

same set of predecessors αi; rule CT-NEGSIB works dually for negative type

variables with the same successors.

6.3.3 Existential Elimination

Type variables that appear only in the constraint, not in the environment nor

the generalizee, are considered to be existentially quantified in the constraint.

The existential elimination subphase attempts to remove these type variables

from the subtyping constraint graph, potentially adding new subqualifier

constraints for them if necessary. In the implementation, existential type

variables are tracked by mutable state in unification variables, rather than

having binders in the representation of constraints. For the purposes of

specifying the constraint rewriting system, however, we add a rule that

explicitly adds existential quantifiers to the constraint (figure 6.16).

Unlike the previous two subphases, existential elimination involves a

subtle interaction between subtype and subqualifier constraints. To clarify

the issues, I abstract from the concrete constraint-solving problem considered

thus far.

The setup. Let there be:

• a partially ordered set (T,≤),

140 CHAPTER 6. IMPLEMENTATION OF ALMS

• a lattice (Q,v),

• and a set map 〈·〉 : T →Q.

Let ∼ be the smallest equivalence relation containing ≤, and define the

equivalence classes [t] = {t′ ∈ T | t′ ∼ t}. For each t ∈ T, we call [t] ∈ T/∼
the shape of t.

We require the shapes of T to have two additional properties:

• Each shape ([t],≤) must be a lattice; further, each shape lattice must be

modular: for all t1, t2, t3 ∈ [t], if t1 ≤ t3 then t1 t (t2 u t3)= (t1 t t2)u t3.

• The map 〈·〉 is not necessarily monotone, but when restricted to any

shape [t], then 〈·〉|[t] : [t]→Q is either monotone or antitone.

Constraints. Next, we define a language of constraints over elements of T
and Q,

C,D ::= > | C∧D | x1 ≤ x2 | q1 v q2 | ∃x.C,

where q ∈ Q and variables x stand for elements of T. (Constraints never

involve concrete elements of T.)

The machinery of constraints is essentially the same as for Substructural

HM(X) constraints. Equivalence is defined up to the commutative monoid

on ∧ with identity >, with scope extrusion and α conversion. The meaning of

constraints is given by a relation ϑ |= C, defined as for Substructural HM(X)

in figure 6.3, where ϑ is a substitution mapping variables to elements of T.

Single-step constraint rewriting is defined by a relation C ϑ7−→ D, which is lifted

to rewrite under constraint contexts. (Once existential quantifiers have been

suitably introduced into a constraint by rule CT-FRESH, we no longer need to

see the context, environment, or generalizee.)

Constraint rewriting. As before, a rewriting rule C ϑ7−→ D is sound if D ϑC.

However, the kind of simplification that I am concerned with here is existential

elimination of the form ∃y.C ·7−→ D. To show that such a rule is sound, it

suffices to show that for all ϑ such that ϑD, we can find a ty ∈ T such that

6.3. SOLVING SUBTYPE CONSTRAINTS 141

ϑ◦{ty/y} |= C. (This follows directly from the definition of constraint entailment

and the meaning of existentially quantified constraints.)

We consider first a simple rewrite rule for eliminating existentials.

THEOREM 6.1 (Existential elimination (i)).

Rewrite rule ∃y. x ≤ y∧ y≤ z ·7−→ x ≤ z is sound.

Proof. Given that ϑ |= x ≤ z, we know that ϑx ≤ϑz. Let ty =ϑx. Then,

ϑx ≤ϑx

ϑ◦ {ϑx/y} |= x ≤ y .

ϑx ≤ϑz

ϑ◦ {ϑx/y} |= y≤ z .

ϑ◦ {ϑx/y} |= x ≤ y∧ y≤ z
.

We can also admit a more general version of the previous rule:

THEOREM 6.2 (Existential elimination (ii)).

Rewrite rule

∃y.
(∧

i
xi ≤ y

)
∧

(∧
j

y≤ z j

) ·7−→∧
i

∧
j

xi ≤ z j

is sound.

Proof. Given a substitution ϑ that satisfies the result of the rule, we must find

a ty ∈ T such that ϑxi ≤ ty for all i and ty ≤ϑz j for all j.

We know that ϑxi ≤ϑz j for all i and j. This means that they all have the

same shape: for all i and j, [ϑxi] = [ϑz j]. Thus, all the ϑxi and ϑz j are in a

lattice ([ϑxi],≤), which has finite joins. Let ty =⊔
iϑxi. Since each ϑz j is an

upper bound for all ϑxi, and since ty is the least upper bound of the latter, by

the Riesz Interpolation Property, ty ≤ϑz j for all j.

The problem. When simplifying constraints, the goal is to get rid of ≤
constraints by taking advantage of existentially quantified variables; at this

point, we do not mind if the number of v constraints increases. Now consider

a constraints of the form

∃y. x ≤ y∧ y≤ z∧C,

142 CHAPTER 6. IMPLEMENTATION OF ALMS

where C contains no ≤ constraints. We would like to eliminate y as in the

above rules, but we cannot because C may contain some v constraints on 〈y〉.
For example, consider this hypothetical constraint rewriting rule:

y ∉FV(q1, q2)

∃y. x ≤ y∧ y≤ z∧ q1 v 〈y〉∧〈y〉 v q2
·7−→ x ≤ z∧∃y. q1 v 〈y〉∧〈y〉 v q2

.

The rule is unsound, because the eventual choice for y satisfying q1 v 〈y〉 and

〈y〉 v q2 may not be between x and z. In fact, there is no way to reduce the

number of ≤ constraints by adding v constraints, because we do not know

enough about 〈·〉.

An idea. A potential solution is to strengthen the properties of 〈·〉, as follows.

For each shape [t] of T, we now require that

1. the lattice map 〈·〉|[t] : [t]→Q is continuous, and

2. the image 〈[t]〉 is either a single point in Q or all of Q.

We then need the following lemma about modular lattices:

LEMMA 6.3 (Intermediate value).

Let (A,t,u) be a modular lattice, (B,t,u) be a lattice, and g : A → B be
surjective and continuous. Then for all a1,a2 ∈ A such that a1 v a2, and
for all b ∈ B such that g(a1) v b v g(a2), there exists some a′ ∈ A such that
g(a′)= b and a1 v a′ v a2.

Proof. Because map g is surjective, we know that b is in the image of g, so we

can pull back b to its preimage g−1(b)⊆ A. Let a′ = a1 t (ab ua2), where ab is

any element of g−1(b). Then:

g(a′)= g(a1 t (ab ua2)) definition of a′

= g(a1)t (g(ab)u g(a2)) continuity of g

= g(a1)t (bu g(a2)) ab ∈ g−1(b)

= g(a1)tb b v g(a2)

= b g(a1)v b.

6.3. SOLVING SUBTYPE CONSTRAINTS 143

Because a′ = a1 t (ab ua2), clearly a1 v a′. By modularity of A, and because

a1 v a2, we know that a1 t (ab ua2) = (a1 tab)ua2, and furthermore, (a1 t
ab)ua2 v a2. Thus, we have that a1 v a′ v a2.

COROLLARY 6.4 (Intermediate value).

If t1 ≤ t2, then for all q such that 〈t1〉 v q v 〈t2〉, there exists some t′ such that
〈t′〉 = q and t1 ≤ t′ ≤ t2.

Proof. Since t1 ≤ t2, we know that t1 and t2 are in the same shape [t1], which is

a modular lattice. According to the properties specified for 〈·〉, the image 〈[t1]〉
is either a single point or all of Q. If the image 〈[t1]〉 is a single point, then

〈t1〉 = q = 〈t2〉, so let t′ = t1. Otherwise, 〈·〉|[t1] : [t1] → Q is surjective, so the

corollary holds by lemma 6.3.

Now we can formulate a sound rewriting rule to replace the unsound rule

proposed above.

THEOREM 6.5 (Existential elimination (iii)).

Rewrite rule

y, y′ ∉FV(q1, q2)

∃y. x ≤ y∧ y≤ z∧ q1 v 〈y〉∧〈y〉 v q2
·7−→

x ≤ z∧∃y′.〈x〉 v 〈y′〉∧〈y′〉 v 〈z〉∧ q1 v 〈y′〉∧〈y′〉 v q2

is sound.

Proof. If ϑ satisfies the result of the rule, then we know that ϑx ≤ ϑy, and
furthermore, there must be some ty′ such that

ϑ |= ∃y′.〈x〉 v 〈y′〉∧〈y′〉 v 〈z〉∧ q1 v 〈y′〉∧〈y′〉 v q2

ϑ′ |= 〈x〉 v 〈y′〉∧〈y′〉 v 〈z〉∧ q1 v 〈y′〉∧〈y′〉 v q2

ϑ′ |= 〈x〉 v 〈y′〉
〈ϑ′x〉 v 〈ϑ′y′〉

q q
〈ϑx〉 v 〈ty′〉

ϑ′ |= 〈y′〉 v 〈z〉
〈ϑ′y′〉 v 〈ϑ′z〉

q q
〈ty′〉 v 〈ϑz〉

ϑ′ |= q1 v 〈y′〉
ϑ′q1 v 〈ϑ′y′〉

q q
ϑq1 v 〈ty′〉

ϑ′ |= 〈y′〉 v q2

〈ϑ′y′〉 vϑ′q2

q q
〈ty′〉 vϑq2

,

144 CHAPTER 6. IMPLEMENTATION OF ALMS

where ϑ′ = ϑ◦ {ty′ /y′}. We assume that the rule respects scope, which means

that y, y′ ∉FV(x, z, q1, q2). Thus we know that ϑ{t/y′}x =ϑ{t/y}x for any t, and

likewise for z, q1, and q2.
Since ϑx ≤ ϑz and 〈ϑx〉 v 〈ty′〉 v 〈ϑz〉, we can apply corollary 6.4 with

t1 = ϑx, t2 = ϑz, and q = 〈ty′〉; then there is some ty such that such that
〈ty〉 = 〈ty′〉 and ϑx ≤ ty ≤ ϑy. Let ϑ′′ = ϑ◦ {ty/y}. Note that ϑ′′x = ϑx, ϑ′′y = ϑy,
ϑ′′q1 =ϑq1, and ϑ′′q2 =ϑq2 by our freshness assumptions. Then,

ϑx ≤ ty

q q
ϑ′′x ≤ϑ′′y
ϑ′′ |= x ≤ y

ty ≤ϑz

q q
ϑ′′y≤ϑ′′z
ϑ′′ |= y≤ z

ϑq1 v 〈ty′〉
q q

ϑ′′q1 v 〈ϑ′′y〉
ϑ′′ |= q1 v 〈y〉

〈ty′〉 vϑq2

q q
〈ϑ′′y〉 vϑ′′q2

ϑ′′ |= 〈y〉 v q2

ϑ′′ |= x ≤ y∧ y≤ z∧ q1 v 〈y〉∧〈y〉 v q2

.

Existential elimination in Alms. Having solved the problem of existential

elimination in the abstract setting, it remains to apply the solution in Alms.

The condition on T, the set of types—in particular, that it partition to

a family of modular lattices—holds in the context of atomic subtyping. In

such a setting, types are related only if they differ at some leaves (atoms),

which means that each shape represents a set of types with the same tree

structure but different leaves. Modularity means that we can factor the

potential subtyping in a shape into a product of the subtyping of the leaves.

The original condition on 〈·〉 is also reasonable: It means that for any shape

lattice of types, the qualifier property varies either with subtyping or against

it. Where 〈·〉 is monotone, this corresponds to a setting of linear or affine types,

where the restrictions on a value may be strengthened by dereliction. Where 〈·〉
is antitone, this gives uniqueness types, where subsuming a unique type to

a non-unique type increases what we may do with it. When 〈·〉 is constant

on each shape, we have Wadler’s (1991) steadfast types. Allowing 〈·〉 to be

monotone on some shapes and antitone on others would support both affine

and uniqueness types in the same language; unfortunately, that property

impedes type inference, because it makes the rewrite rule of theorem 6.5

unsound. Instead, we adopt the requirement that 〈·〉 be continuous.

In this section, I treat 〈·〉 as a fixed, abstract function with some known

properties, but in Alms the map from types to qualifiers is extended each time a

6.3. SOLVING SUBTYPE CONSTRAINTS 145

new type is defined. Continuity of 〈·〉 corresponds to monotonicity of dependent

kinds in Alms. Because Alms relies on a generalization of theorem 6.5 for type

inference, it requires the kinds of all defined types to be monotone. Assuming

that the kinds of all primitive types are monotone, all new concrete types will

have monotone kinds, by composition; however, Alms requires a check that

abstract type constructors have monotone kinds as well. Monotonicity of kinds

appears in the model aλms as well, in lemma 5.4 on page 119.

6.3.4 Guessing and Candidate Selection

The final two subphases of the subtype-solving phase are guessing and candi-

date selection. Guessing extends the substitution based on a heuristic, with

the goal of making more type variables generalizable in the candidate selection

subphase.

To see why guessing is useful, consider two constraint-solving problems,

where binary type constructor χ is invariant in both parameters:

1. C ;•;χαβ`α≤β ?7−→ ?

2. C ; y:β;χαβ`α≤β ?7−→ ?

In both problems, because type variables α and β appear invariantly in the

generalizee, none of the reduction rules apply and existential elimination is

not an option. Furthermore, because both α and β appear in a subtyping

constraint, neither is generalizable as the constraint stands. In problem 1,

there are essentially two options: either unify α and β, thus making the

coalesced type variable generalizable, or leave them ungeneralized. If we were

constraint solving using equality, as in ML, then we would have unified them

already, so we can safely unify them and do no worse than ML would. In

problem 2, unifying the type variables will not let us generalize, because β

appears free in the environment; thus, it is better not to unify. The guessing

subphase therefore unifies α and β in problem 1 but does not in problem 2:

1. C ;•;χαβ`α≤β {α/β}7−−−→>

2. C ; y:β;χαβ`α≤β ·7−→α≤β

146 CHAPTER 6. IMPLEMENTATION OF ALMS

C ;Γ;τ` C1
θ7−→ C2 (constraint rewriting)

CT-GUESS

subgraph αi ≤βi is connected αi,βi 6∈FTV(C |≤,Γ)

C ;Γ;τ`αi ≤βi
{α1/αi}◦{α1/βi}7−−−−−−−−−−→>

Figure 6.17: Guessing (lossy)

The two problems illustrate the main rule of the guessing subphase, which

appears in figure 6.17. In rule CT-GUESS, C |≤ stands for the portion of con-

straint rewriting context C that involves subtype constraints; or equivalently,

C |≤ is C with all subqualifier constraints replaced by >. The rule identifies

a connected component of the subtype constraint graph all of whose type

variables are not free in environment Γ, and coalesces those type variables.

Finally, the candidate selection subphase identifies which type variables

should be generalized based on the current constraint, environment, and

generalizee:

FTV(τ)\ (FTV(Γ)∪FTV(C|≤))

That is, the generalization procedure will attempt to generalize the free type

variables of the generalizee type, except for those that cannot be generalized

because they appear in the environment or the subtype portion of the con-

straint. This selection does not happen by way of a rewrite rule, but serves to

drive the second constraint solving phase, which attempts to find a constant

qualifier bound for each generalization candidate type variable.

6.4 Solving Subqualifier Constraints

The subtype-solving phase completes by selecting a set of type variables to

generalize. The goal of second phase, which solves subqualifier constraints, is

to upper bound each generalization candidate by a single constant qualifier.

That is, given the set of generalization candidates αi = FTV(τ) \ (FTV(Γ)∪

6.4. SOLVING SUBQUALIFIER CONSTRAINTS 147

FTV(C|≤)), the goal is to rewrite to a constraint of the form

〈αi〉 v qi ∧D

where αi ∉FTV(D).

In addition to keeping track of generalization candidates, qualifier solving

distinguishes type variables that appear only in qualifiers (henceforth “flexible

variables”) from non-flexible type variables. This is important, because while

non-flexible type variables stand for some type, flexible type variables are used

only for their qualifier value. For example, consider type α 〈β〉−−−◦ γ where α, β,

and γ are unification variables. If we learn that 〈β〉 v U then we can safely

replace 〈β〉 by U, since type variable β is being used only for its qualifier. By

contrast, learning that 〈α〉 vU should not cause α to be unified with U, because

there are many types whose qualifier is U and which type is chosen matters.

Thus, if we can determine the qualifier of a flexible type variable, then it is

safe to substitute for it any type with that qualifier; but for a non-flexible type

variable, the qualifier alone is not enough information to choose a type.

Qualifier solving consists of four subphases, each of which act only on the

subqualifier portion of the constraint:

1. Standardization rewrites the subqualifier portion of the constraint to

a standard form, which the other subphases expect. The other phases

do not preserve standardization, so this phase is run again whenever

necessary to return the constraint to standard form.

2. Reduction, like the reduction subphase in the previous section, attempts

to use the variances of type variables and their relationships to coalesce

them.

3. Usually the first two subphases are sufficient to find bounds for gen-

eralization candidates, but if not, the SAT solving subphase provides

a backstop. It treats the qualifier portion of the constraint as a SAT

instance and runs a SAT solver, which ensures that the constraint is

satisfiable and yields a substitution.

4. The bounding subphase selects constant qualifier bounds for all remain-

ing generalization candidates.

148 CHAPTER 6. IMPLEMENTATION OF ALMS

C ;Γ;τ` C1
θ7−→ C2 (constraint rewriting)

CQ-BOT

C ;Γ;τ`Uv ξ
·7−→>

CQ-TOP

C ;Γ;τ` ξvA
·7−→>

CQ-DECOMPOSE

βi =α1, . . . ,αj \α′
1, . . . ,α′

k

C ;Γ;τ` 〈α1〉t . . .t〈αj〉 v 〈α′
1〉t . . .t〈α′

k〉
·7−→ 〈βi〉 v 〈α′

1〉t . . .t〈α′
k〉

CQ-FILTERA
α′

i = {α ∈αi |α is flexible}

C ;Γ;τ`Av 〈αi〉 ·7−→Av 〈α′
i〉

CQ-FILTERV
β is not flexible α′

i = {α ∈αi |α is flexible}

C ;Γ;τ` 〈β〉 v 〈αi〉 ·7−→ 〈β〉 v 〈α′
i〉

Figure 6.18: Qualifier constraint standardization (lossy and non-lossy)

6.4.1 Standardization

The goal of the standardization phase is to get all atomic subqualifier con-

straints into one of two standard forms:

• Av 〈β1〉t . . .t〈βk〉 where the βi are flexible;

• 〈α〉 v 〈β1〉t . . .t〈βk〉 where the βi are flexible if α is not flexible.

The flexibility requirements make sense as follows. Constraints of the first

form may be read as disjunctions: at least one of β1 . . .βk must be affine.

Thus, such a constraint may be satisfied by substituting any affine type for

any flexible variable in the upper bound, but because non-flexible variables

cannot be substituted in the qualifier solving phase, they do not help with

solving such a constraint. The rationale behind the second form is similar,

except that when α is flexible, the constraint can also be solved by substituting

〈β1〉 t . . .t 〈βk〉 for α; thus, non-flexible type variables in the upper bound

remain relevant.

The first three standardization rules in figure 6.18 are non-lossy. Rules CQ-

BOT and CQ-TOP immediately discharge subqualifier constraints with U as a

lower bound or A as an upper bound. Rule CQ-DECOMPOSE breaks down an

6.4. SOLVING SUBQUALIFIER CONSTRAINTS 149

C ;Γ;τ` C1
θ7−→ C2 (constraint rewriting)

All rules in this figure implicitly have the premise “β is flexible.”

Sugar: β cand,β ∈FTV(τ)\ (FTV(Γ)∪FTV(C |≤))

CQ-FORCEU

C ;Γ;τ` 〈β〉 vU
{U/β}7−−−→>

CQ-SUBSTNEG

varβ(C)tvarβ(τ)v−
β cand

C ;Γ;τ` 〈β〉 v ξ
{ξ/β}7−−−→>

CQ-SUBSTNEGTOP

varβ(C)tvarβ(τ)v−
β cand

C ;Γ;τ`> {A/β}7−−−→>

CQ-SUBSTPOS

varβ(C)tvarβ(τ)v+ β cand

C ;Γ;τ` ξ1 v 〈β〉∧ . . .∧ξk v 〈β〉 {ξ1t...tξk/β}7−−−−−−−−→>

CQ-SUBSTINV

varβ(C)v+ varβ(τ) = ± β′ 6∈FTV(C ,Γ,τ,β,ξi) β cand

C ;Γ;τ` ξ1 v 〈β〉∧ . . .∧ξk v 〈β〉 {〈β′〉tξ1t...tξk/β}7−−−−−−−−−−−−→>

Figure 6.19: Qualifier constraint reduction (lossy and non-lossy)

inequality on joins of type variables into an inequality for each type variable

in the lower bound that does not appear in the upper bound.

The last two standardization rules, CQ-FILTERA and CQ-FILTERV, are

lossy. These rules remove non-flexible type variables from upper bounds, in

order to reach the flexibility requirements of the two standard forms. Removing

type variables from a join on the right side of an inequality is sound, because

it effectively tightens the inequality.

6.4.2 Reduction

The reduction phase substitutes for flexible type variables in order to shrink

the subqualifier portion of the constraint (figure 6.19). Rule CQ-FORCEU

substitutes an unlimited type for flexible type variables bounded above by U.

The remaining rules all substitute for a flexible, generalization candidate

150 CHAPTER 6. IMPLEMENTATION OF ALMS

type variable β, based on its variance in the rest of the constraint and the

generalizee. These follow the usual rules for polarized constraint reduction:

contravariant variables are unified with their upper bounds and covariant

variables are unified with their lower bounds. Rule CQ-SUBSTNEGTOP is

like CQ-SUBSTNEG, except that it assumes an upper bound of A for any type

variable that has no other upper bound. Rule CQ-SUBSTINV substitutes for

an invariant type variable, using its lower bound joined with a fresh slack

variable β′.

6.4.3 SAT Solving

In practice, the first two subphases of qualifier solving often are sufficient to

find a constant qualifier bound for each remaining generalization candidate.

As a backstop to the constraint rewriting system, however, the generalization

and constraint-solving procedure can invoke a SAT solver on the subqualifier

portion of the constraint.

Constraints with subqualifier inequalities in standard form are easily

converted to conjunctive normal form:

J>K=>
Jτ1 ≤ τ2K=>

JAv 〈β1〉t . . .t〈βk〉K=β1 ∨·· ·∨βk

J〈α〉 v 〈β1〉t . . .t〈βk〉K=¬α∨β1 ∨·· ·∨βk

JC∧DK= JCK∧ JDK
J∃α.CK= JCK α fresh

The result of the SAT solver is then used to construct a substitution. The

entire result of the solver is not necessarily used, but enough is used to ensure

that no generalization candidate type variables appear on the right side of any

subqualifier inequalities.

6.4. SOLVING SUBQUALIFIER CONSTRAINTS 151

C ;Γ;τ` C1
θ7−→ C2 (constraint rewriting)

CQ-BOUNDU
β ∈FTV(τ)\ (FTV(Γ)∪FTV(C))

C ;Γ;τ` 〈β〉 v ξi
·7−→ 〈β〉 vU

CQ-BOUNDA
β ∈FTV(τ)\ (FTV(Γ)∪FTV(C))

C ;Γ;τ`> ·7−→ 〈β〉 vA

Figure 6.20: Finding constant qualifier bounds (lossy)

6.4.4 Bounding

Constraint solving ends with the bounding phase, which rewrites the con-

straint into the final form expected by the generalization procedure, using

two rules that appear in figure 6.20. For each generalization candidate type

variable β, it computes an upper bound of either U or A. In particular, if β

appears with any upper bounds in the qualifier constraint, rule CQ-BOUNDU

bounds it by U and ensures that β appears nowhere else in the constraint.

Otherwise, if β does not appear in the constraint at all, then rule CQ-BOUNDA

bounds it by A. The end result is a constraint that can be split by rule GEN

into bounds for generalized variables in a type scheme and the remaining

constraint, in which the generalized variables do not appear.

CHAPTER 7

Mixing Affine and Conventional Types

THE DEVELOPMENT OF software systems benefits from access to comprehen-

sive libraries, which mainstream programming languages usually provide but

experimental language implementations often do not. While it is possible to

translate libraries from another language—or to design them from scratch—

another possibility is to allow code written in an affine language like Alms to

interact with code written in a similar but conventional (i.e., not substructural)

language.

I envision complementary scenarios:

• A programmer wishes to import legacy library code for use by affine-

typed client code. Unfortunately, legacy code unaware of the substruc-

tural conditions may duplicate values received from the substructural

language.

• A programmer wishes to export substructural library code for access from

a conventional language. A client may duplicate values received from

the library and resubmit them, causing aliasing that the library could

not produce on its own and bypassing the substructural type system’s

guarantees.

In a higher-order setting, both scenarios arise naturally when higher-order

values cross the interlanguage boundary. Beyond the two-language case, my

solution is useful within a single affine language, such as Alms, because it

153

154 CHAPTER 7. MIXING AFFINE & CONVENTIONAL TYPES

provides a principled approach to combining dynamic and static enforcement

of affinity.

In this chapter, I describe a novel approach to regulating the interaction

between an affine language and a conventionally-typed language, with the

following features:

• The non-affine language may gain access to affine values and may apply

affine-language functions.

• The non-affine type system is utterly standard, making no concessions

to the affine type system.

• And yet, the composite system preserves the affine language’s invariants.

The principal features of such a system are modeled by a multi-language

calculus that enjoys type soundness. In particular, the conventional language,

although it has access to the affine language’s functions and values, cannot be

used to subvert the affine type system.

My solution, in short, is to impose dynamic checks by wrapping each

exchanged value in a behavioral contract (Findler and Felleisen 2002) that

uses one bit of state to track when an affine value has been used. While the

idea is simple, the details can be subtle.

The bulk of this chapter comprises a model of a two-language system with

affine contracts (§7.2) and its type soundness proof (§7.3). After that, I discuss

an implementation strategy for a hypothetical two-language system (§7.4.1)

and show how affine contracts are also useful in Alms even though it does not

interface with a conventional language (§7.4.2).

7.1 Related Work

To monitor the flow of values between affine and conventional modules, I

use Findler and Felleisen’s (2002) higher-order contracts. My approach to

integrating affine and conventional types borrows from more recent litera-

ture on multi-language interoperability (Matthews and Findler 2007; Tobin-

Hochstadt and Felleisen 2008). In particular, the technique and models in this

7.2. A MODEL OF AFFINE CONTRACTS 155

chapter closely follow that of a predecessor of Typed Racket (Tobin-Hochstadt

and Felleisen 2006), which uses contracts to mediate between modules in an

untyped, Scheme-like language and a typed language. Instead, I use software

contracts to mediate between modules in an affine, Alms-like language and a

conventionally-typed language.

One important feature of the contracts in this chapter is that they are

stateful. When an affine contract is created, it allocates a reference cell, which

creates a channel of communication between subsequent invocations of the

same contract. Contracts with state have found another application in enforc-

ing parametricity, either by dynamic sealing (Matthews and Ahmed 2008) or

by keeping track of which values pass through a function parameter whose

type involves a universally quantified type variable (Sam Tobin-Hochstadt

2009, personal communication).

7.2 A Model of Affine Contracts

This chapter concerns safe interoperation between a pair of languages, one

with affine types and the other with a conventional type system. This can be

achieved using software contracts to mediate the interaction.

In Findler and Felleisen’s (2002) formulation, a contract is an agreement

between two software components, or parties, about some property of a value.

The positive party produces a value, which must satisfy the specified property.

The negative party consumes the value and is held responsible for treating it

appropriately. Contracts are concerned with catching violations of the property

and blaming the guilty party, which may help locate the source of a bug.

For first-order values the contract may be immediately checkable, but for

functional values nontrivial properties are undecidable, so the check must

wait until the negative party applies the function, at which point the negative

party is responsible for providing a suitable argument and the positive party

for producing a suitable result. Thus, for higher-order functions, checks are

delayed until first-order values are reached.

In the model described in this section, the parties to contracts are modules,

which must be in entirely one language or the other. For simplicity, modules

156 CHAPTER 7. MIXING AFFINE & CONVENTIONAL TYPES

do not nest, and a module associates one name with one value. I begin by

describing the model of the conventional language, FC , which is the call-

by-value, polymorphic λ calculus (Girard 1972) extended with single-value

modules; I then describe the affine language, FA , which is similar to FC ,

but with affine types in the style of aλms, the model in chapter 5. The two

sublanguages are combined in the mixed model FA
C .

7.2.1 The Conventional Language FC

The syntax of FC appears in figure 7.1. As in System F, FC ’s types include type

variables, function types, and universally quantified types, and its expressions

include variables, λ abstractions, and type abstractions. Additionally, FC

includes modules. A module f : ττ = v associates a module name with a type

and value, and a module invocation expression (f) merely reduces to the

value. Modules allow recursion and, more importantly, provide the means

for interlanguage interaction, since each language will be be able to invoke

modules written in the other. An FC program (P) comprises a collection of

modules (M) and an expression. (FC terms are set in boldface to distinguish

them from FA .)

Operational semantics. The operational semantics of FC appears in fig-

ure 7.2. The reduction relation is parametrized by a collection of modules, M.

The only non-standard rule is C-MOD, which reduces a module name to its

body.

Static semantics. The type system of FC appears in figure 7.3. Expressions

are typed under a module context M, which is merely a collection of modules,

and a typing context ΓΓ that associates variables names with their types. All

expression type rules are standard except for rule CT-MOD, which assigns a

module name the type declared in the module itself, as found in the module

context M.

FC also requires judgments for checking individual modules and whole

programs. A module f : ττ = v is okay in a module context M if v has type ττ

in that same context. A program let M in e has type ττ if all modules in M are

7.2. A MODEL OF AFFINE CONTRACTS 157

αα, ββ ∈ TVarC type variables
x, y ∈ VarC variables
f, g ∈ MVarC module names

ττ ::= types
| αα type variable
| ττ1 → ττ2 function type
| ∀αα.ττ universal type

ΓΓ ::= typing contexts
| • empty context
| ΓΓ,x : ττ with a variable

v ::= values
| x variable occurrence
| λx:ττ.e abstraction
| Λαα.v type abstraction

e ::= expressions
| v values
| f module invocation
| e1 e2 application
| eττ type application

m ::= f : ττ= v modules

M ::= m1, . . . ,mk module contexts

P ::= let M in e programs

Figure 7.1: Syntax of FC

158 CHAPTER 7. MIXING AFFINE & CONVENTIONAL TYPES

e−→M e′ (FC reduction)

(C-βv) (λx:ττ.e)v−→M {v/x}e
(C-Bτ) (Λαα.v)ττ−→M {ττ/αα}v
(C-MOD) f−→M v when (f : ττ= v) ∈M

e 7−→M e′ (FC reduction)

(C-CXT)
e

E[e]
−→M e′

7−→M E[e′]

where E ::= [] | Ee | vE | Eττ

Figure 7.2: Operational semantics of FC

okay in the context of M (hence, recursion), and if e has type ττ in the same

module context.

7.2.2 The Affine Language FA

The syntax of FA appears in figure 7.4. FA extends FC with products,

reference cells, and affine types.

Like Alms, FA includes two qualifiers, U and A, but unlike Alms, it does

not include qualifier expressions built out of variables. Rather than use a

kind system to track the qualifiers of type variables, FA has two disjoint sets

of type variables: the unlimited type variables TVarUA and the affine type

variables TVarAA . (Disjoint sets are a simplification to dispense with kind

environments, but nothing here is incompatible with using kinding instead.)

Type variables are decorated with their qualifier (αU and αA), and we use the

form αq to refer generically to a type variable of either qualifier.

The types of FA (τ) distinguish a class of “opaque types” (ρ), which will

be embedded opaquely, with no operations, in FC . This distinction has no

relevance for FA alone, but will play a rule in defining the mixed language

7.2. A MODEL OF AFFINE CONTRACTS 159

M;ΓΓ C̀ e : ττ (FC expression typing)

CT-VAR
x : ττ ∈ΓΓ

M;ΓΓ C̀ x : ττ

CT-MOD
(f : ττ= v) ∈M

M;ΓΓ C̀ f : ττ

CT-TABS
M;ΓΓ C̀ v : ττ

M;ΓΓ C̀ Λαα.v :∀αα.ττ

CT-ABS
M;ΓΓ,x : ττ C̀ e : ττ′

M;ΓΓ C̀ λx:ττ.e : ττ→ ττ′

CT-TAPP
M;ΓΓ C̀ e :∀αα.ττ′

M;ΓΓ C̀ eττ : {ττ/αα}ττ′

CT-APP
M;ΓΓ C̀ e1 : ττ′ → ττ M;ΓΓ C̀ e2 : ττ′

M;ΓΓ C̀ e1 e2 : ττ

M`m okay , C̀ P : ττ (FC module and program typing)

MODULEC
M;• C̀ v : ττ FTV(ττ)=;

M` f : ττ= v okay

C-PROG
(∀m ∈M) M`m okay M;• C̀ e : ττ

C̀ let M in e : ττ

Figure 7.3: Static semantics of FC

in §7.2.3. Opaque types include product types (τ1 ⊗τ2) and reference types

(ref τ). The values include pair construction (〈v1,v2〉). Expressions include

a destructuring let for pair elimination, and two operations on references,

allocation and swap, which combines reading and writing. FA ’s treatment of

modules follows FC ’s.

Operational semantics. The operational semantics of FA appears in fig-

ure 7.5. The run-time syntax includes locations (`), and stores (s), which

map locations to values. The reduction relation is defined over a pair of

configurations (s,e), each of which pairs a store with an expression; as with

FC , reduction is parametrized by a module context M. Four reduction rules

are worth noting: FA ’s treatment of modules, by rule A-MOD, follows that of

FC . Rule A-LETPAIR destructures a pair, substituting its components in the

160 CHAPTER 7. MIXING AFFINE & CONVENTIONAL TYPES

q ∈ {U, A} qualifiers
αU, βU ∈ TVarUA unlimited type variables
αA, βA ∈ TVarAA affine type variables
x, y ∈ VarA variables
f , g ∈ MVarA module names

τ ::= types
| ρ opaque type
| τ1

q−−◦ τ2 affine function type
| ∀αq.τ universal type

ρ ::= opaque types
| αq type variable
| ref τ reference type
| τ1 ⊗τ2 product type

Γ ::= typing contexts
| • empty context
| Γ, x : τ with a variable

v ::= values
| x variable occurrence
| λx:τ. e abstraction
| Λαq.v type abstraction
| 〈v1,v2〉 pair introduction

e ::= expressions
| v values
| f module invocation
| e1 e2 application
| eτ type application
| let〈x, y〉 = e1 in e2 pair elimination
| new e reference allocation
| swap e reference read/write

m ::= f : τ= v modules

M ::= m1, . . . ,mk module contexts

P ::= let M in e programs

Figure 7.4: Syntax of FA

7.2. A MODEL OF AFFINE CONTRACTS 161

` ∈ Loc locations

v ::= ·· · | ` run-time values

s ::= {} | {` 7→ v} | s1] s2 stores

(s, e)−→M (s′, e′) (FA reduction)

(A-βv) (s, (λx:τ. e)v)−→M (s, {v/x}e)
(A-Bτ) (s, (Λαq.v)τ)−→M (s, {τ/αq}v)
(A-MOD) (s, f)−→M (s,v) when (f : τ= v) ∈M
(A-LETPAIR) (s, let〈x, y〉 = 〈v1,v2〉 in e)−→M (s, {v1/x}{v2/y}e)
(A-NEW) (s,new v)−→M (s] {` 7→ v},`)
(A-SWAP) (s] {` 7→ v1},swap〈`,v2〉)−→M (s] {` 7→ v2},〈`,v1〉)

(s, e) 7−→M (s′, e′) (FA reduction)

(A-CXT)
(s, e)

(s,E[e])
−→M (s′, e′)
7−→M (s′,E[e′])

where E ::= [] | E e | vE | Eτ | let〈x, y〉 = E in e | new E | swap E

Figure 7.5: Operational semantics of FA

body of the let. By rule A-NEW, new v allocates a fresh location ` in the store

and associates it with value v, reducing to location `. Finally, by rule A-SWAP,

swap〈`,v2〉 requires the store to map location ` to some value v1, in which case

it replaces v1 with v2 in the store and returns a pair of the same location `

and value v1 read from the store.

Static semantics. The presence of affine types requires several more judg-

ments in FA ’s type system than FC requires. Figure 7.6 defines three new

judgments and one metafunction:

• The qualifier subsumption judgment (q1 v q2) defines the qualifier lattice,

with U on the bottom and A on top.

162 CHAPTER 7. MIXING AFFINE & CONVENTIONAL TYPES

q1 v q2 (FA qualifier subsumption)

AQSUB-BOT

Uv q

AQSUB-TOP

qvA

〈τ〉 = q , 〈Γ〉 = q (FA qualifier assignment)

〈αq〉 = q 〈ref τ〉 =A 〈τ1 ⊗τ2〉 = 〈τ1〉t〈τ2〉 〈τ1
q−−◦ τ2〉 = q

〈∀αq.τ〉 = 〈τ〉 〈Γ〉 = ⊔
x:τ∈Γ

〈τ〉

Γ Γ1�Γ2 (FA context splitting)

AS-CONSL
Γ Γ1�Γ2 〈τ〉 =A

Γ, x : τ Γ1, x : τ�Γ2

AS-CONSR
Γ Γ1�Γ2 〈τ〉 =A

Γ, x : τ Γ1�Γ2, x : τ

AS-CONS
Γ Γ1�Γ2 〈τ〉 =U

Γ, x : τ Γ1, x : τ�Γ2, x : τ

AS-NIL

• •�•

τ1 <: τ2 (FA subtyping)

ASUB-PROD
τ1 <: τ′1 τ2 <: τ′2
τ1 ⊗τ2 <: τ′1 ⊗τ′2

ASUB-ARR
τ′1 <: τ1 qv q′ τ2 <: τ′2

τ1
q−−◦ τ2 <: τ′1

q′
−−◦ τ′2

ASUB-ALL

q′ v q {βq
′
/αq}τ<: τ′

∀αq.τ<:∀βq′
.τ′

ASUB-REFL

τ<: τ

Figure 7.6: Static semantics of FA (i)

7.2. A MODEL OF AFFINE CONTRACTS 163

• Metafunction 〈·〉 maps types and typing contexts (Γ) to qualifiers. The

qualifier of a type variable αq or function type τ1
q−−◦ τ2 is the qualifier

q that decorates that type; the qualifier of a reference is always A; the

qualifier of a product type is the least upper bound of the qualifiers of the

components; and the qualifier of a universal type ∀αq.τ is the qualifier

of its body τ.

The qualifier of a typing context is the least upper bound of the qualifiers

of all the types in its range.

• The context-splitting judgment Γ Γ1�Γ2 splits a context Γ into two

that share Γ’s unlimited variables and partition Γ’s affine variables. This

is used for checking multiplicative expressions such as application, which

must partition affine assumptions between the subterms.

• The last judgment of figure 7.6 defines subtyping, which is similar to

subtyping in Alms, but is defined for FA ’s few built-in types rather than

relying on a kind system. Product types are covariant in both components.

Function types, as in Alms, are contravariant in the domain, covariant

in the qualifier, and covariant in the range. Universally quantified types

are contravariant in the qualifiers of their bound variables and covariant

in their bodies; the rule relies on substitution to rename bound variables

because α equivalence for FA does not include bound variables with

different qualifiers.

The judgments for typing expressions, modules, and programs appear

in figure 7.7. The module and program judgments are as in FC , with one

difference: FA requires that the types of modules be unlimited, because as in

Alms the type system does not track how many times top level bindings are

used. The expression typing judgment is as expected for an affine language

with Alms-style dereliction subtyping. In particular, rule AT-SUBSUME does

subsumption according to the subtyping relation, which allows treating a

function with qualifier U as if it has qualifier A. Rule AT-TAPP requires

not only that in a type application eτ, e have a universal type ∀αq.τ′, but

that the qualifier of τ not exceed qualifier q. Rule AT-SWAP does not require

164 CHAPTER 7. MIXING AFFINE & CONVENTIONAL TYPES

M;Γ À e : τ (FA expression typing)

AT-SUBSUME
M;Γ À e : τ′ τ′ <: τ

M;Γ À e : τ

AT-VAR
x : τ ∈Γ

M;Γ À x : τ

AT-MOD
(f : τ= v) ∈M

M;Γ À f : τ

AT-TABS
M;Γ À v : τ

M;Γ À Λα
q.v :∀αq.τ

AT-ABS
M;Γ, x : τ À e : τ′ 〈Γ|FV(λx:τ. e)〉 = q

M;Γ À λx:τ. e : τ
q−−◦ τ′

AT-PAIR
Γ Γ1�Γ2 M;Γ1 À v1 : τ1 M;Γ2 À v2 : τ2

M;Γ À 〈v1,v2〉 : τ1 ⊗τ2

AT-TAPP
M;Γ À e :∀αq.τ′

〈τ〉 v q

M;Γ À eτ : {τ/αq}τ′

AT-APP
Γ Γ1�Γ2

M;Γ1 À e1 : τ′
q−−◦ τ

M;Γ2 À e2 : τ′

M;Γ À e1 e2 : τ

AT-LETPAIR
Γ Γ1�Γ2

M;Γ1 À e1 : τ1 ⊗τ2
M;Γ2, x : τ1, y : τ2 À e2 : τ

M;Γ À let〈x, y〉 = e1 in e2 : τ

AT-NEW
M;Γ À e : τ

M;Γ À new e : ref τ

AT-SWAP
M;Γ À e : ref τ1 ⊗τ2

M;Γ À swap e : ref τ2 ⊗τ1

M`m okay , À P : τ (FA module and program typing)

MODULEA
M;• À v : τ FTV(τ)=; 〈τ〉 =U

M` f : τ= v okay

A-PROG
(∀m ∈M) M`m okay M;• À e : τ

À let M in e : τ

Figure 7.7: Static semantics of FA (ii)

7.2. A MODEL OF AFFINE CONTRACTS 165

ττ ::= ·· · additional FC types
| {ρ} embedded FA opaque type

τ ::= ·· · additional FA types
| {αα} embedded FC type variable

e ::= ·· · additional FC expressions
| f g FA module invocation

e ::= ·· · additional FA expressions
| fg FC module invocation

m ::= modules
| f : ττ= v an FC module
| f : τ= v an FA module
| f :> τ= g an interface

M ::= module contexts
| m1, . . . ,mk module context

P ::= let M in e programs

Figure 7.8: Additional syntax for FA
C

that the type of a reference match the type of the value to be stored in the

reference, which means that swap performs a strong update: It allows the type

of a reference to change. The remaining rules are straightforward. Rules AT-

PAIR, AT-APP, and AT-LETPAIR each have two subexpressions combined

multiplicatively, which means that each needs to split the context.

7.2.3 The Mixed Language FA
C

The primary aim of this chapter is to construct (type-safe) programs by mixing

modules written in an affine language and modules written in a non-affine

language, and to have them interoperate as seamlessly as possible. We can

then model an affine program calling into a library written in a legacy language,

or a conventional program calling into code written in an affine language. In

166 CHAPTER 7. MIXING AFFINE & CONVENTIONAL TYPES

either case, we must ensure that the non-affine portions of the program do not

break the affine portions’ invariants.

In this section, I show how to combine FC modules and FA modules into a

single program. The additional syntax necessary appears in figure 7.8.

When one language invokes a module from the other language, it needs

some way to refer to the type of that module. In the type system for FA
C , I

will give a mapping between the two languages’ types. Some types translate

into native types of the other language, but some types do not. From the

perspective of FC , type variables, product types, and reference types imported

from FA must appear opaque, supporting no operations other than sending

them back to FA . These are the opaque types (ρ) of FA , and appear as {ρ} in

FC . From the perspective of FA , only FC type variables are opaque, because

all other types translate; the FC type variable αα appears as {αα} in FA .

To invoke modules from another language, each language needs among its

expressions a way to refer to modules of the other language. We will protect

interlanguage communication with contracts, and for each interlanguage

module invocation, the module being invoked is the positive party. For the

negative party, we use the module in which the invocation appears, and we

assume that each interlanguage module invocation is already annotated with

the negative party. Thus, to invoke an FA module f from FC module g, we use

the FC expression f g. Likewise, to invoke an FC module g from FA module f ,

we use the FA expression g f .

Modules now include FC modules (f : ττ = v), FA modules (f : τ = v), and

interface modules, which allow assigning an FA type to an FC module. By

default, when an FC module is referenced from FA , it will be assumed to have

a type with only unlimited arrows—that is, it is assumed not to respect affine

invariants. An interface module f :> τ= f′ declares f to evaluate to the same

value as f′ but to behave like type τ. As we will see, this requires run-time

checks.

An FA
C program comprises a collection of modules, which may be in either

language or may be interfaces, and a main expression, which is (arbitrarily) in

FC .

7.2. A MODEL OF AFFINE CONTRACTS 167

〈τ〉 = q (addition to FA qualifier assignment)

〈{αα}〉 =U

ττA = τ , τC = ττ (FA
C type translation)

(ττ1 → ττ2)A = ττA
1

U−−◦ ττA
2 (τ1

q−−◦ τ2)C = τC
1 → τC

2

(∀αα.ττ)A =∀βU. ({{βU}/αα}ττ)A (∀αq.τ)C =∀ββ. ({{ββ}/αq}τ)C

ααA = {αα} ρC = {ρ}

{ρ}A = ρ {αα}C = αα

M;ΓΓ C̀ e : ττ , M;Γ À e : τ (additions to expression typing)

CT-MODA
(f : τ= v) ∈M

M;ΓΓ C̀ f g : τC

AT-MODC
(f : ττ= v) ∈M

M;Γ À fg : ττA

AT-MODI
(f :> τ= f′) ∈M

M;Γ À fg : τ

M`m okay , `P : ττ (FA
C module and program typing)

INTERFACE

(g : τC = v) ∈M FTV(τ)=; 〈τ〉 =U

M` f :> τ= g okay

PROG
(∀m ∈M) M`m okay M;• C̀ e : ττ

` let M in e : ττ

Figure 7.9: Static semantics of FA
C

168 CHAPTER 7. MIXING AFFINE & CONVENTIONAL TYPES

Static semantics. To type check an FA
C program, we type check the FA

modules using the type system for FA , and the FC modules and main expres-

sion using the type system for FA . To make this work, the individual language

type systems need additional rules to handle interlanguage module references.

The type system for FA
C appears in figure 7.9.

First, we add a case to the qualifier assignment metafunction 〈·〉, which

maps FA types to qualifiers. The qualifier of an embedded FC type variable

({αα}) is U.

Next, we define the metafunctions (·)A and (·)C , which map FC types to

FA types and FA types to FC types, respectively:

• Function types convert to function types. FC function types go to

unlimited functions in FA , and both unlimited and affine FA functions

collapse to ordinary (→) functions in FC .

• Quantified types map to quantified types, but they require renaming

because we distinguish type variables between the two languages. In

particular, FA type variables carry qualifiers, which indicate whether

they may be instantiated to any type or only to unlimited types. FC type

variables are renamed to unlimited FA type variables, which means

that using the default mapping, polymorphic FC modules imported into

FA may only be instantiated with unlimited types. Using an interface

module can overcome this restriction.

• Opaque types are embedded by the mapping, and types already embed-

ded from the other language are unembedded by the mapping.

Note that the mapping from FC to FA is injective, but the reverse mapping is

not because it collapses qualifiers.

The mixed language adds three new expression typing rules, one to FC and

two to FA , for typing interlanguage module invocations. When FA module

f : τ = v appears in an FC expression, it is assigned FC type τC . Likewise,

when FC module f : ττ= v appears in an FA expression, it is assigned FA type

ττA . When an interface f :> τ= g is invoked from an FA expression, it is given

the declared FA type τ rather than the translation of the FC type of g.

7.2. A MODEL OF AFFINE CONTRACTS 169

Finally, we give rules for typing interface modules and programs. An

interface module f :> τ = g is admissible when τ is unlimited (as for FA

modules) and g is an FC module of type τC . The mapping from FA types to

FC is a projection that erases qualifiers, and the mapping from FC back to FA

makes all qualifiers U. An interface module allows viewing the type of an FC

module with qualifiers other than U, because given an FC module g : ττ′ = v, an

interface module allows ascribing any type in the pre-image of (·)C that maps

to ττ′.

Operational semantics. We extend the syntax of the mixed language with

several new forms (figure 7.10). Whereas the source syntax segregates the

two sublanguages into separate modules, module invocation reduces to the

body of the module, which leads expressions of both languages to nest at run

time. Rather than allow FA terms to appear directly in FC , and vice versa, we

need a way to cordon off terms from one calculus embedded in the other and

to ensure that the interaction is well-behaved. These new expression forms

are called “boundaries.” Whereas Matthews and Findler (2007) allow nested

expressions in source programs and eschew modules, I follow Tobin-Hochstadt

and Felleisen (2006) in segregating the two languages by module, and thus

boundaries arise only at run time. While this is not necessary for soundness in

their system, it is necessary in mine, because the type system for FC does not

do context splitting as required by FA . Because the goal is to integrate with

an existing language, one of the design criteria is that the type system of the

non-affine language must not be modified.

The new run-time syntax includes both boundary expressions (τ⇐
f g

)e

for embedding FC expressions in FA and boundary expressions (⇐
g f
τ) e for

embedding FA expressions in FC . Each of these forms includes a type

τ, written on the FA side, which represents a contract between the two

modules that gave rise to the nested expression. Some contracts, for example

∀αU.αU U−−◦ αU, are fully enforced by both type systems. Others, such as

∀αU.αU A−−◦αU, require dynamic checks. The type system guarantees that any

value flowing into such a boundary will be a function, but this type also imposes

an obligation on the negative party to apply the function at most once, which

170 CHAPTER 7. MIXING AFFINE & CONVENTIONAL TYPES

e ::= ·· · additional FC expressions
| (⇐

f g
τ) e boundary embedding FA expression

e ::= ·· · additional FA expressions
| (τ⇐

g f
)e boundary embedding FC expression

v ::= ·· · additional FC values
| (⇐

f g
τ)` v embedded, sealed FA value

| BLSSD distinguished, unused seal value
| DFNCT distinguished, used seal value

v ::= ·· · additional FA values
| (τ⇐

g f
)•v wrapped FC value

E ::= ·· · additional FC evaluation contexts
| (⇐

f g
τ)E embedded FA evaluation

E ::= ·· · additional FA evaluation contexts
| (τ⇐

g f
)E embedded FC evaluation

C ::= FA
C configurations

| (s,e) store and expression
| blame f blame

A ::= FA
C answers

| (s,v) store and value
| blame f blame

s ::= stores
| {} the empty store
| {` 7→ v} store with FC value
| {` 7→ v} store with FA value
| s1] s2 store concatenation

Figure 7.10: Operational semantics of FA
C (i): run-time syntax

7.2. A MODEL OF AFFINE CONTRACTS 171

the FC type system cannot enforce. The arrow in a boundary expression has

two subscripts representing the parties to the contract. The right subscript of

a boundary is a module name in the inner language, representing the positive

party to the contract: It promises that if the enclosed subexpression reduces to

a value, then the value will obey contract τ. The left subscript is the negative

party, which promises to treat the resulting value properly. In particular, if

the contract is affine, then the negative party promises to use the resulting

value at most once.

The remaining run-time syntax is best explained along with the relevant

portions of the FA
C reduction relation, which is defined in figure 7.11. As in

FA , reduction relates configurations that consist of a store and an expression,

again parametrized by a module context M. Stores (s) may now include both

FC and FA values.

Boundaries first arise when a module in one calculus refers to a module

in the other calculus. When the name of an FA module appears in an FC

term, rule C-MOD-A (figure 7.11) wraps the module name with an FA -in-FC

boundary, using the FA module’s type as the contract. In the other direction,

when an FC module appears in FA , rule A-MOD-C wraps the module name in

a boundary using the FA translation of the module’s type ττ as the contract.

For an interface module, the contract is the type declared by the interface, and

the name of the interface is the positive party (rule A-MOD-I).

We add evaluation contexts for reduction under boundaries, which means

it is now possible to construct an FC evaluation context with an FA hole, and

vice versa. (When there is the possibility of ambiguity, I indicate the language

of the hole: E[]C versus E[]A and E[]C versus E[]A .) Rule CXT-A supports

evaluating FA expressions embedded in the top-level FC expression of a

configuration, whereas rule CXT-C reduces an FC expression in a configuration.

When the expression under a boundary reduces to a value, it is time to apply

the boundary’s contract to the value. There are two possibilities:

• Functional values and opaque affine values must have their checks

deferred: functions until the time of their application, and opaque values

until they pass back into their native language. For deferred checks, we

172 CHAPTER 7. MIXING AFFINE & CONVENTIONAL TYPES

C −→M C′ (FA
C reduction)

(C-MOD-A) (s, f g) −→M (s, (⇐
g f
τ) f) when (f : τ= v) ∈M

(A-MOD-C) (s,g f) −→M (s, (ττA ⇐
f g

)g) when (g : ττ= v) ∈M

(A-MOD-I) (s,g f) −→M (s, (τ⇐
f g

)g′) when (g :> τ= g′) ∈M

(C-SEAL) (s, (⇐
g f
τ)v) −→M (s] {` 7→ BLSSD}, (⇐

g f
τ)` v)

when v 6= ({αα} ⇐
f ′g′

)•v′

(A-WRAP) (s, (τ⇐
f g

)v) −→M (s, (τ⇐
f g

)•v) when v 6= (⇐
g′ f ′

ρ)` v′

(C-UNWRAP) (s, (⇐
g f
τ)(({αα} ⇐

f ′g′
)•v)) −→M (s,v)

(A-UNSEAL) (s, (τ⇐
f g

)((⇐
g′ f ′

ρ)` v)) −→M check (s,`,〈ρ〉,v,g′)

(C-Bτ-A) (s,
(
(⇐

g f
∀αq.τ′)` v

)
ττ) −→M check (s,`,〈τ′〉, (⇐

g f
{ττA /αq}τ)(vττA),g)

(C-βv-A) (s,
(
(⇐

g f
τ1

q−−◦ τ2)` v
)
v′) −→M check (s,`,q, (⇐

g f
τ2)

(
v ((τ1 ⇐

f g
)v′)

)
,g)

(A-Bτ-C) (s,
(
(∀αq.τ⇐

f g
)•v

)
τ′) −→M (s, ({τ′/αq}τ⇐

f g
)(vτC))

(A-βv-C) (s,
(
(τ1

q−−◦ τ2 ⇐
f g

)•v
)
v′) −→M (s, (τ2 ⇐

f g
)
(
v ((⇐

g f
τ1)v′)

)
)

check (s,`,q, e,g)=

(s, e) if q=U

(s′] {` 7→ DFNCT}, e) if s = s′] {` 7→ BLSSD}
blame g otherwise

C 7−→M C′ (FA
C reduction)

(CXT-C)
(s,e)

(s,E[e])
−→M (s′,e′)
7−→M (s′,E[e′])

(CXT-A)
(s, e)

(s,E[e])
−→M (s′, e′)
7−→M (s′,E[e′])

Figure 7.11: Operational semantics of FA
C (ii): reduction

7.2. A MODEL OF AFFINE CONTRACTS 173

leave the value in a “sealed” boundary (⇐
g f
τ)` v or a “wrapped” boundary

(τ⇐
f g

)•v, both of which are themselves value forms. (An FA value is

sealed, which tracks its usage, whereas an FC value is wrapped, which

merely indicates that it is not a redex and that its contract checking is

delayed.)

• When a previously sealed or wrapped opaque value reaches a boundary

back to its original language, both that boundary and the sealed or

wrapped boundary are discarded. For a sealed boundary, there is also a

check that the seal has not previously been opened.

Rule C-SEAL implements contract application for FA values embedded in

FC expressions. The rule requires that the FA value v is not, in fact, an opaque

FC value (which is handled by rule C-UNWRAP). In that case, rule C-SEAL

seals and blesses an FA value, by allocating a location `, to which it stores a

distinguished value BLSSD; it adds this location to the boundary, which marks

the sealed value as not yet used. (The run-time syntax in figure 7.10 adds two

distinguished values, BLSSD and DFNCT, to the values of FC . These values are

used to track resource usage, and while they need to be distinguishable from

one another, they need not be distinct from other FC values.)

Rule A-WRAP implements contract application for FC values embedded

in FA expressions. Like rule C-SEAL, this rule requires that the value to be

wrapped, v, not already be a wrapped opaque FA value. In that case, rule A-

WRAP merely marks the value as being wrapped. No seal location needs to be

allocated because FC values are always unlimited.

Unwrapping happens under three circumstances: when a wrapped or

sealed opaque value flows into a boundary back to its native language, when

a wrapped or sealed abstraction is applied to a value, or when a wrapped

or sealed type abstraction is applied to a type. The first case is handled by

rules C-UNWRAP and A-UNSEAL. These rules reduce a boundary expression

in cases complementary to rules C-SEAL and A-WRAP, when the value flowing

into the boundary is itself a wrapped FC value or sealed FA value. In the

wrapped case (rule C-UNWRAP), the boundaries are simply discarded. In the

sealed case, the boundaries are removed and the seal must be checked. This

174 CHAPTER 7. MIXING AFFINE & CONVENTIONAL TYPES

step is specified by metafunction check, which has three cases. Unlimited

values are unsealed with no check. If an affine value remains blessed, check
updates the store to mark it “defunct” and returns the unsealed value. If, on

the other hand, there is an attempt to unseal a defunct affine value, check
blames the negative party. This is the key dynamic check that enforces the

affine invariant for non-functional values.

Rules C-Bτ-A, C-βv-A, A-Bτ-C, and A-βv-C all handle sealed abstractions,

which are unsealed when they are applied. For application expressions, this

follows the technique of Findler and Felleisen (2002), whereby the argument

is coerced to the domain of the contract with the blame labels reversed, and

the result is coerced to the codomain of the contract. For type applications, the

argument, which is a type, is converted using the interlanguage type maps

(·)A and (·)C , rather than coerced with a contract, and the result of the type

application is coerced as usual. For sealed FA abstractions, the seal location

` must be checked, again using metafunction check, to ensure that an affine

function or type abstraction is not unsealed and applied more than once. This

is the dynamic check that enforces the affine invariant for functions and type

abstractions.

7.3 Type Soundness for FA
C

The presence of strong updates in FA (rule AT-SWAP in figure 7.7) means

that aliasing a location can result in a program getting “stuck”: if an aliased

location is updated at a different type, reading from the alias produces a value

of unexpected type. FA ’s type system prevents this, but adding FC means

that an FA value may be aliased outside FA . The soundness criterion is that

no program that gets stuck is assigned a type. This means, in particular, all

aliasing of affine values is either prevented by FA ’s type system or detected by

a contract at run time.

To prove a Wright-Felleisen–style type soundness theorem (1994) requires

identifying precisely what property is preserved by subject reduction. I use an

internal type system to track which portions of the store are reachable from

FA values that have flowed into FC . Under this type system, configurations

7.3. TYPE SOUNDNESS FOR FA
C 175

enjoy standard progress and preservation, which allows me to state and

prove a syntactic type soundness theorem using the internal type system’s

configuration typing judgment.

Conventions. I define the free variables of an expression e, written FV(e)

inductively in the conventional way (and likewise for FA); however, I consider

the module names in a program to be syntactically distinct from the λ- and

let-bound variables, and I take the free variables to exclude module names.

The free locations of an expression e, written FL(e), is the set of locations

` that occur in e (and likewise for FA). Note that there are no binders for

locations at the expression level.

Note also that exchange and weakening of store and typing contexts is

implicit in the type system, by inspection of the type rules: All variable, type

variable, and location lookup rules look anywhere in the environment, and

ignore the rest. Conversely, it should be apparent that any assumption in an

environment that is not free in the subject is not needed to type the subject,

which justifies in discarding such assumptions.

7.3.1 The Internal Type System

Figure 7.12 shows the new syntax for the internal type system. A store type

(Σ) maps locations to types in either sublanguage, or to “protected” types

of the form [τ]`
′
. A location ` mapped to a protected type [τ]`

′
means that

location ` may appear only under FA -in-FC boundaries sealed by `′. The store-

type–splitting relation (Σ Σ1�Σ2) defined in figure 7.12 allows protected

locations to be duplicated arbitrarily; but as we will see, they can only be used

to type locations in terms that are protected by a contract. Store splitting also

duplicates locations containing FC values, but it requires locations containing

FA values, both unlimited and affine, to go only one way or the other. This

ensures that such locations appear only once in a well-typed term, which

ensures the safety of strong updates.

Figure 7.12 also defines store typing. The type of a store contains the types

of all its locations. Additionally, each location ` containing an FA value of type

176 CHAPTER 7. MIXING AFFINE & CONVENTIONAL TYPES

Σ ::= store types
| • the empty store type
| Σ,` : ττ with an FC location
| Σ,` : τ with an FA location
| Σ,` : [τ]`

′
with a protected FA location

Σ Σ1�Σ2 (store type splitting)

RSPLIT-NIL

• •�•

RSPLIT-CONSAL
Σ Σ1�Σ2

Σ,` : τ Σ1,` : τ�Σ2

RSPLIT-CONSAR
Σ Σ1�Σ2

Σ,` : τ Σ1�Σ2,` : τ

RSPLIT-CONSAPROT
Σ Σ1�Σ2

Σ,` : [τ]`
′
 Σ1,` : [τ]`

′
�Σ2,` : [τ]`

′

RSPLIT-CONSC
Σ Σ1�Σ2

Σ,` : ττ Σ1,` : ττ�Σ2,` : ττ

M;ΣB s :Σ′ (store typing)

RS-NIL

M;Σ′B {} : •

RS-LOCC
Σ Σ1�Σ2

M;Σ1B s :Σ′ M;Σ2;•.C v : ττ

M;ΣB s] {` 7→ v} : (Σ′,` : ττ)

RS-LOCA
Σ Σ1�Σ2

M;Σ1B s :Σ′ M;Σ2;•.A v : τ

M;ΣB s] {` 7→ v} : (Σ′,` : τ)

RS-LOCAPROT
Σ Σ1�Σ2

M;Σ1B s :Σ′ M;Σ2;•.A v : τ

M;ΣB s] {` 7→ v} : (Σ′,` : [τ]`
′
)

[Σ]` =Σ′ (store type protection)

[•]` = • [Σ,`′ : τ]` = [Σ]`,`′ : [τ]` [Σ,`′ : [τ]`
′′
]` = [Σ]`,`′ : [τ]`

′′

[Σ,`′ : ττ]` = [Σ]`,`′ : ττ

〈Σ〉 = q (qualifier assignment for store types)

〈•〉 =U 〈Σ,` : τ〉 =A 〈Σ,` : [τ]`
′〉 = 〈Σ〉 〈Σ,` : ττ〉 = 〈Σ〉

Figure 7.12: Internal type system for FA
C (i): store types

7.3. TYPE SOUNDNESS FOR FA
C 177

ττ ∈ W , τ ∈ W (wrappable types)

W= { ττ | ¬(∃ρ) ττ= {ρ} } W = { τ | ¬(∃αα) τ= {αα} }

M;Σ;ΓΓ.C e : ττ (internal FC expression typing)

RCT-BOUNDARY
M;Σ;•.A e : τ FTV(τ)=;

M;Σ;ΓΓ.C (⇐
g f
τ) e : τC

RCT-SEALED
M;Σ;•.A v : τ

FTV(τ)=; 〈τ〉 =U τ ∈ W

M;Σ;ΓΓ.C (⇐
g f
τ)` v : τC

RCT-BLESSED
M;Σ1,Σ2;•.A v : τ

FTV(τ)=; 〈τ〉 =A τ ∈ W

M;[Σ1]`,` :B, [Σ2]`;ΓΓ.C (⇐
g f
τ)` v : τC

RCT-DEFUNCT
FTV(τ)=; 〈τ〉 =A τ ∈ W

M;[Σ1]`,` :D, [Σ2]`;ΓΓ.C (⇐
g f
τ)` v : τC

RCT-BLESSEDVAL

M;Σ;ΓΓ.C BLSSD :B

RCT-DEFUNCTVAL

M;Σ;ΓΓ.C DFNCT :D

M;Σ;Γ.A e : τ (internal FA expression typing)

RAT-LOC
` : τ ∈Σ

M;Σ;Γ.A ` : ref τ

RAT-BOUNDARY

M;Σ;•.C e : τC

FTV(τ)=;
M;Σ;Γ.A (τ⇐

f g
)e : τ

RAT-WRAPPED

M;Σ;•.C v : τC

FTV(τ)=; τC ∈ W
M;Σ;Γ.A (τ⇐

f g
)•v : τ

Figure 7.13: Internal type system for FA
C (ii): new expressions

τ may appear in the store type, non-deterministically, in bare form (` : τ) or

protected (` : [τ]`
′
) by any location `′.

Several typing rules rely on protecting a whole store, written [Σ]`, which

protects any bare FA locations in Σ by location `. We also define the qualifier

of a store type: If it maps any location to a bare FA type, then the qualifier is

A; otherwise it is U.

178 CHAPTER 7. MIXING AFFINE & CONVENTIONAL TYPES

Typing new expression forms. In figure 7.13, we define sets of wrappable
types W and W, which for each language include all types except for foreign

types imported from the other language ({ρ} and {αα}). These sets of types are

used in several new expression typing judgments.

The new expression type judgments are M;Σ;ΓΓ.C e : ττ and M;Σ;Γ.A e : τ

(figure 7.13). These add a store type to the context, which is used to type

locations that appear in run-time expressions, by rule RAT-LOC. Boundary

expressions are typed by rules RCT-BOUNDARY and RAT-BOUNDARY, each

of which requires the FA type τ in the premise (resp., conclusion) to convert

to the FC type τC in the conclusion (resp., premise). Also, notably, both drop

the typing contexts ΓΓ (resp., Γ) in the premise; this is because the scope of

bound variables (not modules) is always within a single language. Rule RAT-

WRAPPED is used to type wrapped FC -in-FA boundaries in the same manner

as RAT-BOUNDARY. Wrapped FC values must have a wrappable FC type

in W.

Three rules are used to type sealed FA values. By all three rules, sealed FA

values must have a wrappable FA type in W . For unlimited values, rule RCT-

SEALED is substantially the same as rule RCT-BOUNDARY. For sealed bound-

aries (⇐
g f
τ)` v that contain values of affine type, either rule RCT-BLESSED or

rule RCT-DEFUNCT applies, depending on the type of the FC value stored

at the seal location `. In particular, we assume distinct types B and D for

the special seal values BLSSD and DFNCT (by rules RCT-BLESSEDVAL and

RCT-DEFUNCTVAL). If location ` maps to B—that is, it contains BLSSD—then

we expose any locations protected by that same location ` when typing the

value v that appears under the seal. This means that when a sealed, affine

value is duplicated by FC , all locations appearing in that value may still type,

provided they all remain sealed. When one instance of the sealed value is

unwrapped, location ` is updated to have type D, which means that we no

longer attempt to type other instances of the sealed value at all, and just give

them the type indicated by the boundary. This is safe because the contract

checking in the operational semantics ensures that such values can never be

unsealed.

7.3. TYPE SOUNDNESS FOR FA
C 179

MBC : ττ (FA
C configuration typing)

RCONF
(∀m ∈M) M`m okay M;Σ1B s :Σ

Σ Σ1�Σ2 M;Σ2;•.C e : ττ

MB (s,e) : ττ

RBLAME

MBblame f : ττ

Figure 7.14: Internal type system for FA
C (iii): configurations

M;Σ;ΓΓ.C e : ττ (internal FC expression typing)

RCT-VAR
x : ττ ∈ΓΓ

M;Σ;ΓΓ.C x : ττ

RCT-MOD
(f : ττ= v) ∈M

M;Σ;ΓΓ.C f : ττ

RCT-MODA
(f : τ= v) ∈M

M;Σ;ΓΓ.C f g : τC

RCT-TABS
M;Σ;ΓΓ.C v : ττ

M;Σ;ΓΓ.C Λαα.v :∀αα.ττ

RCT-ABS
M;Σ;ΓΓ,x : ττ.C e : ττ′ 〈Σ|FL(λx:ττ.e)〉 =U

M;Σ;ΓΓ.C λx:ττ.e : ττ→ ττ′

RCT-TAPP
M;Σ;ΓΓ.C e :∀αα.ττ′

M;Σ;ΓΓ.C eττ : {ττ/αα}ττ′

RCT-APP
Σ Σ1�Σ2

M;Σ1;ΓΓ.C e1 : ττ′ → ττ M;Σ2;ΓΓ.C e2 : ττ′

M;Σ;ΓΓ.C e1 e2 : ττ

Figure 7.15: Internal type system for FA
C (iv): old FC expressions

Typing configurations. Figure 7.14 gives the type rule for configurations.

It requires that the store s have some type Σ Σ1�Σ2, where Σ1 is used to

type the store (since values in the store can contain locations), and Σ2 is used

to type the configuration’s expression e. Additionally, blame configurations

may be given any type.

Updated expression typing. Figures 7.15 and 7.16 update the type rules

for the remaining expression forms for the internal type system. These

rules extend each of the old rules with a store context, which is split for

180 CHAPTER 7. MIXING AFFINE & CONVENTIONAL TYPES

M;Σ;Γ.A e : τ (internal FA expression typing)

RAT-SUBSUME
M;Σ;Γ.A e : τ′ τ′ <: τ

M;Σ;Γ.A e : τ

RAT-VAR
x : τ ∈Γ

M;Σ;Γ.A x : τ

RAT-MOD
(f : τ= v) ∈M

M;Σ;Γ.A f : τ

RAT-MODC
(f : ττ= v) ∈M

M;Σ;Γ.A fg : ττA

RAT-MODI
(f :> τ= f′) ∈M

M;Σ;Γ.A fg : τ

RAT-TABS
M;Σ;Γ.A v : τ

M;Σ;Γ.A Λα
q.v :∀αq.τ

RAT-ABS
M;Σ;Γ, x : τ.A e : τ′

〈Γ|FV(λx:τ. e)〉t〈Σ|FL(λx:τ. e)〉 = q

M;Σ;Γ.A λx:τ. e : τ
q−−◦ τ′

RAT-PAIR
Σ Σ1�Σ2 Γ Γ1�Γ2

M;Σ1;Γ1 .A v1 : τ1 M;Σ2;Γ2 .A v2 : τ2

M;Σ;Γ.A 〈v1,v2〉 : τ1 ⊗τ2

RAT-TAPP
M;Σ;Γ.A e :∀αq.τ′ 〈τ〉 v q

M;Σ;Γ.A eτ : {τ/αq}τ′

RAT-APP
Σ Σ1�Σ2 Γ Γ1�Γ2

M;Σ1;Γ1 .A e1 : τ′
q−−◦ τ

M;Σ2;Γ2 .A e2 : τ′

M;Σ;Γ.A e1 e2 : τ

RAT-LETPAIR
Σ Σ1�Σ2 Γ Γ1�Γ2

M;Σ1;Γ1 .A e1 : τ1 ⊗τ2
M;Σ2;Γ2, x : τ1, y : τ2 .A e2 : τ

M;Σ;Γ.A let〈x, y〉 = e1 in e2 : τ

RAT-NEW
M;Σ;Γ.A e : τ

M;Σ;Γ.A new e : ref τ

RAT-SWAP
M;Σ;Γ.A e : ref τ1 ⊗τ2

M;Σ;Γ.A swap e : ref τ2 ⊗τ1

Figure 7.16: Internal type system for FA
C (v): old FA expressions

7.3. TYPE SOUNDNESS FOR FA
C 181

multiplicative forms such as application in FC as well as FA . The only other

change is for typing λ abstractions. For FA (rule RAT-ABS), we use not only

the value context but the store context to determine the qualifier q in the

resulting function type. For FC , rule RCT-ABS requires that the term contain

no unprotected locations containing FA values.

External typing implies internal typing. Most of the soundness proof

concerns the internal type system. However, because we care about checking

programs (not run-time configurations) with the external type system, it is

important to relate the two:

LEMMA 7.1 (Equivalence of expression typing).

If an expression types in the external type system (`), then it types in the internal
type system (B) with empty store type:

1. If M;ΓΓ C̀ e : ττ then M;•;ΓΓ.C e : ττ.

2. If M;Γ À e : τ then M;•;Γ.A e : τ.

Proof. By a simple induction on the structure of the external typing derivation.

COROLLARY 7.2 (Programs to configurations).

If ` let M in e : ττ then MB ({ },e) : ττ

Proof. By inversion of rule PROG, all modules in M are okay. Furthermore,

M;• C̀ e : ττ, and by lemma 7.1, M;•;• .C e : ττ. Since s = { }, Σ = •, and thus,

M;•B s : •. Thus, by rule RCONF, MB ({ },e) : ττ.

7.3.2 Syntactic Type Soundness

In this section, I prove a type soundness theorem. Most of the development is

standard. I give a high-level overview of the proof here and include additional

details in appendix B.

182 CHAPTER 7. MIXING AFFINE & CONVENTIONAL TYPES

Preservation. The first portion of the proof leads to a preservation lemma,

which relies on several lemmas about substitution and contexts. I begin with

a definition of well-behaved type substitutions, which must not substitute a

type with a higher qualifier for a type variable of a lower qualifier, and then

show that well-behaved type substitutions respect type derivations.

DEFINITION 7.3 (Type substitutions and respecting qualifiers).

A type substitution θ is either the substitution of an FA type for an FA type
variable ({τ/αq}), the substitution of an FC type for an FC type variable ({ττ/αα}),
or some composition thereof.

A type substitution respects qualifiers if one of the following holds:

• It is an FA substitution {τ/αq} where 〈τ〉 v q;

• It is an FC substitution {ττ/αα}; or

• It is a composition of qualifier-respecting substitutions.

LEMMA 7.4 (Type substitution on expressions preserves types).

For any qualifier-respecting type substitution θ and any Σ such that FTV(Σ)=;:

1. If M;Σ;ΓΓ.C e : ττ then M;Σ;θΓΓ.C θe : θττ.

2. If M;Σ;Γ.A e : τ then M;Σ;θΓ.A θe : θτ.

Proof. By structural induction on e and e. Please see p. 341 for details. B

Another important fact to establish is that the types of values accurately

reflect any resourced embedded in those values. To state the lemma, I first

define a notion of promotion-worthiness:

DEFINITION 7.5 (Worthy of promotion).

An FC term e is worthy with respect to Σ, written Σ.C e worthy, if FL(e)⊆
dom Σ and 〈Σ|FL(e)〉 = U. Likewise an FA term e is worthy with respect
to Σ if FL(e) ⊆ dom Σ and 〈Σ|FL(e)〉 = U, and is worthy with respect to Γ if

7.3. TYPE SOUNDNESS FOR FA
C 183

FV(e)⊆ dom Γ and 〈Γ|FV(e)〉 =U. If e is worthy with respect to both Σ and Γ, I
write Σ;Γ.A e worthy.

If e or e is not worthy, I write Σ 6.C e worthy or Σ;Γ 6.A e worthy, respectively.

Worthiness captures the notion of expressions that can be “promoted” to

allow for unlimited use.1 In particular, λ abstractions in FA are given an

unlimited (U) type if they are worthy, and an affine (A) type if they are not.

Abstractions in FC are required to be worthy, since they should not close over

affine resources.

Note that I impose no such requirement on Λ (type) abstractions, as they

have the same qualifier as their body, which regulates their usage accordingly.

LEMMA 7.6 (No hidden locations).

The type of a value reveals whether locations might appear in that value:

1. If M;Σ;•.C v : ττ then Σ.C v worthy.

2. If M;Σ;• .A v : τ then 〈Σ|FL(v)〉 v 〈τ〉. That is, if τ is unlimited then
Σ;•.A v worthy.

Proof. By structural induction on v and v. Please see p. 347 for details. B

The substitution lemma is mostly standard, except that it must split the

store type context between the value being substituted and the expression

being substituted in. Then I can state and prove the preservation lemma,

which shows that reduction preserves configuration typing.

LEMMA 7.7 (Substitution).

1. If M;Σ1;ΓΓ,x : ττx .C e : ττ and M;Σ2;• .C v : ττx where Σ Σ1�Σ2, then
M;Σ;ΓΓ.C {v/x}e : ττ.

2. If M;Σ1;Γ, x : τx .A e : τ and M;Σ2;• .A v : τx where Σ Σ1�Σ2, then
M;Σ;Γ.A {v/x}e : τ.

1This corresponds to intuitionistic linear logic’s (Bierman 1993) promotion rule, which
allows adding the exponential modality to a proposition when it depends on no linear resources.

184 CHAPTER 7. MIXING AFFINE & CONVENTIONAL TYPES

Proof. By induction on the structure of the type derivations for e and e. Please

see p. 350 for details. B

LEMMA 7.8 (Preservation).

If MBC1 : ττ and C1 7−→M C2 then MBC2 : ττ.

Proof. By cases on the reduction relation. Please see p. 361 for details. B

Progress. For the progress lemma, I first identify a class of faulty expressions
that do not reduce. The definition is large because of the interaction of the two

languages and the presence of the store:

DEFINITION 7.9 (Faulty expressions and configurations).

Define these classes of values:

QΛ ::= λx:ττ.e | (⇐
g f
τ)` v where τ is not ∀αq.τ′ (faulty for type application)

Qλ ::= Λαα.v | (⇐
g f
τ)` v where τ is not τ1

q−−◦ τ2 (faulty for application)

QΛ ::= λx:τ. e | 〈v1,v2〉 | ` (faulty for type application)

| (τ⇐
f g

)•v where τ is not ∀αq.τ′

Qλ ::= Λαq.v | 〈v1,v2〉 | ` (faulty for application)

| (τ⇐
f g

)•v where τ is not τ1
q−−◦ τ2

Q⊗ ::= Λαq.v | λx:τ. e | ` (faulty for unpairing)

| (τ⇐
f g

)•v where τ is not τ1 ⊗τ2

Q↔
s ::= Λαq.v | λx:τ. e | ` (faulty for swapping in s)

| (τ⇐
f g

)•v where τ is not ref τ1 ⊗τ2 | 〈v1,v2〉 where v1 is not ` ∈ dom s

Then we can define the faulty expressions with respect to s:

Qs ::= QΛττ | Qλv | E[Qs] | E[Qs] (faulty FC expressions)

Qs ::= QΛτ | Qλ v | let〈x, y〉 =Q⊗ in e | swap Q↔
s (faulty FA expressions)

| E[Qs] | E[Qs]

7.3. TYPE SOUNDNESS FOR FA
C 185

A configuration (s,e) or (s, e) is faulty if e ∈Qs or e ∈Qs, respectively.

I next prove two lemmas about faulty expressions: first, that faulty expres-

sions correctly characterize the non-answer normal forms of reduction, and

second that faulty expressions do not have types.

LEMMA 7.10 (Uniform evaluation).

For any C closed with respect to M, either C is faulty or an answer, or there
exists some C′ closed with respect to M such that C 7−→M C′.

Proof. Let (s,e) = C; then by structural induction on e. Please see p. 376 for

details. B

LEMMA 7.11 (Faulty expressions are ill-typed).

1. For expression Qs faulty with respect to s, there exist no M, Σ1, Σ2, and ττ

such that

• M;Σ1B s :Σ1�Σ2 and

• M;Σ2;•.C Qs : ττ.

2. For expression Qs faulty with respect to s, there exist no M, Σ1, Σ2, and τ

such that

• M;Σ1B s :Σ1�Σ2 and

• M;Σ2;•.A Qs : τ.

Proof by contradiction. We assume that a faulty expression has a type, and

show that it leads to a contradiction, by mutual induction on Qs and Qs. Please

see p. 381 for details. B

The progress lemma is then a trivial corollary of the previous two lemmas:

COROLLARY 7.12 (Progress).

If MBC : ττ, then either C is an answer or there exists some C′ such that
C 7−→M C′.

186 CHAPTER 7. MIXING AFFINE & CONVENTIONAL TYPES

Proof. Since C types, it is closed; thus, by lemma 7.10, it is an answer, it takes

a step, or it is faulty. Because it types, we can eliminate the faulty case by

lemma 7.11.

Type soundness. This brings us, finally, to the main type soundness theorem

for FA
C :

THEOREM 7.13 (Strong soundness).

If M;• C̀ e : ττ and ({ },e) ∗7−→M C, such that configuration C cannot take another
step, then C is an answer with MBC : ττ.

Proof. By corollary 7.2 (Programs to configurations), corollary 7.12 (Progress),

and lemma 7.8 (Preservation), and induction on the length of the reduction

sequence.

7.4 Implementing Affine Contracts

In this section, I consider two approaches to implementing affine contracts.

First, I show how affine contracts might be implemented in system combining

an affine language and a conventional language, where the affine language is

compiled to the conventional language, in order to allow safe interaction be-

tween the two languages. Second, I show how affine contracts are implemented

in Alms, which does not currently interact with a conventional language, and

discuss why affine contracts are useful even in a single-language system.

7.4.1 Implementing a Two-Language System

Given an affine language such as Alms and a similar, non-affine language,

it would be useful to allow modules written in the two languages to interact

within a single program. This is the situation that motivated this work and is

modeled in the previous section. Here, I consider how to allow safe interaction

between the two languages when the affine language is implemented by

translation to the non-affine language. For the purposes of informal code

7.4. IMPLEMENTING AFFINE CONTRACTS 187

examples, I assume that the non-affine language shares its concrete syntax

with Alms.

Representing contracts. Interaction between the two languages will be

mediated by behavioral contracts. We represent a contract for a type ’a as

a function taking two parties (which might be module names and source

locations) and a value of type ’a to a value of type ’a:

type ’a contract = party × party → ’a → ’a

As an example, a simple (flat) contract might assert some predicate on a

first order value:

let evenContract (neg: party, pos: party) (x: int) =
if isEven x then x else blame pos

The contract is parametrized by the negative party neg, which consumes the

value, and the positive party pos, which produces the value. If the contracted

value satisfies the predicate then it returns the value; otherwise, it signals a

contract violation, blaming the positive party.

Following Findler and Felleisen (2002), we may also construct contracts for

functional values, given contracts for the domain and codomain:

let funContract (dom: ’a contract, cod: ’b contract) : (’a → ’b) contract =
λλ (neg, pos) (f: ’a → ’b) →
λλ (x: ’a) →

cod (neg, pos) (f (dom (pos, neg) x))

When this contract is applied to a function, it performs no checks immediately.

Instead, it wraps the function so that, when the resulting function is applied,

the domain contract is applied to the actual parameter and the codomain

contract to the actual result.

188 CHAPTER 7. MIXING AFFINE & CONVENTIONAL TYPES

We follow this approach closely for affine function contracts, but with one

small change—contracts for affine functions are stateful:

let affineContract (dom: ’a contract, cod: ’b contract) : (’a → ’b) contract =
λλ (neg, pos) (f: ’a → ’b) →

let stillGood = ref true in
λλ (x: ’a) →

if deref stillGood
then stillGood ← false; cod (neg, pos) (f (dom (pos, neg) x))
else blame neg

It is important to note when the state is allocated: when the contract is

applied to a functional value. This means that each contracted function

can be applied exactly once, and the state is checked when the function is

applied. This approach works for functions because we can wrap a function to

modify its behavior. But what about for other affine values such as typestate

capabilities? We must consider how non-functional values move between the

two sublanguages.

According to the type translation metafunction (·)A defined in the model

(figure 7.9 on p. 167), an opaque type ρ translates to a wrapped type {ρ} in the

other language, but an actual implementation needs to define how such a type

is represented in the other language. In the model, values of opaque type are

inert: They have no available operations other than passing them back to their

native sublanguage.2

What this means for an implementation is that a value of opaque type can

be represented by an abstract type that pairs the foreign value with a location.

For example, a signature and structure implementing wrappers for opaque

types appears in figure 7.17. Function wrap, given the negative party and a

value, creates a wrapped, opaque value. Function unwrap unwraps a value or

blames the negative party.

Translation. In the two-language scheme, contracts are added during trans-

lation from the affine source language to the non-affine object language. After

2Opaque types may seem limiting, but Matthews and Findler (2007) show that it is
possible, in what they call the “lump embedding,” for each sublanguage to marshal its opaque
values for the other sublanguage as desired. In practice, this amounts to exporting a fold to
the other sublanguage.

7.4. IMPLEMENTING AFFINE CONTRACTS 189

module type OPAQUE = sig
type ’a opaque
val wrap : party × party → ’a → ’a opaque
val unwrap : ’a opaque → ’a

end

module Opaque : OPAQUE = struct
type ’a opaque = ’a × party × bool ref
let wrap (neg, pos) v = (v, neg, ref true)
let unwrap (v, neg, stillGood) =

if deref stillGood
then stillGood ← false; v
else blame neg

end

Figure 7.17: Wrappers for opaque types

CA Jτ1
U−→ τ2K= funContract (A C Jτ1K,CA Jτ2K)

CA Jτ1
A−→ τ2K= affineContract (A C Jτ1K,CA Jτ2K)

CA JρK=Opaque.wrap if 〈ρ〉 =A

CA JintK= λλ _ z→ z

A C Jτ1
q−→ τ2K= funContract (CA Jτ1K,A C Jτ2K)

A C JρK= λλ _→Opaque.unwrap if 〈ρ〉 =A

A C JintK= λλ _ z→ z

Figure 7.18: Type directed generation of coercions

type checking, such an implementation translates affine language modules to

non-affine language modules and wraps all interlanguage variable references

with contracts that enforce the affine language’s view of the variable.

Figure 7.18 shows several cases from a pair of metafunctions CA J·K and

A C J·K, which perform this wrapping. Each metafunction generates a coercion

based on the affine language type of the coerced value.

Metafunction CA J·K constructs the coercion for references to affine lan-

guage values from the conventional language. Whereas unlimited functions

190 CHAPTER 7. MIXING AFFINE & CONVENTIONAL TYPES

are wrapped using a regular function contract, one-shot functions are wrapped

using an affine function contract. In each case, the metafunctions are used to

recursively generate coercions for function domains and codomains. Note that

the direction of the coercion generation is reversed for domain contravariance.

Values of affine, opaque type are wrapped using Opaque.wrap. As the final case

for CA J·K, integers pass between the two languages unwrapped, since their

representations are the same and integers are never affine. The translation

needs to generate a no-op coercion that takes an extra argument in order to

discard the parties expected by a contract value. (Note that this translation

does not handle functions with non-constant qualifier expressions built out

of type variables, but I discuss one way to handle that situation in the next

section.)

Metafunction A C J·K constructs the coercion for references to conventional

language values from the affine language. All functions, regardless of qualifier,

are coerced using a regular (not affine) function contract, because the affine

language’s type system already guarantees not to allow their reuse. As before,

the domain and codomain are wrapped recursively. Values of affine, opaque

type are unwrapped using Opaque.unwrap, which is placed in a function in

order to ignore the parties. (Wrapped opaque values remember the negative

party from when they were wrapped.) Finally, as before, some values, such as

integers, pass between the languages unchecked.

7.4.2 Dynamic Promotion in Alms

While this chapter is concerned with interaction between an Alms-like affine

language and a conventional, non-affine language, Alms’s implementation

currently does not support such interaction. However, affine contracts are

still useful in Alms because they provide a means of dynamically checking

substructural constraints. In particular, affine contracts allow using a one-

shot function in a context whose type demands an unlimited function, while

checking dynamically that the context actually uses the function only once. I

call this feature dynamic promotion.

7.4. IMPLEMENTING AFFINE CONTRACTS 191

For example, Alms relies on a primitive thread fork operation provided by

the run-time system to start new threads:

primThreadFork : (unit → unit) → thread

While there is good reason to believe that primThreadFork applies its argu-

ment at most once, this is not guaranteed by the run-time system, which is

implemented in a conventional language. A contract can be used to promote

primThreadFork’s type to (unit A−→ unit) → thread while checking, dynamically,

that it actually satisfies the necessary invariant. (Note that this coercion

amounts to a downcast according to Alms’s subtype relation)

To perform such coercions, Alms includes a special expression form:

〈expr〉 ::= 〈expr〉 “:>” 〈type〉

This generates a coercion, if possible, to give the expression the specified type.

For example, we can define threadFork using a coercion as follows:

let threadFork = primThreadFork :> (unit A−→ unit) → thread

This wraps primThreadFork as necessary to give it the requested type.

How it works. The implementation of dynamic promotion is split between

the standard library, which defines the basic contract combinators for affine

contracts, and the type checker, which performs type-directed generation of

coercions, constructing them out of the values provided by the standard library.

The standard library defines contracts as in the two-language version

above, where a contract for type ’a is a function that takes a pair of parties

and a value of type ’a to a value of type ’a. The definition of funContract is the

same as above, as well. However, the definition of affineContract will not work.

Because the value wrapped by affineContract above closes over the affine value

being wrapped, Alms would give the wrapped value an affine type as well.

The key trick is to store the affine value itself in an unlimited reference to

192 CHAPTER 7. MIXING AFFINE & CONVENTIONAL TYPES

an option type, so that the result of wrapping mentions no affine variables

directly:

let affineContract (dom: ’a contract, cod: ’b contract)
: party × party → (’a A−→ ’b) → (’a U−→ ’b)

λλ (neg, pos) (f: ’a A−→ ’b) →
let stillGood = ref (Some f) in
λλ (x: ’a) →

match stillGood ↔ None with
| Some g → cod (neg, pos) (g (dom (pos, neg) x))
| None → blame neg

The operation r ↔ v corresponds to the reference swap operation in the model

of §7.2: It stores value v in reference r and returns the old value read from r,

atomically.

When checking a coercion expression e :> t, the type checker generates a

coercion that refers to funContract and affineContract in the standard library.

Unlike the interlanguage coercions of figure 7.18, however, Alms’s type checker

has to contend with incomplete types that contains unification variables,

including qualifier expressions that may contain both quantified type variables

and unification variables. Alms interleaves coercion generation and the rest

of type inference, because each provides valuable information to the other.

Coercion generation needs to know the types between which a coercion should

be generated, and generating a coercion between incomplete types can generate

more inference constraints.

A simplified version of the algorithm used by Alms for coercion generation

appears in figure 7.19. (For the remainder of this section, I use typewriter

font for Alms, in order to make the distinction between object and meta-

language clear.) Metafunction build takes two types, the type inferred for

an expression and the type to coerce it to, and generates an expression to

perform the coercion. To interleave coercion generation and type inference,

build is defined in a constraint solving monad, which is why it returns

type ConstraintM Expr. The constraint solving monad provides an operation

addConstraint : Constraint→ ConstraintM (), which adds a constraint to the

current constraint set, simplifying as appropriate.

This simplified version of the algorithm has three cases:

7.4. IMPLEMENTING AFFINE CONTRACTS 193

build : Type → Type → ConstraintM Expr

build Jτ1 -ξ1> τ′1K Jτ2 -U> τ′2K when ξ1 6= U =
do dom ← build τ2 τ1

cod ← build τ′1 τ
′
2

return J affineContract (dom, cod) K

build Jτ1 -ξ1> τ′1K Jτ2 -ξ2> τ′2K =
do addConstraint (ξ1 v ξ2)

dom ← build τ2 τ1
cod ← build τ′1 τ

′
2

return J funContract (dom, cod) K

build τ1 τ2 =
do addConstraint (τ1 ≤ τ2)

return J anyContract K

Figure 7.19: Coercion generation in Alms (simplified)

• To coerce from a function type τ1 -ξ1> τ′1 to a function type τ2 -U> τ′2,

where ξ1 is not U, a run-time check allows us to dispense with the

static constraint on ξ1. Thus, we recursively generate coercions for

the domain and codomain of the function to be coerced, and then use

affineContract from the standard library to generate the immediate

coercion.

• To coerce from a function type τ1 -ξ1> τ′1 to a function type τ2 -ξ2> τ′2,

when not covered by the previous case, we perform a static check instead

by asserting the constraint that ξ1 v ξ2. We recursively generate domain

and codomain coercions, and then build the contract using funContract,

which does not enforce affinity its contracted value.

• In other cases, build enforces the coercion statically by asserting a

subtyping constraint. Because no dynamic check is then necessary, it

returns anyContract, which is the contract that always succeeds.

The choice of which qualifiers to enforce dynamically and which statically is a

pragmatic one; the rule is designed to be simple and predictable. Note that

194 CHAPTER 7. MIXING AFFINE & CONVENTIONAL TYPES

a programmer can always request a dynamic check by writing U in the right

place, and can always request a static check by preceding the coercion with a

non-coercing type annotation. This makes it possible to get the any desired

combination of static and dynamic checks.

Figure 7.20 extends the algorithm of figure 7.19 to handle recursive and

universal types. Function build’ now takes an additional argument, which

is a partial map from pairs of Alms types to Alms identifiers. We use this to

handle recursive types by constructing recursive coercions. The first case of

build’ checks whether we have seen the given types before, and if so, uses the

identifier from the partial map as the coercion between them. The next two

cases unfold equirecursive types and extend map µ with a fresh Alms variable

name, in order to tie a knot in case it finds a cycle in the types. (The actual

implementation avoids generating let recs unnecessarily.) Function types

are handled as before. Quantified types (Q α . τ) are handled by recurring on

the bodies, which works because Alms types are represented in a standardized

form that causes quantifiers to align.

The example, revisited. Given the implementation above, Alms can gener-

ate the coercion necessary to safely pass one-shot functions to the primitive

threadFork operation. Specifically, given the program text

let threadFork = primThreadFork :> (unit -A> unit) -> thread ,

Alms generates
let threadFork =
funContract (affineContract anyContract anyContract)

anyContract
("context at <stdin>:8:18-31",
"value at <stdin>:8:18-31")
primThreadFork .

7.4. IMPLEMENTING AFFINE CONTRACTS 195

build’ : (Type × Type * Var) → Type → Type → ConstraintM Expr

build’ µ τ1 τ2 when (τ1,τ2) ∈ domµ =
return J µ(τ1,τ2) K

build’ µ Jmu α . τ′1K τ2 =
x ← gensym
let τ1 = {Jmu α . τ′1K/α}τ′1

µ′ = µ[(Jmu α . τ′1K,τ2) 7→ x]
c ← build’ µ′ τ1 τ2
return J let rec x = c in x K

build’ µ τ1 Jmu α . τ′2K =
x ← gensym
let τ2 = {Jmu α . τ′2K/α}τ′2

µ′ = µ[(τ1,Jmu α . τ′2K) 7→ x]
c ← build’ µ′ τ1 τ2
return J let rec x = c in x K

build’ µ Jτ1 -ξ1> τ′1K Jτ2 -U> τ′2K when ξ1 6= U =
do dom ← build’ µ τ2 τ1

cod ← build’ µ τ′1 τ
′
2

return J affineContract cod dom K

build’ µ Jτ1 -ξ1> τ′1K Jτ2 -ξ2> τ′2K =
do addConstraint (ξ1 v ξ2)

dom ← build’ µ τ2 τ1
cod ← build’ µ τ′1 τ

′
2

return J funContract cod dom K

build’ µ JQ α . τ1K JQ α . τ2K =
build’ µ τ1 τ2

build’ µ τ1 τ2 =
do addConstraint (τ1 ≤ τ2)

return J anyContract K

Figure 7.20: Coercion generation in Alms

CHAPTER 8

Substructural Types and Control

ONE SHORTCOMING OF typestate in Alms is that it cannot guarantee that

a protocol will run to completion. Because tracked values or capabilities in

Alms are affine, they prevent duplication, which prevents faulty usage of some

resource, but they cannot prevent the owner of some resource from merely

discarding it.

As an example, consider affine file handles with the following interface:

type file : A
val fopen : string → file
val fread : file → string × file
val fwrite : file → string A−→ file
val fclose : file → unit

Because file handles are affine, they must be single-threaded through a

program, which ensures that no program will attempt to read or write a

file after it has been closed. However, the interface enforces no guarantee that

a program will explicitly close a file, which means that the run-time system is

still responsible to close file handles that are implicitly dropped.

One solution to this problem might be to add linear types to Alms. Then

we could make file handles linear, which should guarantee that all file handles

get closed explicitly:

type file : L

197

198 CHAPTER 8. SUBSTRUCTURAL TYPES AND CONTROL

Unfortunately, the situation is not so simple. Consider the following function,

which opens a configuration file and uses it to find out the name of a log file,

which it then opens and returns along with the configuration file:

let initializeFiles () =
let configFile = fopen configFileName in
let (config, configFile) = parseConfigFile configFile in
let logFile = fopen config.logFileName in

(logFile, configFile)

We made file handles linear to ensure their explicit release, which relieves the

run-time system of the need to close files automatically, but that means that

initializeFiles as written has a resource leak. If the log file cannot be opened,

then fopen throws a file-not-found exception, which happens after opening the

configuration file. Because the function raises an exception but does not return

the successfully opened configuration file, there is no way for recovery code

that catches the exception to close the configuration file.

In short, exceptions and linear types refuse to get along, because linear

types make promises that exceptions do not let them keep.

With affine rather than linear file handles, as in Alms, initializeFiles is

not a problem, because such a type system cannot require that resources be

released explicitly. In a language with affine types, implicitly dropping a value

is just fine—presumably there is a garbage collector to finalize resources—

and only duplication is forbidden. However, while exceptions do not cause a

problem for an affine language, other forms of nonlocal control do: Consider

adding the delimited continuation operators shift and reset (Danvy and Filinski

1989) to Alms.

As an example, consider an event-based parsing library with a callback-

based interface that takes a file handle to parse and a function to call for each

parsing event:

val forEvents : file → (event → unit) → unit

Suppose we would like, instead, a stream-like interface to parsing, where we

can request each event as desired. We can obtain this interface in terms of

199

forEvents using shift and reset:

let parseStream (f: file)
reset (forEvents f (λλ ev → shift k in ‘Next (ev, k)); ‘Done)

Function parseStream takes a file handle to parse, and returns a pair of the

first event and a function that will return the next event and a new function,

and so on, until forEvents finishes, at which point the last function returns

‘Done. This works as follows: forEvents begins parsing, and at some point

applies the callback to a parsing event. The callback uses shift to capture its

continuation up to the delimiter reset, which includes the rest of the parsing

process; rather than invoke the continuation, the callback returns the event

and the continuation to the context of the reset, which can use the continuation

later to resume parsing.

As in the previous example, this interaction of substructural types and

control fails to preserve the resource invariants. Presumably, forEvents keeps

the file open while parsing from it and closes it when done. (It may maintain

other substructural state as well, but for this example the file handle suffices.)

So long as we call each function returned by parseStream once to get the next

event and function, that should work correctly. But if we hold onto one of the

functions and call it after forEvents has finished and closed the file, that will

cause an attempt to access the closed file handle.

What went wrong, and how to fix it. Typically, an affine type system

works by imposing two syntactic requirements: a variable of affine type, such

as f, cannot appear twice in its scope (up to branching), and a function that

closes over an affine variable must itself have an affine type. The parseStream
example apparently violates neither dictum. In the presence of delimited

continuations, we need a third rule: that a captured continuation that contains
an affine value must not duplicated. A simple approximation of this rule is to

give all captured continuations an affine (or in a linear system, linear) type.

Such a rule permits some uses of delimited continuations, such as coroutines,

but not others.

Similarly, initializeFiles does not appear to violate linearity, because all

file handles are used, syntactically, exactly once. In the presence of exceptions,

200 CHAPTER 8. SUBSTRUCTURAL TYPES AND CONTROL

linearity requires an additional rule: that a continuation that contains a linear
value may not be discarded. A simple approximation to this rule is to give all

continuations a linear type, which amounts to prohibiting exceptions.

Treating all continuations as affine or linear is overly restrictive because

the resource leak and closed file handle access in the above examples can be

fixed by small changes to the code. For initializeFiles, it is necessary to close

the configuration file when an exception is raised while opening the log file:

let initializeFiles () =
let configFile = fopen configFileName in
let (config, configFile) = parseConfigFile configFile in

match tryfun (λλ () → fopen config.logFileName) with
| Left e → fclose configFile; raise e
| Right logFile → (logFile, configFile)

The definition of parseStream given above is acceptable, but it is necessary

to ensure that it gets the right type:

file → µµ ‘a. [‘Next of event × (unit A−→ ‘a) | ‘Done]

The presence of qualifier A means that each function to get the next event is

invoked at most once, so there is no way to cause forEvents to access a closed

file.

My solution is a type-and-effect system (Lucassen and Gifford 1988) that

permits the repaired version of initializeFiles while rejecting the original,

erroneous version, and that gives the correct, affine type to parseStream,

without requiring that all continuations captured by shift be affine. The key

idea is to assign to each expression a control effect that reflects whether it may

duplicate or drop its continuation, and to prohibit using an expression in a

context that cannot be treated as the control effect allows.

In this chapter, I

• exhibit a generic type system for substructural types and control defined

in terms of an unspecified, abstract control effect (§8.3);

8.1. RELATED WORK 201

• give soundness criteria for the abstract control effect and prove type

soundness for the generic system, relying on the soundness of the

abstract control effect (§8.4); and

• demonstrate three concrete instantiations of control effects—exceptions

and two versions of delimited continuations—and prove that they meet

the soundness criteria (§8.5).

The generic type-and-effect system in §8.3 is defined as an extension to

λURAL (Ahmed et al. 2005), a substructural λ calculus. I use λURAL rather aλms

(chapter 5) because I wish to demonstrate that my solution works not only

for affine types, but for linear and relevant types as well; however, applying

the technique described in this chapter to other languages with substructural

types, such as aλms, should be straightforward. I review λURAL in §8.2 after

discussing related work in §8.1.

8.1 Related Work

This work is not the first to relate substructural types to control operators and

control effects. Thielecke (2003) shows how to use a type-and-effect system to

reason about how expressions treat their continuations. In particular, he gives

a continuation-passing style transform where continuations that will be used

linearly are given a linear type. Thielecke notes that many useful applications

of continuations treat them linearly. However, his goals are different than

mine. He uses substructural types in his object language to reason about how

continuations will be used in a non-substructural source language, whereas

I want to reason about continuations in order to safely use substructural

types. Thielecke has linear types only in the object language of his translation,

whereas I am interested in linear (and other substructural) types in the source

language.

Other recent work relates substructural logics and control. Kiselyov and

Shan (2007) use a substructural logic to allow the “dynamic” control operator

shift0 to modify answer types in a typed setting. Unlike this work, their terms
are structures in substructural logic, not their types. Mazurak and Zdancewic’s

202 CHAPTER 8. SUBSTRUCTURAL TYPES AND CONTROL

(2010) Lolliproc relates double negation elimination in classical linear logic to

delimited control.

This chapter draws significantly on other work on control operators, effect

systems, and substructural types as well.

Control operators. The literature contains a large vocabulary of control

operators, extending back to ISWIM’s J operator (Landin 1965), Reynolds’s

(1972) escape, and Scheme’s catch (Steele Jr. and Sussman 1975) and call-with-
current-continuation (Clinger 1985). However, for integration in a language

with substructural types, control operators with delimited extent, originating

with Felleisen’s (1988) F, are most appropriate, because without some way to

mask out control effects, any use of control pollutes the entire program and

severely limits the utility of substructural types.

As examples of control features to add to a substructural calculus, I consider

the delimited continuation operators shift and reset (Danvy and Filinski 1989)

and structured exception handling (Goodenough 1975). Both shift/reset and

structured exceptions have been combined with type-and-effect systems to

make them more amenable to static reasoning.

Type-and-effect systems for control. Java (Gosling et al. 1996) provides

checked exceptions, an effect system for tracking the exceptions that a method

may raise. My version of exception effects is similar to Java’s, except that

mine offers effect polymorphism, which makes higher-order programming with

checked exceptions more convenient. My type system for exceptions appears

in §8.5.3.

Because Danvy and Filinski’s (1989) shift captures a delimited continuation

up to the nearest reset delimiter, typing shift and reset requires some nonlocal

means of communicating types between delimiters and control operators. They

realize this communication with a type-and-effect system, which allows shift
to capture and compose continuations of varying types. Asai and Kameyama

(2007) extend Danvy and Filinski’s (monomorphic) type system with polymor-

phism, which includes polymorphism of answer types. I give two substructural

type systems with shift and reset. Section 8.5.1 presents a simpler version

that severely limits the answer types of continuations that may be captured.

8.2. SYNTAX AND SEMANTICS OF λURAL 203

v ::= values
| x variable
| λx. e abstraction
| Λ. e type abstraction
| inl v sum construction, left
| inr v sum construction, right
| [v1,v2] sum elimination
| 〈v1,v2〉 pair construction
| uncurry v pair elimination
| 〈〉 the nil value
| ignore v nil elimination
| ` location (run time only)

e ::= expressions
| v values
| e1 e2 application
| e type application
| newq e reference allocation
| delete e reference deallocation
| read e reference read
| swap e1 e2 reference read and write

Figure 8.1: λURAL syntax (i): expression level

Then, in §8.5.2, I combine the simpler system with a polymorphic version of

Danvy and Filinski’s, similar to Asai and Kameyama’s, to allow answer-type

modification and polymorphism in a substructural setting.

8.2 Syntax and Semantics of λURAL

Because I wish to treat not only affine types, but linear and relevant types

as well, I use a model in this chapter that is more general in that respect

than models in previous chapters: I add control effects to Ahmed et al.’s (2005)

λURAL, a substructural λ calculus. My presentation of λURAL is heavily based

on theirs, with a few small changes.

204 CHAPTER 8. SUBSTRUCTURAL TYPES AND CONTROL

q ::= constant qualifiers
| U unlimited
| R relevant
| A affine
| L linear

ξ ::= qualifiers
| α qualifier variable
| q qualifier constant

τ ::= pretypes
| α pretype variable
| 1 multiplicative unit
| τ1 ⊗τ2 multiplicative conjunction
| τ1 ⊕τ2 additive disjunction
| τ1(τ2 function
| ref τ reference
| ∀α:κ.τ universal quantification

τ ::= types
| α type variable
| ξτ qualified pretype

ι ::= type-level terms
| ξ qualifier
| τ pretype
| τ type

κ ::= kinds
| QUAL qualifiers
| ? pretypes
| ? types

Figure 8.2: λURAL syntax (ii): type and kind level

8.2. SYNTAX AND SEMANTICS OF λURAL 205

The expression level. The syntax of values and expressions in λURAL ap-

pears in figure 8.1. Values include abstractions, type abstractions, and intro-

duction and elimination forms for sums, products, and the nil value. At run

time, values also include location names. (This differs from Ahmed et al.’s

presentation of λURAL by including sums—additive disjunctions, to be precise.)

Expressions include values, application, type application, and operations on

mutable references. Following Ahmed et al., I elide the formal parameter in

type abstractions and the actual parameter in type applications.

The type level. Expressions in λURAL are classified by types (τ), the syntax

of which appears in figure 8.2. The four constant qualifiers (q) include U and

A, as in Alms, and two additional qualifiers:

L as in linear, for values that may be neither duplicated

nor implicitly dropped; and

R as in relevant, for values that may be duplicated

(contraction) but not dropped.

L

RA

U

The four constant qualifiers form a lattice that extends Alms’s qualifier lattice.

As in Alms, it is safe to treat a value as if it has a higher qualifier than its own.

Qualifiers (ξ) include both qualifier constants and type variables, allowing

for qualifier polymorphism. Pretypes (τ) specify the representation of a value,

and its introduction and elimination rules. Pretypes include type variables,

the unit type, multiplicative conjunction, additive disjunction, function types,

references, and universal quantification. Types (τ) classify expressions. A

type is either a pretype decorated with its qualifier (ξτ) or a type variable.

Non-terminal ι stands for all three kinds of type-level terms as a group.

The kind level. Types in λURAL are classified by three kinds (κ): QUAL for

qualifiers, ? for pretypes, and ? for types. Type variables may have any of

these three kinds, which is why universal quantification (∀α:κ.τ) specifies the

kind of α.

206 CHAPTER 8. SUBSTRUCTURAL TYPES AND CONTROL

s ::= {} | {`
q7→ v} | s1] s2 stores

E ::= [] | E e | vE | E | newq E | delete E | read E evaluation contexts

| swap E e | swap vE

(s,e) 7−→ (s′,e′) (reduction)

(βv) (s, (λx. e)v) 7−→ (s, {v/x}e)
(Bτ) (s, (Λ. e)) 7−→ (s, e)
(IGNORE) (s, ignore〈〉v) 7−→ (s,v)
(LETPAIR) (s,uncurry v 〈v1,v2〉) 7−→ (s,vv1 v2)
(CASEL) (s, [v1,v2] (inl v)) 7−→ (s,v1 v)
(CASER) (s, [v1,v2] (inr v)) 7−→ (s,v2 v)

(NEW) (s,newq v) 7−→ (s] {`
q7→ v},`)

(DELETE) (s] {`
q7→ v},delete `) 7−→ (s,v)

(READ) (s] {`
q7→ v},read `) 7−→ (s] {`

q7→ v},v)

(SWAP) (s] {`
q7→ v1},swap `v2) 7−→ (s] {`

q7→ v2},〈`,v1〉)

(CXT)
(s, e)

(s,E[e])
7−→ (s′, e′)
7−→ (s′,E[e′])

Figure 8.3: λURAL operational semantics

8.2.1 Operational Semantics

The operational semantics of λURAL is mostly standard and appears in fig-

ure 8.3. Note that each store location is annotated with a qualifier constant

(q), which is selected when allocating a new reference and indicates which

structural rules apply to the corresponding reference. Reduction is call-by-

value and evaluates operators before operands, which is important when

considering the sequencing of effects in §8.3.

8.2. SYNTAX AND SEMANTICS OF λURAL 207

∆` ι : κ (kinding type-level terms)

K-VAR
α:κ ∈∆
∆`α : κ

K-QUAL

∆` q : QUAL

K-ARR
∆` τ1 :? ∆` τ2 :?

∆` τ1(τ2 :?

K-ALL
∆,α:κ` τ :?

∆`∀α:κ.τ :?

K-UNIT

∆` 1 :?

K-SUM
∆` τ1 :? ∆` τ2 :?

∆` τ1 ⊕τ2 :?

K-PROD
∆` τ1 :? ∆` τ2 :?

∆` τ1 ⊗τ2 :?

K-REF
∆` τ :?

∆` ref τ :?

K-TYPE
∆` τ :? ∆` ξ : QUAL

∆` ξτ :?

Figure 8.4: λURAL statics (i): kinding

∆` ξ1 ¹ ξ2 (qualifier subsumption)

QSUB-BOT

∆` ξ : QUAL

∆`U¹ ξ

QSUB-TOP

∆` ξ : QUAL

∆` ξ¹ L

QSUB-REFL

∆` ξ : QUAL

∆` ξ¹ ξ

∆` τ¹ ξ (qualifier bound for types)

B-VAR
∆`α :?

∆`α¹ L

B-TYPE
∆` τ :? ∆` ξ′ ¹ ξ

∆` ξ′τ ¹ ξ

∆`Γ¹ ξ (qualifier bound for type contexts)

B-NIL
∆` ξ : QUAL

∆` •¹ ξ

B-CONS
∆`Γ¹ ξ ∆` τ¹ ξ

∆`Γ, x:τ¹ ξ

Figure 8.5: λURAL statics (ii): qualifiers

208 CHAPTER 8. SUBSTRUCTURAL TYPES AND CONTROL

∆`Γ Γ1�Γ2 (type context splitting)

S-NIL

∆` • •�•

S-CONSL
∆`Γ Γ1�Γ2 ∆` τ :?

∆`Γ, x:τ (Γ1, x:τ)�Γ2

S-CONSR
∆`Γ Γ1�Γ2 ∆` τ :?

∆`Γ, x:τ Γ1� (Γ2, x:τ)

S-CONTRACT
∆`Γ Γ1�Γ2 ∆` τ¹R

∆`Γ, x:τ (Γ1, x:τ)� (Γ2, x:τ)

Figure 8.6: λURAL statics (iii): context splitting

8.2.2 Static Semantics

Type judgments for λURAL use two kinds of contexts:

∆ ::= kind contexts

| • empty

| ∆,α:κ kind of type variable

Γ ::= type contexts

| • empty

| Γ, x:τ type of variable

Figure 8.4 contains the kinding judgment (∆` ι : κ), which assigns kinds to

type-level terms. This judgment enforces the type/pretype structure, whereby

type constructors such as ⊕ form a pretype from types (rule K-SUM), and

decorating a pretype with a qualifier forms a type (rule K-TYPE).

In figure 8.5, three judgments relate qualifiers to each other, to types, and

to type contexts. Qualifier subsumption (∆` ξ1 ¹ ξ2) defines the qualifier order,

with top L and bottom U. The next judgment bounds a type by a qualifier;

judgment ∆` τ¹ ξ means that values of type τ may safely be used according

to the structural rules implied by ξ. Finally, bounding a type context by a

qualifier (∆`Γ¹ ξ) means that every type in context Γ is bounded by qualifier

ξ.

8.2. SYNTAX AND SEMANTICS OF λURAL 209

∆;Γ` e : τ (typing expressions)

T-WEAK
∆`Γ Γ1�Γ2 ∆`Γ2 ¹A ∆;Γ1 ` e : τ

∆;Γ` e : τ

T-VAR
∆` τ :?

∆;•, x:τ` x : τ

T-ABS
∆`Γ¹ ξ ∆;Γ, x:τ1 ` e : τ2

∆;Γ`λx. e : ξ(τ1(τ2)

T-TABS
∆`Γ¹ ξ ∆,α:κ;Γ` e : τ

∆;Γ`Λ. e : ξ∀α:κ.τ

T-INL
∆` τ1 ¹ ξ ∆` τ2 :?

∆;Γ` v1 : τ1

∆;Γ` inl v1 : ξ(τ1 ⊕τ2)

T-INR
∆` τ2 ¹ ξ ∆` τ1 :?

∆;Γ` v2 : τ2

∆;Γ` inr v2 : ξ(τ1 ⊕τ2)

T-PROD
∆`Γ Γ1�Γ2

∆;Γ1 ` v1 : τ1 ∆` τ1 ¹ ξ
∆;Γ2 ` v2 : τ2 ∆` τ2 ¹ ξ
∆;Γ` 〈v1,v2〉 : ξ(τ1 ⊗τ2)

T-UNIT
∆` ξ : QUAL

∆;• ` 〈〉 : ξ1

T-APP
∆`Γ Γ1�Γ2

∆;Γ1 ` e1 : ξ(τ1(τ2) ∆;Γ2 ` e2 : τ1

∆;Γ` e1 e2 : τ2

T-TAPP

∆;Γ` e : ξ∀α:κ.τ ∆` ι : κ
∆;Γ` e : {ι/α}τ

T-SUME
∆` ξ′ : QUAL

∆;Γ` v1 : ξ1(τ1(τ) ∆` ξ1 ¹ ξ
∆;Γ` v2 : ξ2(τ2(τ) ∆` ξ2 ¹ ξ
∆;Γ` [v1,v2] : ξ(ξ

′
(τ1 ⊕τ2)(τ)

T-PRODE
∆` ξ : QUAL

∆;Γ` v : ξ
′
(τ1(

ξ′(τ2(τ))

∆;Γ` uncurry v : ξ
′
(ξ(τ1 ⊗τ2)(τ)

T-UNITE
∆` ξ : QUAL ∆` τ :?

∆;Γ` v : ξ
′
1

∆;Γ` ignore v : ξ(τ(τ)

Figure 8.7: λURAL statics (iv): typing

(continued in figure 8.8)

210 CHAPTER 8. SUBSTRUCTURAL TYPES AND CONTROL

(continued from figure 8.7)

∆;Γ` e : τ (typing expressions)

T-NEWUA
q¹A ∆;Γ` e : τ ∆` τ¹A

∆;Γ` newq e : q ref τ

T-NEWRL
R¹ q ∆;Γ` e : τ

∆;Γ` newq e : q ref τ

T-SWAPWEAK
∆`Γ Γ1�Γ2

∆;Γ1 ` e1 : ξ ref τ ∆;Γ2 ` e2 : τ

∆;Γ` swap e1 e2 : L(ξ ref τ⊗τ)

T-SWAPSTRONG
∆`Γ Γ1�Γ2

∆;Γ1 ` e1 : ξ ref τ1 ∆`A¹ ξ
∆;Γ2 ` e2 : τ2 ∆` τ2 ¹ ξ

∆;Γ` swap e1 e2 : L(ξ ref τ2 ⊗τ1)

T-READ

∆;Γ` e : ξ ref τ
∆` τ¹R

∆;Γ` read e : τ

T-DELETE

∆;Γ` e : ξ ref τ
∆`A¹ ξ

∆;Γ` delete e : τ

Figure 8.8: λURAL statics (v): typing

Figure 8.6 gives rules for splitting a type context into two (∆`Γ Γ1�Γ2),

which is necessary for distributing typing assumptions to multiple subterms

of a term. Any variable may be distributed to one side or the other. Rule S-

CONTRACT implements the contraction structural rule, whereby variables

whose type is unlimited or relevant may be duplicated to both contexts.

Finally, figures 8.7 and 8.8 give the judgment for assigning types to

expressions (∆;Γ` e : τ). Several points are worthy of note:

• The weakening rule, T-WEAK, allows discarding portions of the context

that are upper-bounded by A, which means that all the values dropped

are either affine or unlimited.

• The rules for application expressions and reference swapping, T-APP,

T-SWAPSTRONG, and T-SWAPWEAK, split the context to distribute

assumptions to subterms.

8.3. GENERIC CONTROL EFFECTS IN λURAL(C) 211

• Rule T-ABS selects a qualifier ξ for a function type based on bounding

the context, Γ. This means that the qualifier of a function type must

upper bound the qualifiers of the types of the function’s free variables.

As we will see in §8.4, this property is key to the soundness theorem.

8.3 Generic Control Effects in λURAL(C)

Rather than add a specific control effect, such as exceptions or delimited

continuations, to λURAL, I first describe a substructural type system with a

general notion of control effect. Thus, this section defines a modified calculus,

λURAL(C), parametrized by an unspecified control effect.

8.3.1 The Control Effect Parameter

Rather than incorporate a specific control effect, the definition of λURAL(C) is

parametrized by an abstract control effect, whose form is described in this

section. For the generic soundness theorem to hold, the actual control effect

parameter must satisfy several properties, which are specified in §8.4. The

three instances of control effects studied in §8.5 are proved to satisfy those

properties.

DEFINITION 8.1 (Control effect).

A control effect instance is a triple (C,⊥C,5) where C is a set of control effects (c),
⊥C ∈C is a distinguished pure effect that denotes no actual control, and 5 : C×
C*C is an associative, partial, binary operation denoting effect sequencing.

For example, §8.5.3 adds exception handling to λURAL(C). An exception effect

is the set of exceptions that may be raised by an expression, the distinguished

pure effect ⊥C is the empty set, and sequencing is set union. A non-empty effect

indicates that an expression may discard part of its continuation, whereas the

empty effect guarantees that an expression treats its continuation linearly.

In simple cases, as with exceptions, effects form a join semilattice where

sequencing is the join, but this is not necessarily true in general (§8.5.2).

212 CHAPTER 8. SUBSTRUCTURAL TYPES AND CONTROL

k ::= kinds
| CTL control effects
| QUAL qualifiers
| ? pretypes
| ? types

i ::= type-level terms
| c control effect
| ξ qualifier
| t pretype
| t type

t ::= updated pretypes
| · · · other productions as before
| t1

c−−◦ t2 function with latent effect
| ∀ cα:k. t universal with latent effect

t ::= updated types
| α type variable
| ξt qualified pretype

Figure 8.9: Updated syntax for λURAL(C)

8.3.2 Updated Syntax

The syntax of λURAL(C) differs from that of λURAL in two ways:

• In λURAL(C), control effects constitute a fourth kind of type-level term, in

addition to qualifiers, pretypes, and types. This requires a new kind CTL

and the inclusion of abstract control effects (c ∈C) among the type-level

terms.

• Function and universal pretypes now have latent effects, which record

the effect that will happen when an abstraction is applied. The definition

of pretypes is updated to include these latent effects; the other pretype

productions remain unchanged.

8.3. GENERIC CONTROL EFFECTS IN λURAL(C) 213

The syntax of expressions, values, and qualifiers is unchanged from λURAL to

λURAL(C).

The updated syntax for kinds, type-level terms, types, and pretypes ap-

pears in figure 8.9. For non-terminal symbols that differ between λURAL and

λURAL(C), I use Roman letters (t, k, G, . . .) for λURAL(C) to distinguish them

from λURAL, where they appeared in Greek (τ, κ, Γ, . . .).

8.3.3 Static Semantics of λURAL(C)

All type system judgments from λURAL are updated for λURAL(C), and λURAL(C)

adds two new judgments as well. The kinding and expression typing judgments

are the only two to change significantly. The judgments for bounding types

(D C̀ t ¹ ξ), bounding type contexts (D C̀ G ¹ ξ), and splitting type contexts

(D C̀ G G1�G2) are isomorphic to the λURAL versions of those judgments

from Figures 8.5 and 8.6. They are merely updated with new non-terminals as

appropriate (i.e., κ to k, τ to t, and τ to t).

Kinding. Figure 8.10 shows one new kinding rule, C-K-BOT, which assigns

kind CTL to the pure effect ⊥C. Rules C-K-ARR and C-K-ALL are updated to

account for latent effects in function and universal pretypes. The remaining

kinding rules are the same as for λURAL, with non-terminals mutatis mutandis.

Specific control effect instances (§8.5) must define additional kinding rules for

their particular effects.

Control effect judgments. The first new judgment for control effects (D C̀

c º ξ, figure 8.11) relates control effects to qualifiers. This gives the meaning

of a control effect in terms of a lower bound on how an expression with that

effect may treat its own continuation. For example, if an expression e has some

effect c such that D C̀ c ºA, this indicates that e may drop but not duplicate

its continuation. Two rules appear here:

• Rule C-B-PURE says that the pure effect is bounded by any qualifier,

which means that a pure expression satisfies any requirement for how it

treats its continuation.

214 CHAPTER 8. SUBSTRUCTURAL TYPES AND CONTROL

D C̀ i : k (kinding type-level terms)

C-K-BOT

D C̀ ⊥C : CTL

C-K-ARR
D C̀ t1 :? D C̀ t2 :? D C̀ c : CTL

D C̀ t1
c−−◦ t2 :?

C-K-ALL
D,α:k C̀ t :? D C̀ c : CTL

D C̀ ∀ cα:k. t :?

Figure 8.10: λURAL(C) statics (i): updated kinding rules

D C̀ c º ξ (qualifier bound for control effects)

C-B-PURE
D C̀ ξ : QUAL

D C̀ ⊥C º ξ

C-B-UNL
D C̀ c : CTL

D C̀ c ºU

D C̀ c1 ¹ c2 (control effect subsumption)

CSUB-REFL
D C̀ c : CTL

D C̀ c ¹ c

CSUB-TRANS
D C̀ c1 ¹ c′ D C̀ c′ ¹ c2

D C̀ c1 ¹ c2

Figure 8.11: λURAL(C) statics (ii): control effect judgments

8.3. GENERIC CONTROL EFFECTS IN λURAL(C) 215

D;G C̀ e : t ; c (typing expressions)

C-T-SUBSUME
D;G C̀ e : t ; c′

D C̀ c′ ¹ c

D;G C̀ e : t ; c

C-T-WEAK
D C̀ G G1�G2 D C̀ G2 ¹A

D;G1 C̀ e : t ; c

D;G C̀ e : t ; c

C-T-VAR
D C̀ t :?

D;•, x:t C̀ x : t ;⊥C

C-T-ABS
D C̀ G¹ ξ

D;G, x:t1 C̀ e : t2 ; c

D;G C̀ λx. e : ξ(t1
c−−◦ t2) ;⊥C

C-T-TABS
D C̀ G¹ ξ

D,α:k;G C̀ e : t ; c

D;G C̀Λ. e : ξ∀ cα:k. t ;⊥C

C-T-INL
D C̀ t1 ¹ ξ D C̀ t2 :?

D;G C̀ v1 : t1 ;⊥C

D;G C̀ inl v1 : ξ(t1 ⊕ t2) ;⊥C

C-T-INR
D C̀ t1 :? D C̀ t2 ¹ ξ

D;G C̀ v2 : t2 ;⊥C

D;G C̀ inr v2 : ξ(t1 ⊕ t2) ;⊥C

C-T-PROD
D C̀ G G1�G2

D;G1 C̀ v1 : t1 ;⊥C D C̀ t1 ¹ ξ
D;G2 C̀ v2 : t2 ;⊥C D C̀ t2 ¹ ξ

D;G C̀ 〈v1,v2〉 : ξ(t1 ⊗ t2) ;⊥C

C-T-UNIT
D C̀ ξ : QUAL

D;• C̀ 〈〉 : ξ1 ;⊥C

C-T-APP

D;G1 C̀ e1 : ξ1(t1
c−−◦ t2) ; c1 D;G2 C̀ e2 : t1 ; c2

D C̀ G2 ¹ ξ2 D C̀ c1 º ξ2 D C̀ c2 º ξ1
D C̀ G G1�G2 D C̀ c15 c25 c : CTL

D;G C̀ e1 e2 : t2 ; c15 c25 c

C-T-TAPP

D;G C̀ e : ξ∀ c′α:k. t ; c
D C̀ i : k D C̀ c5 c′ : CTL

D;G C̀ e : {i/α}t ; c5 c′

C-T-SUME
D C̀ ξ

′ : QUAL

D;G C̀ v1 : ξ1(t1
c−−◦ t) ;⊥C D C̀ ξ1 ¹ ξ

D;G C̀ v2 : ξ2(t2
c−−◦ t) ;⊥C D C̀ ξ2 ¹ ξ

D;G C̀ [v1,v2] : ξ(ξ
′
(t1 ⊕ t2) c−−◦ t) ;⊥C

C-T-PRODE
D C̀ ξ : QUAL D C̀ c15 c2 : CTL

D;G C̀ v : ξ
′
(t1

c1−−◦ ξ′(t2
c2−−◦ t)) ;⊥C

D;G C̀ uncurry v : ξ
′
(ξ(t1 ⊗ t2) c15c2−−−−−◦ t) ;⊥C

C-T-UNITE
D C̀ ξ : QUAL D C̀ t :?

D;G C̀ v : ξ
′
1 ;⊥C

D;G C̀ ignore v : ξ(t ⊥C−−−◦ t) ;⊥C

Figure 8.12: λURAL(C) statics (iii): typing

(continued in figure 8.13)

216 CHAPTER 8. SUBSTRUCTURAL TYPES AND CONTROL

• Rule C-B-UNL says that all control effects are bounded by U, which

means that one may assume, conservatively, that any expression might

freely duplicate or drop its continuation.

Specific instances of the control effect parameter will extend this judgment to

take into account the properties of a particular control effect.

The second judgment for control effects (D C̀ c1 ¹ c2) defines a subsumption

order for control effects. This means that an expression whose effect is c1

may be safely considered to have effect c2. Only two rules for the judgment

appear in figure 8.11, which together ensure that control effect subsumption

is a preorder. As with control effect bounding, specific control effect instances

will extend this judgment.

Expression typing. The expression typing judgment for λURAL(C), which

appears in figure 8.12, assigns not only a type t but an effect c to expressions:

D;G C̀ e : t ; c. Having seven premises, the rule for applications (C-T-APP) is

unwieldy, but it likely gives the most insight into how λURAL(C) works:

(1) D C̀ G G1�G2

(2) D;G1 C̀ e1 : ξ1(t1
c−−◦ t2) ; c1

(3) D;G2 C̀ e2 : t1 ; c2

(4) D C̀ c2 º ξ1

(5) D C̀ G2 ¹ ξ2

(6) D C̀ c1 º ξ2

(7) D C̀ c15 c25 c : CTL

D;G C̀ e1 e2 : t2 ; c15 c25 c

Let us consider the premises in order:

(1) The first premise, as in λURAL, splits the type context G into G1 for typing

e1 and G2 for typing e2.

(2–3) As in λURAL, these premises assign types to expressions e1 and e2, but

they assign control effects c1 and c2 as well.

8.3. GENERIC CONTROL EFFECTS IN λURAL(C) 217

(continued from figure 8.12)

D;G C̀ e : t ; c (typing expressions)

C-T-NEWUA
q¹A D;G C̀ e : t ; c D C̀ t ¹A

D;G C̀ newq e : qref t ; c

C-T-NEWRL
R¹ q D;G C̀ e : t ; c

D;G C̀ newq e : qref t ; c

C-T-SWAPWEAK
D C̀ G G1�G2

D;G1 C̀ e1 : ξ1ref t ; c1
D;G2 C̀ e2 : t ; c2 D C̀ G2 ¹ ξ2

D C̀ c1 º ξ2 D C̀ c2 º ξ1 D C̀ c15 c2 : CTL

D;G C̀ swap e1 e2 : L(ξref t⊗ t) ; c15 c2

C-T-SWAPSTRONG
D C̀ G G1�G2

D;G1 C̀ e1 : ξ1ref t1 ; c1
D;G2 C̀ e2 : t2 ; c2 D C̀ G2 ¹ ξ2

D C̀ c1 º ξ2 D C̀ c2 º ξ1
D C̀ A¹ ξ1 D C̀ t2 ¹ ξ1 D C̀ c15 c2 : CTL

D;G C̀ swap e1 e2 : L(ξref t2 ⊗ t1) ; c15 c2

C-T-READ

D;G C̀ e : ξref t ; c D C̀ t ¹R

D;G C̀ read e : t ; c

C-T-DELETE

D;G C̀ e : ξref t ; c D C̀ A¹ ξ
D;G C̀ delete e : t ; c

Figure 8.13: λURAL(C) statics (iv): typing

218 CHAPTER 8. SUBSTRUCTURAL TYPES AND CONTROL

(4) This premise relates the type of e1 to the effect of e2 to ensure that e2’s

effect does not violate e1’s invariants. Because of λURAL’s left-to-right

evaluation order, by the time e2 gets to run, e1 has reduced to a value

of type ξ1(t1
c−−◦ t2), which thus may be treated according to qualifier ξ1.

Because that value is part of e2’s continuation, this premise requires

that e2’s effect, c2, be lower-bounded by ξ1. In other words, e2 will treat

its continuation no more liberally than ξ1 allows.

(5–6) These premises relate the free variables of e2 to the effect of e1. Due

to the evaluation order, e2 appears unevaluated in e1’s continuation,

which means that if e1 drops or duplicates its continuation then e2 may

be evaluated never or more than once. Premise (5) says that the type

context for typing e2, and thus e2’s free variables, are bounded above

by some qualifier ξ2, and this qualifier thus indicates how many times

it is safe to evaluate e2. Premise (6) lower bounds e1’s effect, c1, by ξ2,

ensuring that e1’s effect treats e2 properly.

(7) The net effect of the application expression is a sequence of the effect of e1

(c1), then the effect of e2 (c2), and finally the latent effect of the function

to which e1 must evaluate (c): c15 c25 c. This premise checks that those

three effects may be sequenced in that order according to a particular

control effect’s definition of sequencing and the kinding judgment.

Rules C-T-SWAPSTRONG and C-T-SWAPSTRONG (reference swap) are similar,

since they need to safely sequence two subexpressions. Both rules follow rule C-

T-APP in relating the effect of the first subexpression to the type context of

the second and effect of the second to the qualifier of the first. Rule C-T-TAPP

(type application), while dealing with only one effectful subexpression, needs

to sequence the effect of evaluating the expression in a type application with

the latent effect of the resulting type abstraction value.

The subsumption rule C-T-SUBSUME implements control effect subsump-

tion, whereby an expression of effect c may also be considered to have effect c′

if c is less than c′ in the control effect subsumption order. C-T-WEAK, which

handles weakening, is unchanged from λURAL.

8.4. THE GENERIC THEORY 219

The remaining rules are for typing values, which always have the pure

effect ⊥C. Rules C-T-UNIT, C-T-INL, and C-T-INR, for unit and sum introduc-

tion, are unchanged from λURAL, except that each of them assigns the pure

effect. Rules C-T-ABS and C-T-TABS also assign the pure effect to their values,

but each records the effect of the abstraction body as the latent effect in the

resulting type.

8.4 The Generic Theory

To prove type soundness for λURAL(C), I define a type-preserving translation

to λURAL. Instead of a direct reduction semantics for λURAL(C), its operational

semantics is defined in terms of the translation and the reduction semantics

of λURAL (§8.2.1). Thus, it is sufficient to show that all well-typed λURAL(C)

programs translate to well-typed λURAL programs, in order to apply λURAL’s

type soundness theorem to λURAL(C) as well.

The translation is into what Danvy and Filinski (1989) call continuation-
composing style (henceforth “CCoS”). It is similar to continuation-passing style,

but unlike continuation-passing style it still relies on the object language’s

order of evaluation.

In order to specify the translation and prove the propositions later in this

section, I impose several more requirements on the abstract control effect

parameter. As the semantics of λURAL(C) was parametrized by an abstract

control effect, so is the theory of λURAL(C) parametrized by several definitions

and properties that a control effect must satisfy.

Because the development of this section is constrained by several depen-

dencies, this outline may be helpful:

The Translation Parameter (§8.4.1). A control effect instance must supply a

few definitions to fully specify its particular CCoS translation.

The Translation (§8.4.2). The definition of the CCoS translation relies on the

definitions supplied by the control effect parameter.

220 CHAPTER 8. SUBSTRUCTURAL TYPES AND CONTROL

Parameter Properties (§8.4.3). A control effect instance must satisfy several

properties on which the generic type soundness theorem relies.

Generic Type Soundness (§8.4.4). The section culminates in a generic proof of

type soundness for λURAL(C).

8.4.1 The Translation Parameter

DEFINITION 8.2 (Translation parameter).

The definition of the generic CCoS translation relies on the following effect-
specific definitions:

• a metafunction (·)∗ from effects to qualifiers, such that ⊥C
∗ = L and α∗ =α;

• a value doneC, to use as the initial continuation for a CCoSed program;
and

• a pair of answer-type metafunctions 〈〈·, ·〉〉−c and 〈〈·, ·〉〉+c , each of which maps
a λURAL type and a λURAL(C) effect to a λURAL type.

Intuitively, one may understand metafunctions (·)∗, 〈〈·, ·〉〉−c , and 〈〈·, ·〉〉+c as relat-

ing the effect of a λURAL(C) expression to the type of its translation into λURAL.

Typically, the CPS translation of an expression of some type τ yields a type

like

(τ→Answer)→Answer.

Given a λURAL(C) expression whose translated type is τ and whose effect is c,

the translation to λURAL yields type

c∗(τ(〈〈τ0, c〉〉−C)(〈〈τ0, c〉〉+C

for some answer type τ0. That is, (·)∗ gives the qualifier of the continuation,

and the other two metafunctions give the answer types, which may depend on

the nature of the control effect. Because they give the answer types in negative

and positive positions, respectively, I call 〈〈τ, c〉〉−C the negative answer type and

〈〈τ, c〉〉+C the positive answer type.

8.4. THE GENERIC THEORY 221

QUAL∗ =QUAL (kinds)
?∗ =?
?∗ =?

CTL∗ =QUAL

•∗ = • (kind contexts)
(D,α:k)∗ =D∗,α:k∗

Figure 8.14: CCoS translation (i): kinds and kind contexts

8.4.2 The Translation

This subsection gives the CCoS translation from λURAL(C) to λURAL. In several

places, the translation relies on the definitions of c∗, doneC, 〈〈τ, c〉〉−C , and 〈〈τ, c〉〉+C
supplied by the control effect parameter.

The translation for kinds and kind contexts appears in figure 8.14. The

control effect kind CTL translates to QUAL, and the other three kinds translate

to themselves. The translation of a kind context merely translates each kind

in its range.

Figure 8.15 presents the translation for pretypes, types, and type contexts.

Most of this translation is straightforward: type variables and the unit pretype

translate to themselves, sum, product, and reference types translate homo-

morphically, types composed of a qualifier and a pretype translate the pretype,

and type contexts translate all the types in their range. The two interesting

cases are for function and universal pretypes. These follow the usual CPS

translation for function and universal types, with several refinements:

• Each adds an extra universal quantifier in front of its result, which is

used to make (type) abstractions polymorphic in their answer types.

• Because the effect of an expression limits how it may use its continu-

ation, the translation c∗ of latent effect c becomes the qualifier of the

continuation.

222 CHAPTER 8. SUBSTRUCTURAL TYPES AND CONTROL

α∗ =α (pretypes)

1∗ = 1

(t1 ⊕ t2)∗ = t1
∗⊕ t2

∗

(t1 ⊗ t2)∗ = t1
∗⊗ t2

∗

(ref t)∗ = ref t∗

(t1
c−−◦ t2)∗ =∀α:? .L(t1

∗(L(c∗(t2
∗(〈〈α, c〉〉−C)(〈〈α, c〉〉+C))

(∀ cβ:k. t)∗ =∀α:? .L∀β:k∗.L(c∗(t∗(〈〈α, c〉〉−C)(〈〈α, c〉〉+C)

α∗ =α (types)

(ξt)∗ = ξt∗

•∗ = • (type contexts)
(G, x:t)∗ =G∗, x:t∗

Figure 8.15: CCoS translation (ii): type-level terms and contexts

• All other qualifiers of the translated pretype are L. (This is because the

translation never needs to duplicate partially-applied continuations, so

L is a sufficiently permissive qualifier for those continuations. Further-

more, because the type rules for abstractions always allow a qualifier of

L, using L wherever possible simplifies the proof.)

Translation of values and expressions is defined by mutual induction in

figure 8.16. Value translation (v∗) is mostly straightforward. Both value

and type abstraction have an additional type abstraction added to the front,

which matches the addition of the universal quantifier in the type translation,

and both translate the body according to the expression translation JeK
C
.

The expression translation is standard except for two unusual aspects of the

translation of applications and type applications:

• The result of evaluating e1, bound to x1, is in each case instantiated

by a type application, which compensates for the new type abstraction

in the translation of abstractions. For the type application case, x1

8.4. THE GENERIC THEORY 223

is instantiated then again, corresponding to the instantiation from the

source expression.

• Curiously, the continuation y is η-expanded to λx. y x. While η-expanding

a variable may seem useless, it is actually necessary to obtain a type-

preserving translation.

In particular, the reason for this η expansion is to handle effect subsump-

tion. Effects in λURAL(C) are translated to qualifiers in λURAL, and while

λURAL(C) supports effect subsumption directly, there is no analogous qualifier

subsumption in λURAL. However, qualifier subsumption for function types can

be explicitly achieved using η expansion.

LEMMA 8.3 (Dereliction).

If ∆;Γ` v : ξ(τ1(τ2) and ∆` ξ¹ ξ′ then ∆;Γ`λx.v x : ξ
′
(τ1(τ2).

The proof of lemma 8.3 relies on another lemma:

LEMMA 8.4 (Value strengthening).

Any qualifier that upper bounds the type of a value also bounds the portion
of the type context necessary for typing that value. That is, if ∆;Γ` v : τ and
∆` τ¹ ξ then there exist some Γ1 and Γ2 such that

• ∆`Γ Γ1�Γ2,

• ∆;Γ1 ` v : τ,

• ∆`Γ1 ¹ ξ, and

• ∆`Γ2 ¹A.

Proof. Please see p. 391. B

Proof of lemma 8.3. Choose type contexts Γ1 and Γ2 according to lemma 8.4.

Then ∆;Γ1, x:τ1 ` v x : τ2 by rule T-APP. By induction on the length of Γ1

and transitivity of qualifier subsumption, we know that ∆`Γ1 ¹ ξ′. Then by

rule T-ABS, ∆;Γ1 `λx.v x : ξ
′
(τ1(τ2), and we change Γ1 to Γ by rule T-WEAK.

Please see p. 395 for additional details. B

224 CHAPTER 8. SUBSTRUCTURAL TYPES AND CONTROL

x∗ = x (values)

(λx. e)∗ =Λ.λx. JeK
C

(Λ. e)∗ =Λ.Λ. JeK
C

(inl v)∗ = inl v∗

(inr v)∗ = inr v∗

[v1,v2]∗ =Λ. [λx.v1
∗ x,λx.v2

∗ x]

〈v1,v2〉∗ = 〈v1
∗,v2

∗〉
(uncurry v)∗ =Λ. uncurry (λx1.λx2. Jv x1 x2KC)

〈〉∗ = 〈〉
(ignore v)∗ =Λ.λx. ignore v∗ JxK

C

JvK
C
=λy. yv∗ (expressions)

Je1 e2KC =λy. Je1KC (λx1. Je2KC (λx2. x1 x2 (λx. y x)))

Je K
C
=λy. JeK

C
(λx1. x1 (λx. y x))

Jnewq eK
C
=λy. JeK

C
(λx. y (newq x))

Jread eK
C
=λy. JeK

C
(λx. y (read x))

Jdelete eK
C
=λy. JeK

C
(λx. y (delete x))

Jswap e1 e2KC =λy. Je1KC (λx1. Je2KC (λx2. y (swap x1 x2)))

Figure 8.16: CCoS translation (iii): values and expressions

8.4. THE GENERIC THEORY 225

Having defined the translation, we run a program e by applying the

CCoS translation and passing it the initial continuation doneC. Define the

operational semantics of λURAL(C) as a partial function eval : Expressions*
Values∪ {WRONG}:

eval(e)=

v if JeK

C
doneC

∗7−→ v;

WRONG if JeK
C

doneC

∗7−→ e′

such that e′ is not a value

and ¬(∃e′′) e′ 7−→ e′′.

8.4.3 Parameter Properties

Having defined the CCoS translation, it is now possible to state the additional

properties that the abstract control effect parameter must satisfy for the

generic type soundness theorem (§8.4.4) to hold:

PARAMETER PROPERTY 1 (Answer types).

1. For all τ, 〈〈τ,⊥C〉〉−C = 〈〈τ,⊥C〉〉+C .

RATIONALE. For pure expressions, the negative and positive answer

types agree, because a pure expression finishes by calling its contin-

uation. Henceforth, we are justified defining the pure answer type
〈〈τ〉〉C, 〈〈τ,⊥C〉〉+C .

2. If D∗ ` τ :? and D C̀ c : CTL then D∗ ` 〈〈τ, c〉〉−C :? and D∗ ` 〈〈τ, c〉〉+C :?.

RATIONALE. For the translation to be well typed, well-kinded types

and effects must become well-kinded answer types.

3. For all D, τ, c1 6= ⊥C, and c2 6= ⊥C such that D C̀ c15 c2 : CTL,

a) 〈〈τ, c15 c2〉〉−C = 〈〈τ, c2〉〉−C ,

b) 〈〈τ, c15 c2〉〉+C = 〈〈τ, c1〉〉+C , and

c) 〈〈τ, c1〉〉−C = 〈〈τ, c2〉〉+C .

RATIONALE. Effect sequencing must maintain answer types in order

for the continuations of sequenced expressions to compose.

226 CHAPTER 8. SUBSTRUCTURAL TYPES AND CONTROL

4. If D C̀ c1 ¹ c2, then for every type τ there exists some type τ′ such that
〈〈τ′, c1〉〉−C = 〈〈τ, c2〉〉−C and 〈〈τ′, c1〉〉+C = 〈〈τ, c2〉〉+C .

RATIONALE. For control effect subsumption to be valid, related control

effects must generate related answer types.

PARAMETER PROPERTY 2 (Done).

If ∆` τ¹A then ∆;• ` doneC : L(τ(〈〈τ〉〉C).
RATIONALE. The doneC value must be well typed for the translation

of a whole program to be well typed.

PARAMETER PROPERTY 3 (Effect sequencing).

If D C̀ c15 c2 : CTL then D∗ ` (c15 c2)∗ ¹ c1
∗ and D∗ ` (c15 c2)∗ ¹ c2

∗.
RATIONALE. Sequencing lowers the translation of control effects in the

qualifier order. This makes sense, because if either of two sequenced

expressions may duplicate or discard their continuations, then the

compound expression may do the same.

PARAMETER PROPERTY 4 (Bottom and lifting).

1. c15 c2 =⊥C if and only if c1 = c2 =⊥C.

RATIONALE. Sequencing impure expressions should not result in a

pure expression.

2. If D C̀ c15 c2 : CTL and c15 c2 6= ⊥C, then there exist some c′1 6= ⊥C and
c′2 6= ⊥C such that

• D C̀ c1 ¹ c′1,

• D C̀ c2 ¹ c′2,

• c′15 c′2 = c15 c2, and

• D C̀ c′15 c′2 : CTL.

RATIONALE. This assumption is likely not necessary, but it signifi-

cantly simplifies the proof by allowing the effects in a sequence to be

considered either all pure or all impure.

8.4. THE GENERIC THEORY 227

The final property concerns four lemmas that we state and prove for the

generic system in the next subsection. An actual control effect instance needs

to extend these lemmas to cover any additional rules added to the relevant

judgments:

PARAMETER PROPERTY 5 (New rules).

1. Lemma 8.5 (§8.4.4) must be extended, by induction on derivations, for
any rules added to the kinding judgment D C̀ i : k.

2. Lemma 8.6 (§8.4.4) must be extended, by induction on derivations, for
any rules added to the control effect bounding judgment D C̀ c º ξ.

3. Lemma 8.7 (§8.4.4) must be extended, by induction on derivations, for
any rules added to the control effect subsumption judgment D C̀ c1 ¹ c2.

4. Lemma 8.8 (§8.4.4) must be extended, by induction on derivations, for
any rules added to the expression typing judgment D;G C̀ e : t ; c.

In §8.5, I give several example control effects and show that they satisfy

the above properties.

8.4.4 Generic Type Soundness

Assuming that the above properties hold of the control effect parameter, it is

now possible to prove a type soundness theorem for λURAL(C) that leaves the

control effect abstract. I sketch the proof here and provide the full details in

appendix C.

This first lemma ensures that control effects translate to well-formed

qualifiers.

LEMMA 8.5 (Translation of kinding).

For all D, i, and k, if D C̀ i : k then D∗ ` i∗ : k∗.

Proof. Please see p. 396. B

228 CHAPTER 8. SUBSTRUCTURAL TYPES AND CONTROL

The next two lemmas concern how the translation of control effects to

qualifiers relates to qualifier subsumption. The former ensures that the control

effect bound used by typing rules such as C-T-APP matches the qualifier

assigned to the type of a continuation by the CCoS translation. The latter

shows that a larger control effect, which indicates more liberal treatment

of a continuation, maps to a smaller qualifier, which indicates more liberal

treatment of any value.

LEMMA 8.6 (Translation of effect bounds).

If D C̀ c º ξ then D∗ ` ξ¹ c∗.

Proof. Please see p. 399. B

LEMMA 8.7 (Translation of effect subsumption).

If D C̀ c1 ¹ c2 then D∗ ` c2
∗ ¹ c1

∗.

Proof. Please see p. 400. B

The most difficult lemma, and the heart of the proof, is about typing

translated expressions. Given a λURAL(C) expression whose control effect is c,

the translation of the control effect, c∗, is the qualifier of the continuation of

the translated expression:

LEMMA 8.8 (Translation of term typing).

If D;G C̀ e : t ; c then

D∗;G∗ ` JeK
C

: L(c∗(t∗(〈〈t∗, c〉〉−C)(〈〈t∗, c〉〉+C).

Proof. By induction on the typing derivation, generalizing the induction

hypothesis thus:

If D;G C̀ e : t ; c, then for all τ0 such that D∗ ` τ0 : ?, and for

all ξ0 such that D∗ ` ξ0 ¹ c∗, we have D∗;G∗ ` JeK
C

: L(ξ0(t∗(
〈〈τ0, c〉〉−C)(〈〈τ0, c〉〉+C).

Let us consider two cases here:

8.4. THE GENERIC THEORY 229

Case
D;G C̀ e : t ; c′ D C̀ c′ ¹ c

D;G C̀ e : t ; c
.

By property 8.4 (part 3), D∗ ` c∗ ¹ c′∗, and thus by property 8.4 (part 4),

there exists some type τ′0 such that 〈〈τ′0, c′〉〉−C = 〈〈τ0, c〉〉−C and 〈〈τ′0, c′〉〉+C =
〈〈τ0, c〉〉+C . By the lemma assumption, D∗ ` ξ0 ¹ c∗, and by transitivity of

qualifier subsumption, D∗ ` ξ0 ¹ c′∗. Thus, we can apply the induction

hypothesis at D;G C̀ e : t;c′, using the same ξ0 but with τ′0 for τ0, yielding

D∗;G∗ ` JeKC : L(ξ0(t∗(〈〈τ′0, c′〉〉−C)(〈〈τ′0, c′〉〉+C).

Then it suffices to replace 〈〈τ′0, c′〉〉−C by 〈〈τ0, c〉〉−C and 〈〈τ′0, c′〉〉+C by 〈〈τ0, c〉〉+C ,

which we know to be equal by property 8.4 (part 4).

Case

D C̀ G G1�G2 D C̀ G2 ¹ ξ2

D;G1 C̀ e1 : ξ1(t1
c−−◦ t2) ; c1 D C̀ c1 º ξ2

D;G2 C̀ e2 : t1 ; c2 D C̀ c2 º ξ1

D C̀ c15 c25 c : CTL

D;G C̀ e1 e2 : t2 ; c15 c25 c
.

For rule C-T-APP, we want to show that Je1 e2KC has type

L(ξ0(t2
∗(〈〈τ0, c15 c25 c〉〉−C)(〈〈τ0, c15 c25 c〉〉+C).

Consider the translation of e1 e2,

λy.Je1KC (λx1.Je2KC (λx2. x1 x2 (λx. y x))).

The type derivation is very large (see p. 410), but it hinges on giving

the right qualifiers to the types of continuations. We will consider

the continuation passed to the whole expression and the continuations

constructed for e1, e2, and the function application itself, in turn.

First we consider y, the continuation of the whole application expression.

Given the type that we need to derive for the whole expression, the

qualifier of y’s type must be ξ0. Furthermore, from the assumptions of

the lemma, we know that D∗ ` ξ0 ¹ (c15 c25 c)∗. By property 3, each of

230 CHAPTER 8. SUBSTRUCTURAL TYPES AND CONTROL

c1
∗, c2

∗, and c∗ is greater than (c15 c25 c)∗, so by transitivity, ξ0 is less

than each of these.

Expression e1 has effect c1, so by the induction hypothesis, its continua-

tion may have qualifier c1
∗. The continuation passed to Je1KC is

λx1.Je2KC (λx2. x1 x2 (λx. y x)),

whose free variables are {y}∪ fv(e2). Thus, the qualifier of this function

must upper bound both ξ0 and the qualifiers of the types in G2 (the type

context for e2). We have D∗ ` ξ0 ¹ c1
∗ from the previous paragraph.

Furthermore, looking at the premises of rule T-APP, we see that ξ2 upper

bounds the types in G2 and is less than c1
∗ (by property 8.4 (part 2)), so

by transitivity, D∗ `G2
∗ ¹ c1

∗, as desired.

Expression e2 has effect c2, so similarly, its continuation should have

qualifier c2
∗. The free variables of e2’s continuation are only y and

x1, which is the value of e1. We handle y as before. The type of x1 is
ξ1((t1

c−−◦ t2)∗), so it remains to show that D∗ ` ξ1 ¹ c2
∗, by property 8.4

(part 2) applied to the premise D C̀ c2 º ξ1.

Finally, given that x1 has type ξ1((t1
c−−◦ t2)∗), it expects a continuation

whose qualifier is c∗. The type of y has qualifier ξ0, which is less than

c∗. Then by lemma 8.3, the type of the η expansion λx. y x may be given

qualifier c∗.

Please see p. 400 for the remaining cases. B

COROLLARY 8.9 (Translation of program typing).

If D;G C̀ e : t ;⊥C where D C̀ t ¹A, then

D∗;G∗ ` JeKC doneC : 〈〈t∗〉〉C.

Proof. By lemma 8.5, lemma 8.8, property 2, and rules QSUB-REFL and T-APP.

Please see p. 423 for details. B

8.5. EXAMPLE CONTROL EFFECTS 231

LEMMA 8.10 (λURAL soundness).

If •;• ` e1 : τ and e1
∗7−→ e2, then either ∃v2.e2 v2 or ∃e3.e2 7−→ e3.

Proof. See the proof in Ahmed et al. (2005).

THEOREM 8.11 (λURAL(C) soundness).

If •;• C̀ e : t ;⊥C, and • C̀ t ¹A then eval(e) 6= WRONG.

Proof. By corollary 8.9, •;• ` JeK
C

doneC : 〈〈t∗〉〉C. Then by lemma 8.10, either
JeK

C
doneC reduces to a value v, in which case eval(e)= v, or JeK

C
doneC diverges,

in which case eval(e) is undefined.

8.5 Example Control Effects

In the previous section, I proved type soundness for generic λURAL(C), a

substructural λ calculus parametrized by abstract control effects. In this

section, I give three instances of control effects as described by definition 8.1

and show that they satisfy the properties on which the generic theorem

depends.

It will be useful, when stating several later definitions, to have a definition

for meets and joins of qualifiers. Because qualifiers include qualifier variables,

the lattice on constant qualifiers is insufficient. Because λURAL lacks qualifier

expressions like Alms has, meets and joins on qualifier variables are undefined

in several cases.

DEFINITION 8.12 (Qualifier meets and joins).

Define meets and joins of qualifiers as follows:

Luξ= ξuL= ξuξ= ξ Utξ= ξtU= ξtξ= ξ
Uuξ= ξuU=AuR=RuA=U Ltξ= ξtL=AtR=RtA= L

otherwise, ξuξ′ is undefined otherwise, ξtξ′ is undefined

232 CHAPTER 8. SUBSTRUCTURAL TYPES AND CONTROL

D D̀ i : k (kinding delimited control effects)

D-K-QUAL

D D̀ ξ : QUAL

D D̀ ξ : CTL

D-K-JOIN
D D̀ d1 : CTL D D̀ d2 : CTL

D D̀ d1 td2 : CTL

D D̀ d º ξ (qualifier bound for delimited control effects)

D-B-QUAL

D D̀ ξ¹ ξ′

D D̀ ξ′ º ξ

D-B-JOIN
D D̀ d1 º ξ D D̀ d2 º ξ

D D̀ d1 td2 º ξ

D D̀ d1 ¹ d2 (delimited control effect subsumption)

DSUB-BOT
D D̀ d : CTL

D D̀ ⊥D ¹ d

DSUB-LIN
D D̀ ξ : QUAL

D D̀ L¹ ξ

DSUB-TOP
D D̀ d : CTL

D D̀ d ¹U

DSUB-JOIN
D D̀ d1 ¹ d′

1 D D̀ d2 ¹ d′
2

D D̀ d1 td2 : CTL D D̀ d′
1 td′

2 : CTL

D D̀ d1 td2 ¹ d′
1 td′

2

D;G D̀ e : t ; d (delimited control expression typing)

D-T-RESET

D;G D̀ e : U1 ; d

D;G D̀ reset e : U1 ;⊥D

D-T-SHIFT

D;G, x:ξ(t ⊥D−−−◦ U1) D̀ e : U1 ; d

D;G D̀ shift x in e : t ; dtξ

Figure 8.17: Statics for delimited continuation effects

8.5. EXAMPLE CONTROL EFFECTS 233

8.5.1 Shift and Reset

This section defines a control effect instance for delimited continuations. In

this example, answer types are restricted to the unit type U1, in order to keep

the effects simple. In §8.5.2, I show how to define a more general control effect

instance that allows answer-type modification.

We add shift and reset to λURAL(C) as follows. First, extend the syntax:

e ::= new expressions
| · · · extending syntax from figure 8.1
| reset e delimiter
| shift x in e control operator

We give the dynamics of the new expressions by defining their CCoS transla-

tions, which are standard:

Jreset eK
D
=λy. y (JeK

D
(λx. x))

Jshift x in eK
D
=λy. (λx. JeK

D
(λx′. x′)) (Λ.λx.λy′. y′ (y x))

To type shift and reset, we define delimited continuation effects d as the

dual lattice of qualifiers ξ with a new point ⊥D:

d ::= delimited continuation effects

| ⊥D no effect

| α an effect variable

| ξ treats continuation like ξ

| d1 td2 effect join

Let D be the set of delimited continuation effects (d) quotiented by the

following equivalences:

ξ1 tξ2 = (ξ1 uξ2) when ξ1 uξ2 is defined

dt⊥D =⊥Dtd = dtd = d.

(The quotient simplifies defining other functions and relations on delimited

continuation effects.) Then delimited continuation effects are the triple

(D,⊥D,t).

234 CHAPTER 8. SUBSTRUCTURAL TYPES AND CONTROL

We extend the type system of λURAL(C) with the new rules in figure 8.17.

The new kinding rules say that qualifiers-as-effects (ξ) and joins (d1 td2) are

well-kinded if their components are. The new control effect bound rules say

that a control effect ξ′ is bounded by all qualifiers ξ that are less than ξ′ and

that any bound of both effects in a join bounds the join as well. The rules

added for effect subsumption effectively axiomatize the delimited continuation

effect lattice. Finally, we add two rules for typing shift and reset. To type an

expression reset e, subexpression e may have any effect whatsoever, but must

return type U1. (We lift this restriction in §8.5.2.) Then reset e is pure and

also has type U1. To type shift x in e, we give x type ξ(t ⊥D−−−◦ U1) for checking

e, where ξ is joined with the effect of e to get the effect of the whole shift

expression. That is, because shift captures its continuation and gives the

reified continuation qualifier ξ, its effect must be at least ξ, since that qualifier

determines how it might treat its captured continuation.

Type soundness. To prove type soundness for λURAL(C) extended with de-

limited continuation effects, we need to give the translation parameter as

described by definition 8.2. We define the translation parameter as follows:

〈〈τ,d〉〉−D = 〈〈τ,d〉〉+D = U1

doneD =λx.〈〉

d∗ =

L if d =⊥D

α if d =α
ξ if d = ξ
U otherwise

Then, we must show that this definition satisfies the properties of §8.4.3:

THEOREM 8.13 (Delimited continuation properties).

Delimited continuation effects (D,⊥D,t) satisfy properties 1–5.

8.5. EXAMPLE CONTROL EFFECTS 235

Proof.

Property 1 (Answer types). We need to show that several equalities on

answer types, such as that 〈〈τ,d1〉〉−D = 〈〈τ,d2〉〉+D, hold whenever d1 td2 is well

formed. All of the equalities are trivial because 〈〈τ,d〉〉−D = 〈〈τ,d〉〉+D = U1.

Property 2 (Done). We need to show that ∆;• ` doneD : L(τ(〈〈τ〉〉D). Given

the definition of doneD, we can show ∆;• `λx.〈〉 : L(τ(〈〈τ〉〉D) by a straightfor-

ward type derivation.

Property 3 (Effect sequencing). We need to show that D D̀ d1 td2 : CTL

implies that D∗ ` (d1td2)∗ ¹ d1
∗ and D∗ ` (d1td2)∗ ¹ d2

∗. By symmetry, it

suffices to show the former:

(1) D D̀ d1 ¹ d1 by CSUB-REFL

(2) D D̀ ⊥D ¹ d2 by DSUB-BOT

(3) D D̀ d1 t⊥D ¹ d1 td2 by (1–2), DSUB-JOIN

(4) D D̀ d1 ¹ d1 td2 by (3), d1 t⊥D = d1

(5) D∗ ` (d1 td2)∗ ¹ d1
∗ by (4), lemma 8.7.

Property 4 (Bottom and lifting).

1. To show that d1td2 = ⊥D if and only if d1 = d2 = ⊥D, we consider the

quotienting of D.

2. We must also show that if D D̀ d1 t d2 : CTL and d1 t d2 6= ⊥D, then

there exist some d′
1 6= ⊥D and d′

2 6= ⊥D with particular properties. For

each di
(i∈{1,2}), if di = ⊥D then let d′

i = L; otherwise, let d′
i = di. This

ensures that 1–2) each D D̀ di ¹ d′
i, 3) d1 td2 = d′

1 td′
2, and 4) d′

1 td′
2

is well formed.

Property 5 (New rules).

1. We show that D D̀ d º ξ implies that D∗ ` ξ ¹ d∗, by induction on the

derivation. The only new cases to consider are for rules D-B-QUAL and

D-B-JOIN. These require a lemma about the translation of qualifier

subsumption derivations.

236 CHAPTER 8. SUBSTRUCTURAL TYPES AND CONTROL

2. We show that D D̀ d1 ¹ d2 implies that D∗ ` d2
∗ ¹ d1

∗, again by induc-

tion on the derivation. The only nontrivial case is when

D D̀ d1 ¹ d′
1 D D̀ d2 ¹ d′

2

D D̀ d1 td2 : CTL D D̀ d′
1 td′

2 : CTL

D D̀ d1 td2 ¹ d′
1 td′

2

.

We show that D∗ ` (d′
1 td′

2)∗ ¹ (d1 td2)∗ by exhaustively enumerating

the possibilities for d1, d2, d′
1, and d′

2 such that the premises hold.

3. For translation of kinding, we show that D C̀ d : CTL implies that D∗ `
d∗ : QUAL. We proceed, as usual, by a simple induction on the derivation,

considering the two new kinding rules for delimited continuation effects.

4. For translation of typing, we use the generalized induction hypothesis as

in the proof of lemma 8.8. There are two cases, for shift and reset, each of

which requires a large type derivation.

Please see p. 425 for additional details. B

8.5.2 Shift and Reset with Answer-Type Modification

The type-and-effect system for shift and reset described in §8.5.1 requires

that all answer types—the type of all reset expressions—be U1. Our second

example adds answer-type modification (à la Danvy and Filinski 1989), which

allows shift to capture and compose continuations of differing types and allows

the answer delivered by reset to have any type. Both the syntax and CCoS

translation are as in §8.5.1, but we change the definition of control effects

as follows. An answer-type control effect a is either the pure effect ⊥A or a

collection of qualifiers ξ1, . . . ,ξj along with old and new answer types t1 and t2:

a ::= answer-type modification effects

| ⊥A pure

| Ξ(t1� t2) captures continuation

Ξ ::= ξ1, . . . ,ξj qualifier collections

8.5. EXAMPLE CONTROL EFFECTS 237

D À i : k (kinding answer-type effects)

A-K-EFFECT
D À ξ1 : QUAL · · · D À ξk : QUAL

D À t1 :? D À t2 :?

D À
ξ1,...,ξk(t1� t2) : CTL

D À a º ξ (qualifier bound for answer-type effects)

A-B-QUAL

D À ξ¹ ξ1 · · · D À ξ¹ ξj
D À t1 :? D À t2 :?

D À
ξ1,...,ξj(t1� t2)º ξ

D À a1 ¹ a2 (answer-type effect subsumption)

ASUB-BOT

D À
Ξ(t� t) : CTL

D À ⊥A ¹ Ξ(t� t)

ASUB-L
D À

Ξ(t1� t2) : CTL

D À
L(t1� t2)¹ Ξ(t1� t2)

ASUB-TOP

D À
Ξ(t1� t2) : CTL

D À
Ξ(t1� t2)¹ U(t1� t2)

ASUB-JOIN

D À
Ξ1(t1� t2)¹ Ξ′

1(t1� t2) D À
Ξ2(t1� t2)¹ Ξ′

2(t1� t2)

D À
Ξ1,Ξ2(t1� t2)¹ Ξ′

1,Ξ′
2(t1� t2)

D;G À e : t ; a (answer-type effect expression typing)

A-T-RESET

D;G À e : t0 ;Ξ(t0� t)

D;G À reset e : t ;⊥A

A-T-SHIFT

D;G, x:ξ(t1
⊥A−−−◦ t2) À e : t0 ;Ξ(t0� t)

D;G À shift x in e : t1 ;Ξ,ξ(t2� t)

Figure 8.18: Statics for answer-type effects

238 CHAPTER 8. SUBSTRUCTURAL TYPES AND CONTROL

A type derivation D;G À e : t ; ξ1,...,ξj(t1� t2) may be understood as follows:

• The collection of qualifiers ξ1, . . . ,ξj keeps track of all the ways that

expression e may treat its context; expression e may be considered to

treat its context according to any qualifier ξ that lower bounds all of

ξ1, . . . ,ξj. We need a collection of qualifiers because qualifiers do not, in

the presence of qualifier variables, have greatest lower bounds.

• Evaluated in a context expecting type t whose original answer type

was t1, expression e changes the answer type to t2. This means that

our type-and-effect judgment, disregarding substructural considerations,

is equivalent to the type judgment that Danvy and Filinski write as

Γ, t1 ` e : t, t2.

For answer-type modification effects, we define the partial sequencing

operation as follows:

⊥A ◦ a = a

a ◦ ⊥A = a
Ξ(t′� t2) ◦ Ξ′

(t1� t′)= Ξ,Ξ′
(t1� t2).

Any other cases are undefined. Collections of qualifiers are quotiented by the

following equivalence:

ξ1,ξ2 = ξ1 uξ2 when ξ1 uξ2 is defined.

Then we define answer-type modification effects as the triple (A,⊥A,◦).

The new type rules for answer-type effects appear in figure 8.18. For the

most part, these rules treat the collection of qualifiers ξ1, . . . ,ξj similarly to

the delimited continuation effect ξ1 t ·· ·t ξj from §8.5.1. However, there is

some subtlety to the definition of answer-type effect subsumption: the only

non-bottom effects related by subsumption are those whose before and after

answer types match, pairwise, but the pure effect ⊥A is less than any effect

whose before and after answer types match each other (rule ASUB-BOT). This

makes sense, as pure expressions do not change the answer type.

8.5. EXAMPLE CONTROL EFFECTS 239

The rules for typing shift and reset expressions are a hybrid of the rules

from §8.5.1, which they follow for the qualifier portion, and the rules from

Danvy and Filinski (1989), which they follow for maintaining answer types.

Type soundness. To prove type soundness for λURAL(C) with answer-type

modification, we define the translation parameter as follows:

〈〈τ,⊥A〉〉−A = τ
〈〈τ,Ξ(t1� t2)〉〉−A = t1

∗

〈〈τ,⊥A〉〉+A = τ
〈〈τ,Ξ(t1� t2)〉〉+A = t2

∗

doneA =λx. x

a∗ =

L if a = ⊥A

ξ if a = ξ(t1� t2)

U otherwise

THEOREM 8.14 (Answer-type effect properties).

Answer-type modification effects (A,⊥A,◦) satisfy properties 1–5.

Proof. Please see p. 435. B

8.5.3 Exceptions

We add exceptions to λURAL(C) as follows. We assume a set Exn of exception

names ψ and extend the syntax of expressions:

ψ ∈ Exn exception names

e ::= new expressions

| · · · extending syntax from figure 8.1
| e1 handleψ→ e2 delimiter

| raiseψ control operator

240 CHAPTER 8. SUBSTRUCTURAL TYPES AND CONTROL

D X̀ i : k (kinding exception effects)

X-K-SING

D X̀ {ψ} : CTL

X-K-UNION
D X̀Ψ1 : CTL D X̀Ψ2 : CTL

D X̀Ψ1 ∪Ψ2 : CTL

D X̀Ψº ξ (qualifier bound for exception effects)

X-B-RAISE
D X̀Ψ : CTL

D X̀ΨºA

D;G X̀ e : t ;Ψ (exception effect expression typing)

X-T-RAISE
D X̀ t :?

D;• X̀ raiseψ : t ; {ψ}

X-T-HANDLE
D X̀ G G1�G2

D;G1 X̀ e1 : t ; {ψ}∪Ψ
D;G2 X̀ e2 : t ;Ψ D X̀ G2 ¹A

D;G X̀ e1 handleψ→ e2 : t ;Ψ

Figure 8.19: Statics for exception effects

While these exceptions are simple tags, it would not be difficult to have

exceptions carry values. As in the previous example, we define the dynamics by

the CCoS translation. However, because the CCoS translation for exceptions

is type directed, we show how the type system is extended first.

To type exceptions, we instantiate λURAL(C) as follows. Exception effects,

Ψ, are sets of primitive exception names ψ:

Ψ ::= exception effect sets

| ∅ the empty effect

| α an effect variable

| {ψ} singleton effect

| Ψ1 ∪Ψ2 effect union

8.5. EXAMPLE CONTROL EFFECTS 241

Let X be the set of exception effect sets (Ψ). Then we define exception

effects as the triple (X,∅,∪). We consider exception effects as true sets, not

merely as the free algebra generated by the syntax. Thus, the subsumption

order is set containment:

D X̀Ψ1 ¹Ψ2 (exception effect subsumption)

XSUB-SUBSET

Ψ1 ⊆ Ψ2 D X̀Ψ1 : CTL D X̀Ψ2 : CTL

D X̀Ψ1 ¹Ψ2

The other new type rules for exception effects appear in figure 8.19. Note that

rule X-B-RAISE says that all exception effects are bounded below by A; this is

because exceptions allow an expression to discard its context but not duplicate

it. (Of course, the empty exception set ∅ is bounded by L by rule C-B-PURE.)

To define the CCoS translation, we assume a run-time representation of

exceptions and exception sets as follows:

• There is an exception pretype exn such that ∆` exn :?.

• Each exception ψ is represented by a λURAL value ψ∗, such that ∆;• `
ψ∗ : U exn.

• For each exception ψ and pair of λURAL values v1 and v2, there is a λURAL

value [v1,v2]ψ such that

[v1,v2]ψψ∗ 7−→ v1ψ
∗

ψ 6=ψ′

[v1,v2]ψψ′∗ 7−→ v2ψ
′∗ .

∆;Γ` v1 : ξ1(U exn(τ) ∆` ξ1 ¹ ξ
∆;Γ` v2 : ξ2(U exn(τ) ∆` ξ2 ¹ ξ

∆;Γ` [v1,v2]ψ : ξ(U exn(τ)

Intuitively, [v1,v2]ψ performs case analysis on exception values: when applied

to exception ψ, it passes the exception to v1, and when applied to any other

exception, it passes the exception to v2.

242 CHAPTER 8. SUBSTRUCTURAL TYPES AND CONTROL

For exception effects, we use a typed CCoS translation that takes an extra

parameter: the exception effect of the expression to be translated. We assume

that the generic CCoS has been updated to translate type derivations as well

in order to propagate control effects correctly. Then we can give the CCoS

translation for exceptions:

JraiseψKΨX =λ . inlψ∗

Je1 handleψ→ e2KΨX =λy. [v, y] (Je1K
{ψ}∪Ψ
X

(λx. inr x))

where v =
λ .Je2K∅X y if Ψ = ∅;

[λ .Je2KΨX y,λx. inl x]ψ if Ψ 6= ∅.

Type soundness. To prove type soundness for λURAL(C) extended with ex-

ceptions, we define the translation parameter as follows:

〈〈τ,Ψ〉〉−X = 〈〈τ,Ψ〉〉+X = L(U exn⊕τ)

doneX =λx. inr x

Ψ∗ =
L if Ψ = ∅

A if Ψ 6= ∅

THEOREM 8.15 (Exception effect properties).

Exception effects (X,∅,∪) satisfy properties 1–5.

Proof. Please see p. 441. B

8.6 Discussion

I began this chapter with the desire to add linear types to Alms, a general-

purpose programming language with affine types and exceptions. The treat-

ment of exceptions in §8.5.3 points the way toward that goal. One question

that remains, however, concerns the pragmatics of checked exceptions in a

higher-order language such as Alms, where latent exception effects are likely

to appear on many function arrows. Weighing the cost against the benefit, I

8.6. DISCUSSION 243

have decided that adding linear types to Alms is not worth the complexity of a

programmer-visible effect system.

One potential direction for future research is to consider how other control

effects fit into my general framework. I suspect that some control operators

common to imperative languages, such as return, break, and goto, absent

first-class labels, would be straightforward. More exotic forms of control may

be harder. Some control operators, such as shift0, are very difficult to type

even in a simpler setting (Kiselyov and Shan 2007), which is why I have not

considered them. Others, such as Felleisen’s prompt and control (1988) may be

tractable with a more expressive version of my generic type system, because

effects need to reflect not only how an expression treats its continuation, but

how a continuation, if captured and reinvoked, treats its new continuation.

CHAPTER 9

Related Work and Design Rationale

ALMS IS RELATED to a variety of other programming languages, and several

of its novel features are inspired by similar features in other languages. In

this chapter I discuss related research, place Alms in the context of similar

work, and show how other languages influenced the design of Alms.

9.1 Substructural Type Systems

Much of the prior work on substructural type systems appears as background

in chapter 2. In this section, I discuss several additional languages with

substructural types and relate them to Alms.

9.1.1 System F◦

Mazurak et al. (2010) describe a calculus of “lightweight linear types.” Their

primary motivation is similar to mine: to remove needless overhead and

provide a “simple foundation for practical linear programming.”

System F◦ and Alms share several important ideas:

• Both use kinds to distinguish linear (in Alms, affine) types from unlim-

ited types, where F◦’s kinds ◦ and ? correspond to my A and U, and

their subkinding relation ? ≤ ◦ corresponds to my U <: A. (Kinds are

used in a similar fashion by Charguéraud and Pottier (2008), who use

245

246 CHAPTER 9. RELATED WORK AND DESIGN RATIONALE

several kinds to distinguish unlimited values from affine capabilities,

and Swamy et al. (2010), who have base kinds ? and A.)

• F◦ uses existential types and subkinding to abstract unlimited types

into linear types. Alms (the language) uses modules and aλms (the

calculus) uses higher-kinded type abstraction to define abstract affine

types, including type constructors with parameters. Mazurak et al.

mention the possibility of extending F◦ with abstraction over higher

kinds but do not show the details.

• They sketch out a notation for writing linear computations, which

inspired Alms’s implicit threading syntax (§3.2.1). Mazurak et al.’s

sugar requires explicit sequencing but not explicit threading, whereas

Alms’s requires neither and instead uses the sequencing determined by

the evaluation order.

There are also notable differences:

• F◦ has linear types, which disallow weakening, whereas Alms has affine

types, which allow it. This is a trade-off. Linear types make it possible

to enforce liveness properties, which may be useful, for instance, to

ensure that manual memory management does not leak. On the other

hand, safely combining linearity with exceptions requires a type-and-

effect system to track when raising an exception would implicitly discard

linear values (chapter 8). Alms can support explicit deallocation so long

as failure to do so is backed up by a garbage collector.

• Alms’s unlimited-use function type is a subtype of its one-use function

type. F◦ does not provide subtyping, though they do show how η ex-

pansion can explicitly perform the coercion that Alms’s subtyping does

implicitly. Experience with Alms confirms that dereliction subtyping is

valuable, though it does come at the cost of complexity.

• F◦ requires annotating abstractions (λκx:τ.e) to specify the kind of the

resulting arrow type, which may only be ? or ◦. Alms refines this with

qualifier expressions and selects the least kind automatically.

9.1. SUBSTRUCTURAL TYPE SYSTEMS 247

• Mazurak et al. give a resource-aware semantics and prove that they can

encode regular protocols. I do neither but conjecture that my system

enjoys similar properties, except that weakening makes it possible to

bail out of a protocol at any point.

• Their sketch of rules for algebraic datatypes is similar to how mine work,

though mine are strictly stronger. For example, an option type in F◦

would have two versions:

optionLin : ◦⇒◦ optionUn :?⇒?.

Dependent kinds in Alms allow defining one type constructor whose kind

subsumes both:

option :Π(‘a+).〈‘a〉.

In general, dependent kinds and subtyping in Alms should allow for more code

reuse than in F◦.

9.1.2 Fine

Swamy et al.’s (2010) Fine programming language combines affine types,

dependent types, and refinement types in a security-oriented language. They

use affine types to track the state of authorization protocols, which ensures

that a programmer cannot accidentally use a stale authorization state.

Like Alms and F◦, Swamy et al. use kinds to distinguish affine types (of

kind A) from unlimited types (of kind ?). Like F◦, and unlike Alms, their

system does not support any sort of kind polymorphism. They would seem to

require separate affine and unlimited type declarations, as in the option type

example for F◦.
Swamy et al. also impose two restrictions on where affine types may appear.

First, affine type variables may not appear in dependent types. This restriction

simplifies the metatheory, but it is not clear what the implications are in

practice. Second, they require that for any kind of the form A→ κ, kind κ

must eventually end with A. They claim that this restriction is necessary for

248 CHAPTER 9. RELATED WORK AND DESIGN RATIONALE

soundness,1 but compared to Alms, this restriction is quite limiting. Consider,

for example, this Alms type declaration:

type ‘a id = Id of ‘a → ‘a

In Alms, type constructor id has kind Π(‘a).U, because the kind of the actual

parameter does not determine whether an unlimited function can be duplicated.

The kind restriction in Fine means that id must have either kind ?→ ? or

kind A→ A, seriously limiting its applicability.

Fine is implemented by a type-preserving compiler that targets a depen-

dently typed extension of the .NET intermediate language, which means that

Fine modules may be linked against code written in other .NET languages such

as C#. Fine prevents foreign .NET code from violating its affine invariants by

a syntactic check on the shapes of types exported to and imported from .NET,

which disallows the escape of affine values (Nikhil Swamy 2011, personal

communication). Fine’s type checker generates a large number of proof

obligations; it uses Z3, an SMT solver, to discharge them. Combining affine

types with dependent and refinement types means that Fine interfaces can

express a variety of invariants that Alms cannot.

9.1.3 ATS, Cyclone, and Vault

Substructural types have proven popular for tracking resources, especially

memory, in safe, low-level languages.

ATS (Zhu and Xi 2005) has a notion of stateful views, which are linear

capabilities witnessing that a particular memory location holds a value of a

particular type. In ATS, stateful views support explicit memory allocation and

deallocation, strong updates, and even pointer arithmetic, all without violating

memory safety.

Cyclone (Grossman et al. 2002) is a type-safe dialect of C that uses regions

for memory management. Early versions of Cyclone manage memory using

1In particular, they write that “types constructed from affine types must themselves be
affine—this is standard.” It is often the case that values constructed from affine values must
be affine, but extending this rule to types is a very conservative approximation that gives up
significant expressiveness.

9.1. SUBSTRUCTURAL TYPE SYSTEMS 249

using nested regions as in Tofte and Talpin (1997, see my §2.3.1). In addition,

Cyclone uses a global “heap region” that is conservatively garbage collected.

For cases whether neither static regions nor tracing garbage collection are

suitable, later versions of Cyclone add unique pointers and temporary aliasing

mechanisms, whose theory is based on substructural types.

Vault (DeLine and Fähndrich 2001) uses linear capabilities for typestate.

Vault keys double as dynamic regions, which can guard dynamically-allocated

objects, as in §2.3.3. Typestate in Vault is also discussed in detail in §2.2.

As shown in §4.2, Alms can express variations on Vault-style regions. It is

unlikely, however, that Alms can support statically-checked pointer arithmetic,

as ATS does using dependent types. Similarly, Cyclone supports subtyping

between regions based on nested lifetimes, and it can often infer where this

subtyping is necessary, whereas nested regions in Alms would probably require

explicit management of subtyping proofs. Vault’s treatment of capabilities may

be more convenient to use than Alms’s, because while Alms requires explicit

threading of capability values, Vault’s key sets are tracked automatically

within function bodies. On the other hand, because capabilities in Alms appear

as ordinary values, we may combine them using the native intuitionistic logic

of Alms’s type system. Instead, Vault provides a simple language for expressing

function pre- and postconditions. For more complicated logic, Vault allows

embedding capabilities in variant values and tracking them dynamically. In

Alms, by contrast, the full language—algebraic data types, anonymous sums

and products, open variants and records, exceptions, and reference cells—is

available for managing capabilities.

9.1.4 Clean

The Clean programming language (Brus et al. 1987) relies on uniqueness

typing (§2.1.2) to track side effects in a pure language. Uniqueness types

enforce single-threading of mutable state, which means that mutation in

Clean does not violate referential transparency. In Clean, a unique type is a

subtype of a non-unique type with the same representation. For example, a

unique array may be updated, and the update operation returns a new unique

250 CHAPTER 9. RELATED WORK AND DESIGN RATIONALE

array; or a unique array may become aliased, via subtyping, at which point

the array becomes immutable.

There is a strong similarity between Alms’s kinding judgment and Clean’s

uniqueness propagation rules that relate the uniqueness of data structures to

that of their constituent parts. Specifically, if some complex value is shared

then its components are shared as well.

While Clean supports subtyping, it does not have a subkinding relation

analogous to Alms’s or F◦’s. In particular, Clean requires that the uniqueness

attributes declared for an abstract type in a module’s interface exactly match

the uniqueness attributes in the module’s implementation.

9.1.5 Sing#

Microsoft’s experimental Singularity operating system is written in Sing#

(Fähndrich et al. 2006), a high-level systems programming language that

extends Spec#. Sing# has built-in support for channel contracts, which are a

form of session type providing static checking of communication protocols

between device drivers and other services. Unlike more idealistic linear

systems, the design acknowledges the need to allow for failure: Every protocol

implicitly includes branches to close the channel at any point. In other words,

session types in Sing#, as in Alms (§4.3), are affine.

9.2 The Spirit of ML

The overarching design of Alms puts it squarely in the ML family. Alms

includes algebraic data types, exceptions, and a module system all closely

modeled on other ML-like languages (Leroy et al. 2011; Milner et al. 1997).

The concrete syntax of Alms is based on OCaml (Leroy et al. 2011). Its global

type inference is a conservative extension of Damas and Milner’s (1982), in

that if a term has some type scheme under their type system—and does not

violate affinity—then it has the same or a more general type scheme in Alms.

In a broader sense, Alms is an answer to the question: What must be done
to smoothly integrate substructural types with ML? Some language design

9.2. THE SPIRIT OF ML 251

choices are dictated directly by features imported from ML. For example, the

inclusion of ML-style exception handling meant that linear types would have

required a type-and-effect system (as in chapter 8), which lead to the adoption

of affine types instead. Similarly, ML-style algebraic data types and abstract

types in Alms lead to Alms’s expressive kind system, which allows the kind

of a type constructor application to depend on the kinds of the actual type

parameters.

Kind subsumption in Alms is akin to Standard ML’s treatment of equality

types (Milner et al. 1997) and OCaml’s treatment of type constructor variance

(Leroy et al. 2011). In both cases, these properties of types may be considered

as kinds with subkinding orders, and in both cases types may be abstracted to

higher kinds. In SML, for example, eqtype subsumes type, in that signature

matching can abstract an equality type to a non-equality type but not vice

versa. Likewise, an ordinary (non-equality) type variable may be instantiated

to an equality type, but an equality type variable may not be instantiated to a

non-equality type in SML.

Dependent kinds in Alms may be seen as a generalization of Standard ML’s

kind system for equality types. Consider an abstract eqtype constructor of

arity k:

eqtype (’a1, . . ., ’ak) c

In Standard ML, type (t1, . . ., tk) c is an equality type if all of types t1, . . . , tk

are equality types. Given the kind order that EQTYPE is less than TYPE, we

could thus say that type constructor c has kind

Π(’a1 , . . ., ’ak). 〈’a1 〉 t· · ·t 〈’ak〉.

In fact, in Standard ML every k-ary type constructor that admits equality has

that kind, and every type constructor that does not admit equality has kind

Π(’a1, . . ., ’ak). TYPE, with the exception of some built-in type constructors,

such as ref, which has kind Π(’a). EQTYPE. However, there is no way to give a

user-defined type a kind like ref has, which expresses the fact that reference

252 CHAPTER 9. RELATED WORK AND DESIGN RATIONALE

cells support equality regardless of the type of their contents. For example,

consider this algebraic data type definition:

datatype (’a, ’b) d = D of ’a × ’b ref

In Standard ML, type (int, int → int) d is not an equality type, even though its

representation type int × (int → int) ref is an equality type, because d effectively

has kind Π(’a1, ’a2). 〈’a1〉 t 〈’a2〉. Using Alms-style dependent kinds, type

constructor d could have kind Π(’a1, ’a2). 〈’a1〉, which reflects the fact that

equality for d does not depend on the second type parameter.

9.2.1 Beyond ML

Inferring affine types with function type qualifiers and two kinds of type

variables is not very far from the type inference in ML-like languages. De Vries

et al. (2007) show that after a simple analysis to discover the use constraints on

variables, ordinary type inference in the style of Damas and Milner (1982) can

handle substructural types. However, Alms also depends on two type system

features that are not as simple to add to ML-style type inference: subtyping

and first-class polymorphism.

Subtyping. Alms uses subtyping for dereliction, in order to allow supplying

an unlimited function to a context that will use it but once, and extends the

same subtyping to the higher-order case. Alms follows Odersky et al.’s (1999)

approach to inference for subtyping based on constrained types. For solving

constraints, the implementation of Alms uses techniques from Simonet (2003).

First-class polymorphism. In addition to subtyping, Alms offers rank-n
polymorphism and impredicativity, together known as first-class polymor-

phism. ML-style prenex types are insufficient to support a common pattern

for typestate with capabilities whereby a value and its capability are tied

together using existential quantification (as in figure 4.2 on p. 60). Several

systems for global type inference with first-class polymorphisms have been

proposed, such as Jones’s (1997) FCP, Le Botlan and Rémy’s (2003) MLF,

and Russo and Vytiniotis’s (2009) QML. Alms takes its approach to first-

9.3. FROM ILL TO ALMS 253

class polymorphism from Leijen’s (2008) HMF, extended with Leijen’s (2006)

technique for automatically packing and unpacking existential types.

9.3 From ILL to Alms

In another sense, Alms is an answer to the question: What does it take to turn
intuitionistic linear logic into a real programming language? Recall from §2.1

that in Bierman’s (1993) intuitionistic linear logic, following Girard (1987),

the exponential modality ! is used to indicate resources that may be freely

duplicated (or dropped), and there are rules for introducing and eliminating

the exponential:

ILL-CONTRACTION

Γ, !σ, !σ` τ
Γ, !σ` τ

ILL-PROMOTION

!Γ`σ
!Γ` !σ

ILL-DERELICTION

Γ` !σ

Γ`σ

While ILL provides a good starting point, I contend that the treatment of

the exponential in ILL is unsuitable for a high-level programming language

for several reasons. Types that differ only in placement of ! are inhabited

by different terms, which inhibits code reuse; at the same time, programs

are cluttered with explicit dereliction and promotion syntax for managing

exponentials. Furthermore, the resulting types are unnecessarily noisy, and

linear types are shorter than unlimited types, which is the wrong default

because unlimited values are likely to be more common than affine values. I

discuss how Alms and some related work contend with each of these issues in

turn.

Implicit dereliction and promotion. To avoid the clutter of explicit promo-

tion and dereliction, exponential introduction and elimination should instead

be implicit. Thus, it is necessary to identify where to derelict and promote. One

answer is to promote wherever possible and derelict whenever necessary, which

suggests, as in Wadler (1991), that we treat dereliction as subtyping. Then

promoting whenever and as much as possible amounts to finding principal

types in the dereliction-subtyping order (cf. theorem 5.3). Wadler showed that

254 CHAPTER 9. RELATED WORK AND DESIGN RATIONALE

adding a subtyping relation based on dereliction does not result in principal

types, and he introduced use variables in order to recover them (§2.1.1).

Wadler’s (1991) standard linear types and Ahmed et al.’s (2005) λURAL both

modify the syntax of types and in doing so make dereliction and promotion

implicit. Instead of an exponential connective that needs to be introduced and

eliminated, they build use variables or qualifiers—which determine which

structural operations are supported—into the syntax of types. Then promotion,

as selection of use variables or qualifiers, is built into the introduction rules for

other connectives, and dereliction in built into the elimination rules. Consider,

for example, the rules for introducing and eliminating function types in λURAL:
URAL-(I
∆` ξ :QUAL ∆`Γ¹ ξ ∆;Γ, x:τ1 ` e : τ2

∆;Γ`λx. e : ξ(τ1(τ2)

URAL-(E
∆`Γ Γ1�Γ2 ∆;Γ1 ` e1 : ξ(τ1(τ2) ∆;Γ2 ` e2 : τ1

∆;Γ` e1 e2 : τ2

.

The introduction rule selects qualifier ξ based on the qualifiers of the types

in environment Γ, and gives the resulting type that qualifier. This rule thus

includes and generalizes promotion, because it gives a permissive qualifier to

a function type when the context allows. The elimination rule allows applying

a function with any qualifier, which means that dereliction to remove an

exponential before applying a function is unnecessary.

Aside from the mechanics of context splitting, the rules in Alms are very

similar to λURAL:
ALMS-(I
Γ`Σ¹ ξ ` (Γ;Σ), x:τ1 Γ′;Σ′ Γ′;Σ′ . e : τ2

Γ;Σ.λx:τ1. e : τ1
ξ−−◦ τ2

ALMS-(E
Γ;Σ1 . e1 : τ1

ξ−−◦ τ2 Γ;Σ2 . e2 : τ1

Γ;Σ1,Σ2 . e1 e2 : τ2

In particular, the function type introduction rule also includes promotion,

by selecting a qualifier bounded by the qualifiers in environment Σ, and the

9.3. FROM ILL TO ALMS 255

elimination rule includes dereliction, by eliminating function types with any

qualifier. A notable difference from λURAL, however, is that promotion in Alms

selects a qualifier expression which is the least upper bound of the qualifiers

in Σ, rather than bounding the environment by a constant.

Use and qualifier polymorphism. Besides making promotion and derelic-

tion implicit, both use variables and qualifier variables support parametric

polymorphism over linearity. This eliminates the problem in ILL that types

differing only in placement of the exponential require separate terms to inhabit

them. For example, consider two possible ILL type schemes for a function that

composes two functions:

(ρ(τ)((σ(ρ)(σ(τ !(ρ(τ)(!(σ(ρ)(!(σ(τ)

The first type composes two one-shot functions into a one-shot function; the

second composes two unlimited functions into an unlimited function. Even

with promotion and dereliction made implicit, without polymorphism over

exponentials, it may be necessary to have two different composition functions

with these two unrelated types. With standard types or λURAL, use and

qualifier polymorphism allow having one function for both cases. In Alms,

parametric polymorphism using ordinary type variables, which may appear in

qualifier expressions, accomplishes the same thing:

standard types !µ(ρ(τ)(!µ(σ(ρ)(!µ(σ(τ)

λURAL α(ρ(τ)(α(α(σ(ρ)(α(σ(τ))

Alms (ρ ‘a−→ τ)→ (σ ‘a−→ ρ)→σ ‘a−→ τ

Qualifier kinds. Use variables and qualifier variables allow implicit derelic-

tion and promotion and increase polymorphism, but at the cost of very verbose

types, because the syntax of types includes a use or a qualifier on every type

constructor. For example, the type of a function that adds two integers in

λURAL might be
U(U(Uint⊗Uint)(Uint).

Dependent qualifier kinds arise from an observation that well-formedness

rules for types imply bounds on qualifiers. For example, the product introduc-

tion rule in λURAL requires the qualifier on a product type to upper bound the

256 CHAPTER 9. RELATED WORK AND DESIGN RATIONALE

qualifiers of the components of the product:

URAL-⊗I
∆`Γ Γ1�Γ2

∆;Γ1 ` v1 : τ1 ∆` τ1 ¹ ξ
∆;Γ2 ` v2 : τ2 ∆` τ2 ¹ ξ
∆;Γ` 〈v1,v2〉 : ξ(τ1 ⊗τ2)

If ξ1 and ξ2 are the least qualifiers of types τ1 and τ2, respectively, then this

amounts to a bound

ξw ξ1 tξ2.

Noting that choosing the least qualifier ξ yields the most permissive usage of

the resulting product type, we might choose to set ξ equal to its bound:

ξ= ξ1 tξ2.

But if ξ is set equal to the bound, then it need not be written explicitly in the

type, because it can always be inferred from the qualifiers of τ1 and τ2. This is

precisely what the dependent kind Π(‘a, ‘b).〈‘a〉t〈‘b〉 accomplishes in Alms.

CHAPTER 10

Conclusion

SUBSTRUCTURAL TYPES ARE expressive but, in prior incarnations, unwieldy.

Special-purpose stateful type systems can be practical, but they are designed

for tracking specific kinds of state. Alms demonstrates that a programming

language with general-purpose substructural types can be both practical and

expressive.

10.1 Contributions

To support my thesis, I have designed and implemented Alms, a programming

language with substructural types. I developed a model of Alms and proved

that the model enjoys two beneficial properties, type soundness and principal

qualifiers.

Linear type systems that rely on exponential connectives suffer from lack

of polymorphism between linear and unlimited types, which can result in code

duplication. Adding use variables or qualifiers ameliorates the duplication

problem, but at the cost of verbose types. In the design of Alms, I combine

existing language features—notably qualifier kinds and dereliction subtyping—

with several novel ones in order to solve both problems and to enable the design

and use of a variety of typed, stateful abstractions:

• Alms treats the standard subqualifier relation (UvA) as a subkinding

relation; combined with modules and sealing, subkinding supports the

design of affine abstractions with unlimited representations (p. 41).

257

258 CHAPTER 10. CONCLUSION

• Dereliction subtyping and principal promotion (p. 45) together ensure

that functions are given qualifiers that are as permissive as possible

and may be used in less permissive contexts as needed; this increases

the possibilities for reusing functional abstractions with both affine and

unlimited types.

• Dependent qualifier kinds (p. 44) reflect natural relationships between

compound types and their components, which allows the same type

constructors to be used for both affine and unlimited data, but without

the need for awkward qualifier annotations.

• Arrow qualifier inference (§3.2.2 on p. 55) significantly reduces the need

for qualifier annotations on function types, making the concrete syntax

of types less cluttered.

• The implicit threading syntax (§3.2.1 on p. 52) makes affine values easier

to use by automatically threading them through a program.

These language features together, in Alms, form a coherent design, as evi-

denced by the code examples in chapters 3 and 4. An important result of this

combination of features is that Alms programs, despite their affine types, look

similar to OCaml programs.

In addition to Alms itself, my contributions include solutions to two prac-

tical problems in the design of substructural programming languages: how

to integrate code written in a substructural language with code written in

a legacy language (chapter 7), and how to safely add control operators to a

language with substructural types (chapter 8). While these solutions are not

implemented in Alms, they should be valuable to future designers of practical

substructural languages.

10.2 Future Work

Alms is available for download today, and it is already a useful platform

for exploratory programming with substructural types. However, much work

10.2. FUTURE WORK 259

remains to be done to make Alms suitable for production use and to investigate

further language design possibilities suggested by my research here.

10.2.1 A Run-Time Story

While Alms’s type checker is very sophisticated, the implementation of its

dynamics—a mere 4% of the line count—is a weak point. Alms programs

are currently evaluated by the simplest possible interpreter, with primitive

operations implemented in Haskell (Peyton Jones 2003). There are two

significant downsides to this approach. First, it means that Alms programs run

very slowly. Second, and more importantly, it means that the run-time system

currently cannot support efficient implementations of manually-managed

resources, which is an important application of affine types. Consider, for

example, region-based memory management. While Alms’s type system is up

to the task of expressing interfaces for regions, the run-time system provides

no mechanism for implementing region operations in a reasonable way.

10.2.2 Affine and Uniqueness Types, Together

Affine types prevent future aliasing, whereas uniqueness types keep track

of past aliasing. Both approaches are useful, because while affine types can

enforce single threading of values, uniqueness types can allow aliasing while

limiting some operations to unaliased values.

In §6.3.3 (p. 139), we saw that with qualifier kinds the distinction between

affine and uniqueness types manifests as a difference in the monotonicity

of the kinding relation: monotone kinding yields affine types and antitone

kinding yields uniqueness types. The discussion at the end of that section

raises the possibility of integrating the two in a single type system, but

ultimate rejects that idea, in favor of admitting a constraint-solving rule

that relies on a monotone kinding relation. However, a dual rule is sound

in the presence of antitone kinding. With suitable kind structure, it may be

possible to distinguish monotone-kinded and antitone-kinded types in the

same system. Ensuring that constraint-solving rules that rely on monotonicity

260 CHAPTER 10. CONCLUSION

are applied correctly might allow the inclusion of both affine and uniqueness

types in the same language.

10.2.3 Other Applications of a Novel Idea

Some type system features in Alms are applicable beyond the world of sub-

structural types. For example, dependent qualifier kinds can be viewed as

an extension of Standard ML’s (Milner et al. 1997) kind system for equality

types that allows the qualifier of a type application to depend on the qualifiers

of the type parameters (§9.2 on p. 250). The idea of dependent kinds can be

generalized, however, to allow other properties of type applications to depend

on properties of the parameters. In a language where kinds track mutability,

dependent kinds can provide a precise, type-based analysis of which values

have mutable components; if either component of a product type is mutable,

then values of the product type are observably mutable as well. Similarly,

dependent kinds might be useful in a language that uses kinds to control

information flow.

10.2.4 Exploring the Design Space

Alms represents but one point in a design space of practical, general-purpose

substructural type systems. For example, Alms distinguishes affine and

unlimited type variables, similarly to how Standard ML distinguishes equality

and non-equality type variables. Haskell abandoned equality types in favor

of a more general mechanism, type classes (Wadler and Blott 1989). Type

classes allow programmers to specify the equality operation for a type directly

by declaring an instance of type class Eq; furthermore, the equality operation

for an applied type constructor can be specified in terms of equality opera-

tions for its parameters. By analogy, instead of two kind of type variables,

unlimited types in Alms could simply be members of a type class Dup, which

includes a duplication operation. Then programmers could specify duplication

operations for new types, and dependent product kinds would be replaced

by Dup instances that specify how to duplicate a compound type in terms of

10.2. FUTURE WORK 261

duplication operations for its components. Such an approach would integrate

well with Alms’s constraint-based type inference.

APPENDIX A

Additional Proofs for Chapter 5

A.1 Preliminaries

I follow these two conventions for splitting contexts throughout this chapter:

• If there is a context ΣX and I introduce ΣX1 and ΣX2, this means that

ΣX =ΣX1,ΣX2, up to permutation.

• Contexts ΣX1 and ΣX2 are taken to be disjoint.

OBSERVATION A.1 (Strengthening).

1. Type- and kind-level judgments are unaffected by variables and locations
in the domain of the context. Let Γ′ be a context with no type variable
bindings, that is, there are no α ∈ dom Γ′. Then:

a) If Γ,Γ′ ` κ then Γ` κ .

b) If Γ,Γ′ ` τ : κ then Γ` τ : κ.

c) If Γ,Γ′ ` τ1 <:v τ2 then Γ` τ1 <:v τ2.

d) If Γ,Γ′ ` κ1 <: κ2 then Γ` κ2 <: κ2.

e) If Γ,Γ′ `α ∈ τ l v then Γ`α ∈ τ l v.

f) If Γ,Γ′ `Σ¹ ξ then Γ`Σ¹ ξ.
g) If ` (Γ0;Σ0),Γ′ Γ;Σ and one of the preceding judgments holds in Γ

then it holds in Γ0 as well.

263

264 APPENDIX A. PROOFS: A MODEL OF ALMS

2. The context bounding judgment is unaffected by type variables in the
domain of the subject context; the context well-formedness judgments are
unaffected by type variables in the domain of the affine context. Let Γ′ be
a context with no variables nor locations, only type variables. Then:

a) If Γ`Σ,Γ′ ¹ ξ then Γ`Σ¹ ξ.
b) If `Γ;Σ,Γ′ then `Γ;Σ.

c) If Γ;Σ,Γ′ . e : τ then Γ;Σ. e : τ.

Justification.

1. a–f) By inspection of the rules we can see that these judgments never di-

rectly observe variables or locations in their context, and they never

indirectly observe them through appeal to some other judgment not

sharing this property.

g) Observe that Γ may differ from Γ0 only by adding the types of some

variables.

2. a) By induction on the length of Γ′.

b) By the previous subpart.

c) Observe that no rule for the typing judgment looks up a type

variable in Σ, and furthermore, the only rules to which it passes Σ

are covered by the previous two subparts.

LEMMA A.2 (Qualifier substitution on kind well-formedness).

If Γ,α:〈α〉 ` κ and Γ` ξ then Γ` {ξ/α}κ .

Proof. By induction on κ, with one non-trivial case:

Case Πβv.κ′.

By inversion of rule OK-OPER,

(1) if β ∈FTV(κ′) then +v v and

(2) Γ,α:〈α〉,β:〈β〉 ` κ′ .

A.1. PRELIMINARIES 265

By the induction hypothesis,

(3) Γ,β:〈β〉 ` {ξ/α}κ′ .

Because β is bound with only κ′ in its scope, by renaming, we know that

β ∉FTV(ξ) and β 6=α, so β ∈FTV({ξ/α}κ′) if and only if β ∈FTV(κ′); Thus,

(4) if β ∈FTV({ξ/α}κ′) then +v v.

Then by rule OK-OPER.

LEMMA A.3 (Context splitting well-formedness).

`Γ;Σ1,Σ2 if and only if `Γ;Σ1 and `Γ;Σ2.

Proof. By induction on Σ2.

LEMMA A.4 (Regularity).

Most judgments in aλms are defined only over well-formed terms:

1. If Γ` κ then `Γ.

2. If `Γ then Γ` κ for all α:κ ∈Γ.

3. If Γ` ξ1 <: ξ2 then Γ` ξ1 and Γ` ξ2 .

4. If Γ` τ : κ then Γ` κ .

5. If Γ`α ∈ τ l v then Γ` τ : κ for some κ.

6. If Γ` τ1 <:v τ2 then Γ` τ1 : κ1 and Γ` τ2 : κ2 for some κ1 and κ2.

7. If Γ`Σ¹ ξ then Γ` ξ and `Γ,Σ.

8. If `Γ;Σ then Γ`Γ¹U and Γ`Σ¹ ξ for some ξ

9. If ` (Γ0;Σ0),Σ′ Γ;Σ then `Γ0;Σ0 if and only if `Γ;Σ.

10. If Γ;Σ. e : τ then `Γ;Σ and Γ` τ : ξ for some ξ.

266 APPENDIX A. PROOFS: A MODEL OF ALMS

Proof.

1. By induction on κ.

2. By induction on the derivation.

3. By inversion of rule OK-QUAL.

4. By induction on the derivation, using lemma A.2 for the K-APP and

K-ALL cases.

5. By induction on the derivation.

6. By induction on the derivation, using part (3) for the TSUB-ARR case.

7. By induction on the derivation:

Case
`Γ

Γ` •¹U
.

Then Γ`U by rule OK-QUAL and `Γ,• from the premise.

Case
Γ`Σ′ ¹ ξ1 Γ` τ : ξ2

Γ`Σ′, x:τ¹ ξ1 tξ2

.

By the induction hypothesis, Γ ` ξ1 and Γ ` ξ2 , so Γ ` ξ1 t ξ2 by

rule OK-JOIN.

By the induction hypothesis, ` Γ,Σ′, so ` Γ,Σ′, x:τ by rule WF-

CONSX.

Case
Γ`Σ′ ¹ ξ1 Γ` τ : ξ2

Γ`Σ′,`:τ¹A
.

By the induction hypothesis, part (1), and rules OK-QUAL and

WF-CONSL.

Case
Γ`Σ′ ¹ ξ Γ` κ
Γ`Σ′,α:κ¹ ξ

.

By the induction hypothesis, Γ ` ξ . By the induction hypothesis

and rule WF-CONSA, `Γ,Σ′,α:κ.

8. By inversion of rule WF.

A.1. PRELIMINARIES 267

9. By induction on the derivation:

Case
`Γ;Σ

` (Γ;Σ),• Γ;Σ
.

Trivial.

Case
Γ0 ` τ : U ` (Γ0, x:τ;Σ0),Σ′′ Γ;Σ

` (Γ0;Σ0), x:τ,Σ′′ Γ;Σ
.

Suppose that `Γ0;Σ0. Then by inversion of rule WF,

(1) Γ0 `Γ0 ¹U and

(2) Γ0 `Σ0 ¹ ξ

for some ξ. Then,

(3) Γ0 `Γ0, x:τ¹U by (1), B-CONSX

(4) Γ0, x:τ`Γ0, x:τ¹U by weakening

(5) Γ0, x:τ`Σ0 ¹ ξ by (2), weakening

(6) `Γ0, x:τ;Σ0 by WF

(7) `Γ;Σ by I.H.

Conversely, suppose that `Γ;Σ. Then,

(1) `Γ0, x:τ;Σ0 by I.H.

(2) Γ0, x:τ`Γ0, x:τ¹U by inv. WF

(3) Γ0, x:τ`Σ0 ¹ ξ by inv. WF

(4) Γ0 `Γ0, x:τ¹U by observation A.1

(5) Γ0 `Σ0 ¹ ξ by observation A.1

(6) Γ0 `Γ0 ¹U by inv. B-CONSX

(7) `Γ0;Σ0 by WF.

Case
Γ0 ` τ : ξ ` (Γ0;Σ0, x:τ),Σ′′ Γ;Σ

` (Γ0;Σ0), x:τ,Σ′′ Γ;Σ
.

As in the previous case.

10. By induction on the derivation, using part (9) and lemma A.3 as neces-

sary.

268 APPENDIX A. PROOFS: A MODEL OF ALMS

A.2 Principal Qualifiers

DEFINITION A.5 (Kind semilattices).

Partition the kinds by arity, where κ j are the kinds of arity j:

κ0 ::= ξ
κ j+1 ::=Παv.κ j.

Then, subject to a context ∆ mapping type variables to kinds, (κ j,<:,t j,⊥ j) is a
bounded join semilattice, defined inductively for each arity j by:

ξ1 t0 ξ2 = ξ1 tξ2

(Παv1 .κ j
1)t j+1 (Παv2 .κ j

2)=Παv1tv2 . (κ j
1 t j κ

j
2)

⊥0 =U

⊥ j+1 =Πα�.⊥ j.

I omit the arity superscript j when it is clear from context.

Proof. The previous definition imposes a proof obligation that the defined

structures are in fact bounded join semilattices. By induction on j:

Case 0.

When Γ is empty, qualifier expressions ξ form the free bounded semilat-

tice over uninterpreted type variables (〈α〉), with join (t) and bottom U

all as given in the syntax of qualifier constants and expressions. When Γ

is non-empty, quotient the semilattice as follows: for each type variable

α:U ∈Γ, add the constraint that 〈α〉 =U.

Case i+1.

The semilattice on κi+1 is isomorphic to the product semilattice on v×κi.

This follows from definition A.5 and by inspection of rule KSUB-OPER,

noting that the addition of α:〈α〉 to the context does not constrain 〈α〉 as

in the previous case.

A.2. PRINCIPAL QUALIFIERS 269

LEMMA A.6 (Well-formed kind semilattice).

For kinds κ1 and κ2 of the same arity j, if Γ` κ1 and Γ` κ2 then Γ` κ1 tκ2 .

Proof. By induction on j:

Case 0.

By rule OK-QUAL.

Case j′+1.

Then there are some κ′1, κ′2, v1, and v2 such that

(1) κ1 =Παv1 .κ′1 and

(2) κ2 =Παv2 .κ′2.

Then by definition A.5,

(3) κ1 tκ2 =Παv1tv2 .κ′1 tκ′2.

By inversion of rule OK-OPER,

(4) Γ` κ′1 ,

(5) if α ∈FTV(κ′1) then +v v1,

(6) Γ` κ′2 ,

(7) if α ∈FTV(κ′2) then +v v2.

By the induction hypothesis,

(8) Γ` κ′1 tκ′2 .

Finally, if α ∈FTV(κ′1tκ′2), it must be in at least κ′1 or κ′2, which means

that either +v v1 or +v v2, which means that +v v1 tv2.

LEMMA A.7 (Unique kinds and unique variances).

1. If Γ` τ : κ and Γ` τ : κ′ then κ= κ′.

270 APPENDIX A. PROOFS: A MODEL OF ALMS

2. If Γ`α ∈ τ l v and Γ`α ∈ τ l v′ then v= v′.

Proof. By induction on the structure of τ.

1. For kinding:

Case α.

The only applicable rule is K-VAR. By inversion, it must be the case

that α:κ ∈ Γ. and α:κ′ ∈ Γ. Since contexts do not admit repetition,

κ= κ′.
Case λα.τ1.

The only applicable rule is K-ABS. By inversion, there must be

some κ1 and v1 where κ=Παv1 .κ1 such that

(1) Γ,α:〈α〉 ` τ1 : κ1 and

(2) Γ,α:〈α〉 `α ∈ τ l v1.

Likewise, there must be some κ′1 and v′1 where κ′ =Παv′
1 .κ′1 such

that

(3) Γ,α:〈α〉 ` τ1 : κ′1 and

(4) Γ,α:〈α〉 `α ∈ τ l v′1.

By the induction hypothesis, κ1 = κ′1, and by the induction hypothe-

sis part (2), v1±v′1. Therefore, κ= κ′.
Case τ1τ2.

By inversion of rule K-APP and the induction hypothesis twice,

relying on the fact that substitution is a function.

Case ∀α:κ1.τ1.

By inversion of rule K-ALL and the induction hypothesis, relying

on the fact that substitution is a function.

Case τ1
ξ−−◦ τ2.

Then κ= ξ= κ′.
Case χ.

The only applicable rule is one of K-SUM, K-PROD, K-UNIT, or

K-REF, depending on the form of χ.

A.2. PRINCIPAL QUALIFIERS 271

2. For variance:

Case β.

If α=β then v= v′ =+. Otherwise, v= v′ = �.

Case λβ.τ1.

By inversion of rule V-ABS,

(1) Γ,β:〈β〉 `α ∈ τ1 l v and

(2) Γ,β:〈β〉 `α ∈ τ1 l v′.

By the induction hypothesis, v±v′.
Case τ1τ2.

By inversion of rule V-APP,

(1) Γ`α ∈ τ1 l v1,

(2) Γ`α ∈ τ2 l v2, and

(3) Γ` τ1 :Πβv3 .κ3

where v±v1 t (v2 ·v3). Likewise by inversion,

(4) Γ`α ∈ τ1 l v′1,

(5) Γ`α ∈ τ2 l v′2, and

(6) Γ` τ1 :Πβv
′
3 .κ′3

where v′±v′1 t (v′2 ·v′3).

By the induction hypothesis twice, v1±v′1 and v2±v′2. By the in-

duction hypothesis at part (1), Πβv3 .κ3 =Πβv′
3 .κ′3, and thus v3±v′3.

Therefore, v±v′.
Case ∀α:κ1.τ1.

As for λα.τ1, but with rule V-ALL.

Case τ1
ξ−−◦ τ2.

As for τ1τ2, but with rule V-ARR.

Case χ.

Then v= v′ = � by rule V-CON.

272 APPENDIX A. PROOFS: A MODEL OF ALMS

LEMMA A.8 (Unique context bounds).

If Γ`Σ¹ ξ and Γ`Σ¹ ξ′ then ξ= ξ′.

Proof. By induction on the structure of Σ, using lemma A.7 for the rule B-

CONSX case.

LEMMA A.9 (Context bounding).

1. If Γ`Σ1 ¹ ξ1 and Γ`Σ2 ¹ ξ2 then Γ`Σ1,Σ2 ¹ ξ1 tξ2.

2. If Γ`Σ¹ ξ and Γ` τ : ξ′ where x:τ ∈Σ then Γ` ξ′ <: ξ.

Proof.

1. By induction on the structure of Σ2.

2. By induction on the structure of Σ.

THEOREM 5.3 (Principal qualifiers, restated from p. 118).

If Γ;Σ.λx:τ. e : τ1
ξ−−◦ τ2, then it has a least qualifier expression ξ0; that is,

• Γ;Σ.λx:τ. e : τ1
ξ0−−◦ τ2 and

• Γ` ξ0 <: ξ′ for all ξ′ such that Γ;Σ.λx:τ. e : τ1
ξ′−−◦ τ2.

Proof. Please see p. 272. B

A.3 Type Soundness

A.3.1 Type Substitutions

DEFINITION A.10 (Type substitution).

I define type substitution on a variety of syntactic classes—types ({τ/α}τ′),
terms ({τ/α} e), and contexts ({τ/α}Γ)—in the standard homomorphic, binding-
respecting way, but only when τ is closed. To define type substitution on types

A.3. TYPE SOUNDNESS 273

requires defining type substitution on function types ({τ/α} (τ1
ξ−−◦ τ2)), which

requires defining type substitution on kinds: {τ/α}κ.

For such a substitution to be defined, τ must be closed and well-formed; in
particular, • ` τ : κ′ for some kind κ′ (uniquely determined by lemma A.7). If κ′

is a dependent product kind, then define {τ/α}κ= κ. On the other hand, if κ′ is
a qualifier expression ξ′, then define {τ/α}κ= {ξ′/α}κ.

LEMMA A.11 (Type substitution on kind well-formedness).

Suppose that Γ` τ : κ′. Then:

1. If Γ,α:κ′ ` κ then Γ` {τ/α}κ .

2. If Γ` κ then {τ/α}Γ` κ .

3. If `Γ then ` {τ/α}Γ.

Proof.

1. By induction on κ:

Case q.

By rule OK-QUAL.

Case ξ1 tξ2 or ξ1 uξ2.

By the induction hypothesis, twice, and rule OK-JOIN or rule OK-

MEET, respectively.

Case β.

If α = β, then by inversion of rule OK-VAR, κ′ = ξ for some ξ. So

{τ/α}κ= ξ. Then because Γ` τ : ξ and by lemma A.4, Γ` ξ .

If α 6=β, then {τ/α}〈β〉 = 〈β〉. By inversion of rule OK-VAR, we know

that β:ξ ∈Γ for some ξ. Then by rule OK-VAR.

Case Πβv.κ′′.

By inversion of rule OK-OPER and the induction hypothesis,

(1) Γ` {τ/α}κ′′ .

274 APPENDIX A. PROOFS: A MODEL OF ALMS

Note that because β is bound with only κ′′ in its scope, we know that

β ∉ FTV(τ), so β ∈ FTV(κ′′) if and only if β ∈ FTV({τ/α}κ′′). Thus,

the premise of rule OK-OPER that β ∈ FTV({τ/α}κ′′) implies that

+v v remains satisfied.

2–3. By mutual induction on the derivations. Note that the judgment Γ` κ
only looks at Γ to make sure that it maps the free type variables of κ to

well-formed qualifiers, and substitution preserves well-formed qualifiers

by the previous part.

LEMMA A.12 (Qualifier substitution on qualifier subsumption).

If Γ,α:ξ |= ξ1 v ξ2 then {ξ/α}Γ |= {ξ/α}ξ1 v {ξ/α}ξ2.

Proof. Let V be any valuation consistent with {ξ/α}Γ. That means that for

all β:ξ′′ ∈ {ξ/α}Γ, V (β) v V (ξ′′). Equivalently, for all β:ξ′ ∈ Γ, we know that

V (β)v V ({ξ/α}ξ′). (Note that β 6=α or else Γ,α:ξ would be ill formed.)

Now let V ′ = V {α 7→ V (ξ)}. Note that V ′(β) = V (β) and V ′(ξ′) = V ({ξ/α}ξ′).
Then V ′(β)v V ′(ξ′) for all β:ξ′ ∈Γ. Furthermore, we defined V ′ so that V ′(α)=
V ′(ξ), so V ′(α)v V ′(ξ). Thus, V ′ is consistent with Γ,α:ξ.

By definition 5.2, since Γ,α:ξ |= ξ1 v ξ2, we now know that V ′(ξ1) v V ′(ξ2).

Note that V ′(ξ1) = V ({ξ/α}ξ1) and V ′(ξ2) = V ({ξ/α}ξ2). Then we know that

V ({ξ/α}ξ1) v V ({ξ/α}ξ2). Since V is an arbitrary valuation consistent with

{ξ/α}Γ, this means that {ξ/α}Γ |= {ξ/α}ξ1 v {ξ/α}ξ2.

COROLLARY A.13 (Type substitution on subkinding).

If Γ,α:κ` κ1 <: κ2 and • ` τ : κ then {τ/α}Γ` {τ/α}κ1 <: {τ/α}κ2.

Proof. By cases on the subkinding derivation:

Case
v1 v v2 Γ,β:〈β〉,α:κ` κ′1 <: κ′2

Γ,α:κ`Πβv1 .κ′1 <:Πβv2 .κ′2
.

By the induction hypothesis and rule KSUB-OPER.

A.3. TYPE SOUNDNESS 275

Case
Γ,α:κ |= ξ1 v ξ2 Γ,α:κ` ξ1 Γ,α:κ` ξ2

Γ,α:κ` ξ1 <: ξ2

.

By lemma A.11, {τ/α}Γ` {τ/α}ξ1 and {τ/α}Γ` {τ/α}ξ2 .

We need to show that {τ/α}Γ |= {τ/α}ξ1 v {τ/α}ξ2. If κ (the kind of τ) is

not a base kind, then this is trivially the case. Otherwise, κ is a qualifier

ξ such that Γ,α:ξ |= ξ1 v ξ2. Then by lemma A.12, {ξ/α}Γ |= {ξ/α}ξ1 v
{ξ/α}ξ2.

LEMMA A.14 (Non-free type variables do not vary).

If α ∉FTV(τ) then Γ`α ∈ τ l �.

Proof. By induction on the structure of τ.

LEMMA A.15 (Type substitution on kinding and variance).

For any type τ and kind κ such that • ` τ : κ,

1. If Γ,α:κ` τ′ : κ′ then {τ/α}Γ` {τ/α}τ′ : {τ/α}κ′.

2. If Γ,β:〈β〉,α:κ ` β ∈ τ′ l v, where β ∉ FTV(τ) and β ∉ FTV(Γ,α:κ), then
{τ/α}Γ,β:〈β〉 `β ∈ {τ/α}τ′ l v.

Proof. In each case, because Γ,α:κ is well formed (by lemma A.4), we know

that α ∉ dom Γ. Since `Γ, we know that α ∉FTV(Γ), and thus {τ/α}Γ=Γ. Note

also that • ` κ by the same lemma, which means that κ is closed.

We then proceed by mutual induction on the kinding and variance deriva-

tions.

1. For kinding, there is one interesting case:

Case
α′:κ′ ∈Γ,α:κ `Γ,α:κ

Γ,α:κ`α′ : κ′
.

If α=α′ then κ= κ′ and {τ/α}α′ = τ. We know that κ is closed, so

{τ/α}κ= κ. Because • ` τ : κ, and by weakening, Γ` τ : κ.

276 APPENDIX A. PROOFS: A MODEL OF ALMS

If α 6= α′ then {τ/α}α′ = α′. Furthermore, we know that α′:κ′ ∈
Γ, and because α ∉ FTV(Γ), we know that {τ/α}κ′ = κ′. Then by

rule WF-CONSA or WF-CONSAREC.

2. For variance, the two variable cases are non-trivial:

Case
Γ`β : κ

Γ,β:〈β〉,α:κ`β ∈β l +
.

Since α 6=β, {τ/α}β=β, so {τ/α}Γ,β:〈β〉 `β ∈β l +.

Case
Γ`β′ : κ

Γ,β:〈β〉,α:κ`β ∈β′ l �
.

If β′ 6=α then {τ/α}β′ =β′, so {τ/α}Γ,β:〈β〉 `β ∈ {τ/α}β′ l �.

If β′ =α, then note that β ∉FTV(τ). Thus by lemma A.14, we know

that {τ/α}Γ,β:〈β〉 `β ∈ τ l �.

LEMMA A.16 (Type substitution on type equivalence).

If τ1 τ2 then {τ/α}τ1 {τ/α}τ2.

Proof. By induction on the type equivalence derivation τ1 τ2. There is only

one non-trivial case:

Case (λβ.τ′1)τ′2 {τ′2/β}τ′1.

Then

(1) {τ/α}τ1 = (λβ. {τ/α}τ′1) {τ/α}τ′2 and

(2) {τ/α}τ2 = {{τ/α}τ′2/β} {τ/α}τ′1,

and finally

(3) (λβ. {τ/α}τ′1) {τ/α}τ′2 {{τ/α}τ′2/β} {τ/α}τ′1.

by rule E-BETA.

LEMMA A.17 (Type substitution on subtyping).

If Γ,α:κ` τ1 <:v τ2 and • ` τ : κ then {τ/α}Γ` {τ/α}τ1 <:v {τ/α}τ2.

A.3. TYPE SOUNDNESS 277

Proof. By a simple induction on the derivation of Γ,α:κ ` τ1 <:v τ2, using

corollary A.13, lemma A.15, and lemma A.16.

LEMMA A.18 (Type substitution on context bounding).

If Γ,α:κ`Σ¹ ξ and • ` τ : κ then {τ/α}Γ` {τ/α}Σ¹ {τ/α}ξ.

Proof. Straightforward induction on the derivation of Γ,α:κ ` Σ ¹ ξ, using

lemma A.15.

LEMMA A.19 (Type substitution on context well-formedness).

If `Γ,α:κ;Σ and • ` τ : κ then ` {τ/α}Γ; {τ/α}Σ.

Proof. By inversion of rule WF, lemma A.18 twice, and rule WF.

LEMMA A.20 (Type substitution on context extension).

If ` (Γ0,α:κ;Σ0),Σ′ Γ1,α:κ;Σ1 and • ` τ : κ then

` ({τ/α}Γ0; {τ/α}Σ0), {τ/α}Σ′ {τ/α}Γ1; {τ/α}Σ1.

Proof. Simple induction on the derivation of ` (Γ,α:κ;Σ),Σ1 Γ′,α:κ;Σ′ using

lemma A.15.

LEMMA A.21 (Type substitution on typing).

If Γ,α:κ;Σ. e : τ and • ` τ′ : κ then {τ′/α}Γ; {τ′/α}Σ. {τ′/α} e : {τ′/α}τ.

Proof. By induction on the height of the typing derivation:

Case
Γ,α:κ;Σ. e : τ′′ Γ,α:κ` τ′′ <:+ τ Γ,α:κ` τ : ξ

Γ,α:κ;Σ. e : τ
.

By the induction hypothesis,

(1) {τ′/α}Γ; {τ′/α}Σ. {τ′/α} e : {τ′/α}τ′′.

By lemma A.17 and lemma A.15,

278 APPENDIX A. PROOFS: A MODEL OF ALMS

(2) {τ′/α}Γ` {τ′/α}τ′′ <:+ {τ′/α}τ and

(3) {τ′/α}Γ` {τ′/α}τ : {τ′/α}ξ.

Then by rule T-SUBSUME,

(4) {τ′/α}Γ; {τ′/α}Σ. {τ′/α} e : {τ′/α}τ.

Case
Γ′1;Σ1 . e : τ `Γ1,Γ2,α:κ;Σ1,Σ2

Γ1,Γ2,α:κ;Σ1,Σ2 . e : τ
.

There are two possibilities, depending on whether α ∈ dom Γ′1:

Case Γ′1 =Γ1.

Then by weakening, Γ1,α:κ;Σ1 . e : τ. This derivation establishing

this judgment has the same height as the one for Γ1;Σ1 . e : τ, so

we can apply the induction hypothesis as in the next case.

Case Γ′1 =Γ1,α:κ.

Then by the induction hypothesis,

(1) {τ′/α}Γ1; {τ′/α}Σ1 . {τ′/α} e : {τ′/α}τ,

by lemma A.19,

(2) ` {τ′/α} (Γ1,Γ2); {τ′/α} (Σ1,Σ2),

and by weakening,

(3) {τ′/α} (Γ1,Γ2); {τ′/α} (Σ1,Σ2). {τ′/α} e : {τ′/α}τ.

Case
x:τ ∈Γ,α:κ,Σ Γ` τ : ξ `Γ,α:κ;Σ

Γ,α:κ;Σ. x : τ
.

Then x:τ ∈Γ,Σ, and thus

(1) (x:{τ′/α}τ) ∈ {τ′/α}Γ, {τ′/α}Σ.

By lemma A.15 and lemma A.19,

(2) {τ′/α}Γ` {τ′/α}τ : {τ′/α}ξ and

A.3. TYPE SOUNDNESS 279

(3) ` {τ′/α}Γ; {τ′/α}Σ.

Note that {τ′/α} x = x. Then by rule T-VAR,

(4) {τ′/α}Γ; {τ′/α}Σ. x : {τ′/α}τ.

Case
`:τ1 ∈Σ • ` τ1 : ξ `Γ,α:κ;Σ

Γ,α:κ;Σ. ` : ref τ1

.

Since τ1 types in the empty context, α is not free in τ1, so {τ′/α}τ1 = τ1.

Furthermore,

(1) {τ′/α}`= ` and

(2) `:τ1 ∈ {τ′/α}Σ.

By lemma A.19,

(3) ` {τ′/α}Γ; {τ′/α}Σ.

Then by rule T-PTR,

(4) {τ′/α}Γ; {τ′/α}Σ. {τ′/α}` : {τ′/α} (ref τ1).

Case

` (Γ,α:κ;Σ), x:τ1 Γ′;Σ′

Γ′;Σ′ . e2 : τ2 Γ,α:κ`Σ¹ ξ Γ,α:κ` τ1 : ξ1

Γ,α:κ;Σ.λx:τ1. e2 : τ1
ξ−−◦ τ2

.

Let Γ′′,α:κ = Γ′, and note that ` (Γ;Σ), x:τ1 Γ′′;Σ′. By the induction

hypothesis,

(1) {τ′/α}Γ′′; {τ′/α}Σ′ . {τ′/α} e2 : {τ′/α}τ2.

By lemma A.20, lemma A.18, and lemma A.15,

(2) ` ({τ′/α}Γ; {τ′/α}Σ), x:{τ′/α}τ1 {τ′/α}Γ′′; {τ′/α}Σ′,

(3) {τ′/α}Γ` {τ′/α}Σ¹ {τ′/α}ξ, and

280 APPENDIX A. PROOFS: A MODEL OF ALMS

(4) {τ′/α}Γ` {τ′/α}τ1 : {τ′/α}ξ1.

Then by rule T-ABS,

(5) {τ′/α}Γ; {τ′/α}Σ.λx:{τ′/α}τ1. {τ′/α} e2 : {τ′/α} (τ1
ξ−−◦ τ2).

Case
Γ,α:κ;Σ1 . e1 : τ1

ξ−−◦ τ2 Γ,α:κ;Σ2 . e2 : τ1

Γ,α:κ;Σ1,Σ2 . e1 e2 : τ2

.

By the induction hypothesis twice,

(1) {τ′/α}Γ; {τ′/α}Σ1 . {τ′/α} e1 : {τ′/α}τ1
{τ′/α}ξ−−−−−◦ {τ′/α}τ2 and

(2) {τ′/α}Γ; {τ′/α}Σ2 . {τ′/α} e2 : {τ′/α}τ1.

Then by rule T-APP,

(3) {τ′/α}Γ; {τ′/α} (Σ1,Σ2). {τ′/α} (e1 e2) : {τ′/α}τ2.

Case
Γ,α:κ,α1:κ1;Σ. e1 : τ1 Γ,α:κ` κ1

Γ,α:κ;Σ.Λα1:κ1.v1 :∀α1:κ1.τ1

.

By lemma A.11 and the induction hypothesis,

(1) {τ′/α}Γ` {τ′/α}κ1 and

(2) {τ′/α}Γ,α1:{τ′/α}κ1; {τ′/α}Σ. {τ′/α}v1 : {τ′/α}τ1,

and by rule T-TABS,

(3) {τ′/α}Γ; {τ′/α}Σ. {τ′/α} (Λα1:κ1.v1) : {τ′/α} (∀α1:κ1.τ1).

Case
Γ,α:κ;Σ. e1 :∀α1:κ1.τ2 Γ,α:κ` τ1 : κ1

Γ,α:κ;Σ. e1τ1 : {τ1/α1}τ2

.

By the induction hypothesis,

(1) {τ′/α}Γ; {τ′/α}Σ. {τ′/α} e1 :∀α1:{τ′/α}κ1. {τ′/α}τ2,

A.3. TYPE SOUNDNESS 281

and by lemma A.15,

(2) {τ′/α}Γ` {τ′/α}τ1 : {τ′/α}κ1.

Note that {{τ′/α}τ1/α1} {τ′/α}τ2 = {τ′/α} {τ1/α1}τ2. Then by rule T-TAPP,

(3) {τ′/α}Γ; {τ′/α}Σ. {τ′/α} (e1τ1) : {τ′/α} {τ1/α1}τ2.

Case
Γ,α:κ;Σ. e1 : τ U−−◦ τ
Γ,α:κ;Σ. fix e1 : τ

.

By the induction hypothesis,

(1) {τ′/α}Γ; {τ′/α}Σ. {τ′/α} e1 : {τ′/α}τ U−−◦ {τ′/α}τ.

Then by rule T-FIX,

(2) {τ′/α}Γ; {τ′/α}Σ. {τ′/α} (fix e1) : {τ′/α}τ.

Case
`Γ,α:κ;Σ

Γ,α:κ;Σ. 〈〉 : 1
.

By lemma A.19,

(1) ` {τ′/α}Γ; {τ′/α}Σ,

and by rule T-UNIT, {τ′/α}Γ; {τ′/α}Σ. 〈〉 : 1.

Case
Γ,α:κ;Σ. e1 : τ1 Γ,α:κ` τ2 : ξ

Γ,α:κ;Σ. inl e1 : τ1 ⊕τ2

.

By the induction hypothesis,

(1) {τ′/α}Γ; {τ′/α}Σ. {τ′/α} e1 : {τ′/α}τ1,

and by lemma A.15,

(2) {τ′/α}Γ` {τ′/α}τ2 : {τ′/α}ξ.

By rule T-INL,

282 APPENDIX A. PROOFS: A MODEL OF ALMS

(3) {τ′/α}Γ; {τ′/α}Σ. {τ′/α} (inl e1) : {τ′/α} (τ1 ⊕τ2).

Case
Γ,α:κ;Σ. e2 : τ2 Γ,α:κ` τ1 : ξ

Γ,α:κ;Σ. inr e2 : τ1 ⊕τ2

.

As in the previous case.

Case

Γ,α:κ;Σ1 . e′ : τ1 ⊕τ2

` (Γ,α:κ;Σ2), x1:τ1 Γ1;Σ21 Γ1;Σ21 . e1 : τ

` (Γ,α:κ;Σ2), x2:τ2 Γ2;Σ22 Γ2;Σ22 . e2 : τ

Γ,α:κ;Σ1,Σ2 . case e′ of inl x1 → e2; inr x2 → e2 : τ
.

Let Γ′1,α:κ=Γ1 and Γ′2,α:κ=Γ2. Then by the induction hypothesis,

(1) {τ′/α}Γ; {τ′/α}Σ1 . {τ′/α} e′ : {τ′/α}τ1 ⊕ {τ′/α}τ2,

(2) {τ′/α}Γ′1; {τ′/α}Σ21 . {τ′/α} e1 : {τ′/α}τ, and

(3) {τ′/α}Γ′2; {τ′/α}Σ22 . {τ′/α} e2 : {τ′/α}τ.

By lemma A.20,

(4) ` ({τ′/α}Γ; {τ′/α}Σ2), x1:{τ′/α}τ1 {τ′/α}Γ′1; {τ′/α}Σ21 and

(5) ` ({τ′/α}Γ; {τ′/α}Σ2), x2:{τ′/α}τ2 {τ′/α}Γ′1; {τ′/α}Σ22.

Then by rule T-CASE,

(6) {τ′/α}Γ; {τ′/α} (Σ1,Σ2). {τ′/α} (case e′ of inl x1 → e2; inr x2 → e2) :

{τ′/α}τ.

Case
Γ,α:κ;Σ1 . v1 : τ1 Γ,α:κ;Σ2 . v2 : τ2

Γ,α:κ;Σ1,Σ2 . 〈v1,v2〉 : τ1 ⊗τ2

.

By the induction hypothesis twice and rule T-PAIR.

A.3. TYPE SOUNDNESS 283

Case

Γ,α:κ;Σ1 . e′ : τ1 ⊗τ2

` (Γ,α:κ;Σ2), x1:τ1, x2:τ2 Γ′;Σ′ Γ′;Σ′ . e1 : τ

Γ,α:κ;Σ1,Σ2 . let〈x1, x2〉 = e′ in e1 : τ
.

Let Γ′′,α:κ=Γ′′. Then by the induction hypothesis twice and lemma A.20,

(1) {τ′/α}Γ; {τ′/α}Σ1 . {τ′/α} e′ : {τ′/α}τ1 ⊗ {τ′/α}τ2,

(2) {τ′/α}Γ′′; {τ′/α}Σ′ . {τ′/α} e1 : {τ′/α}τ, and

(3) ` ({τ′/α}Γ; {τ′/α}Σ2), x1:{τ′/α}τ1, x2:{τ′/α}τ2 {τ′/α}Γ′′; {τ′/α}Σ′

Then by rule T-UNPAIR,

(4) {τ′/α}Γ; {τ′/α} (Σ1,Σ2). {τ′/α} (let〈x1, x2〉 = e′ in e1) : {τ′/α}τ.

Case
Γ,α:κ;Σ. e1 : τ1

Γ,α:κ;Σ. new e1 : ref τ1

.

By the induction hypothesis and rule T-NEW.

Case
Γ,α:κ;Σ1 . e1 : ref τ1 Γ,α:κ;Σ2 . e2 : τ2

Γ,α:κ;Σ1,Σ2 . swap e1 e2 : ref τ2 ⊗τ1

.

By the induction hypothesis twice and rule T-SWAP.

Case
Γ,α:κ;Σ. e1 : ref τ1

Γ,α:κ;Σ. delete e1 : 1
.

By the induction hypothesis and rule T-DELETE.

A.3.1.1 Properties of Contexts

LEMMA A.22 (Contexts close terms).

If Γ;Σ. e : τ and x ∈FV(e) then there exists some τ′ such that x:τ′ ∈Γ,Σ.

Proof. By inspection of the typing rules, we see that x can only be typed if

it occurs in the context, and furthermore the typing rules must type every

subterm of e.

284 APPENDIX A. PROOFS: A MODEL OF ALMS

LEMMA A.23 (Coalescing of context extension).

` (Γ0;Σ0),Σ′
1 Γ1;Σ1 and ` (Γ1;Σ1),Σ′

2 Γ2;Σ2 iff ` (Γ0;Σ0),Σ′
1,Σ′

2 Γ2;Σ2.

Proof. By induction on the structure of Σ′
1:

Case •.

Then

(1) ` (Γ0;Σ0),• Γ0;Σ0,

(2) ` (Γ0;Σ0),Σ′
2 Γ2;Σ2, and

(3) ` (Γ0;Σ0),•,Σ′
2 Γ2;Σ2.

Case α:κ,Σ′′
1.

There is no rule for adding α:κ, so both sides of the bi-implication are

false.

Case `:τ,Σ′′
1.

There is no rule for adding `:τ, so both sides of the bi-implication are

false.

Case x:τ,Σ′′
1.

Note that Γ0, Γ1 and Γ2 all support the same type- and kind-level

judgments, by observation A.1.

If there is no ξ such that Γ0 ` τ : ξ, there is no rule for adding x:τ, so both

sides of the bi-implication are false.

If there exists some ξ such that Γ0 ` τ : ξ, then by inversion of rule X-

CONSA twice, it suffices to show that ` (Γ0;Σ0, x:τ),Σ′′
1 Γ1;Σ1 and

` (Γ1;Σ1),Σ′
2 Γ2;Σ2 if and only if ` (Γ0;Σ0, x:τ),Σ′′

1,Σ′
2 Γ2;Σ2. This

holds by the induction hypothesis.

If Γ0 ` τ : U, then by inversion of rule X-CONSU twice, it suffices to

show that ` (Γ0, x:τ;Σ0),Σ′′
1 Γ1;Σ1 and ` (Γ1;Σ1),Σ′

2 Γ2;Σ2 if and

only if ` (Γ0, x:τ;Σ0),Σ′′
1,Σ′

2 Γ2;Σ2. This too holds by the induction

hypothesis.

A.3. TYPE SOUNDNESS 285

A.3.1.2 Qualifier Soundness

LEMMA A.24 (Variance coherence).

Suppose that Γ,β:〈β〉 ` τ : κ and Γ,β:〈β〉 `β ∈ τ l v. If β ∈FTV(κ) then +v v.

Proof. By induction on the kinding derivation:

Case
α:κ ∈Γ,β:〈β〉 `Γ,β:〈β〉

Γ,β:〈β〉 `α : κ
.

If α=β then v=+.

If α 6=β then α:κ ∈Γ. By inversion of rule WF-CONSAREC, `Γ, and thus

by lemma A.4, Γ` κ . Since β ∉ dom Γ, we know that β ∉FTV(κ), which

contradicts the lemma’s assumptions.

Case
Γ,β:〈β〉,α:〈α〉 ` τ′ : κ′ Γ,β:〈β〉,α:〈α〉 `α ∈ τ′ l v′

Γ,β:〈β〉 `λα.τ′ :Παv′
.κ′

.

By inversion of rule V-ABS,

(1) Γ,β:〈β〉,α:〈α〉 `β ∈ τ′ l v.

If β ∈FTV(Παv′
.κ′) then β ∈FTV(κ′). Then by the induction hypothesis,

+v v.

Case
Γ,β:〈β〉 ` τ1 :Παv3 .κ3 Γ,β:〈β〉 ` τ2 : ξ

Γ,β:〈β〉 ` τ1τ2 : {ξ/α}κ3

.

By inversion of rule V-APP, there exist some v1 and v2 such that

(1) Γ,β:〈β〉 `β ∈ τ1 l v1,

(2) Γ,β:〈β〉 `β ∈ τ2 l v2,and

(3) v= v1 tv2v3.

If β ∈ FTV({ξ/α}κ3) then either β ∈ FTV(κ3) or both β ∈ FTV(ξ) and α ∈
FTV(κ3):

• If β ∈ FTV(κ3), then β ∈ FTV(Παv3 .κ3). Then by the induction

hypothesis, +v v1, so +v v1 tv2v3 as well.

286 APPENDIX A. PROOFS: A MODEL OF ALMS

• If β ∈ FTV(ξ) and α ∈ FTV(κ3), then by the induction hypothesis,

+ v v2, and because Παv3 .κ3 is well-formed, + v v3. Then + v
v1 tv2v3.

Case
Γ,β:〈β〉,α:κ′ ` τ′ : ξ Γ,β:〈β〉 ` κ′

Γ,β:〈β〉 `∀α:κ′.τ′ : {A/α}ξ
.

By inversion of rule V-ALL,

(1) Γ,β:〈β〉,α:κ′ `β ∈ τ′ l v1 and

(2) v2 =
± β ∈FTV(κ′)

� β 6∈FTV(κ′)

where v = v1 t v2. If β ∈ FTV({A/α}ξ) then β ∈ FTV(ξ). Then by the

induction hypothesis +v v1, which means that +v v1 tv2.

Case
Γ,β:〈β〉 ` τ1 : ξ1 Γ,β:〈β〉 ` τ2 : ξ2 Γ,β:〈β〉 ` ξ

Γ,β:〈β〉 ` τ1
ξ−−◦ τ2 : ξ

.

By inversion of rule V-ARR, there exist some v1, v2, and v3 such that

(1) Γ,β:〈β〉 `β ∈ τ1 l v1,

(2) Γ,β:〈β〉 `β ∈ τ2 l v2,

(3) v3 =
+ β ∈FTV(ξ)

� β 6∈FTV(ξ)
,and

(4) v=−v1 tv2 tv3.

If β ∈FTV(ξ) then v3 =+, so +<:−v1 tv2 tv3.

Case
`Γ,β:〈β〉

Γ,β:〈β〉 ` χ : ξ
.

β ∉FTV(ξ).

LEMMA A.25 (Valuations and substitution).

For any valuation V , V [α 7→ V (ξ′)](ξ)= V ({ξ′/α}ξ).

Proof. By induction on ξ, with one non-trivial case:

A.3. TYPE SOUNDNESS 287

Γ` κ1/ κ2 (coarse subkinding)

CKSUB-QUAL

Γ |= ξ1 v ξ2

Γ` ξ1/ ξ2

CKSUB-OPER
Γ,α:〈α〉 ` κ1/ κ2

Γ`Παv1 .κ1/Πα
v2 .κ2

Figure A.1: Coarse subkinding relation for definition A.26

Case β.

If β=α, then V [α 7→ V (ξ′)](〈β〉)= V (ξ′)= V ({ξ′/α}〈β〉).
If β 6=α, then V [α 7→ V (ξ′)](〈β〉)= V (〈β〉)= V ({ξ′/α}〈β〉).

For the next two lemmas, it will be useful to have the following definition:

DEFINITION A.26 (Coarse subkinding).

The coarse subkinding relation, defined in figure A.1, is an extension of the
subkinding relation that is insensitive to variance. It should be clear that
the new relation is a preorder. Note that for well-formed qualifiers, coarse
subkinding corresponds to the usual subkinding relation.

LEMMA A.27 (Coarse subkinding substitution).

If Γ` ξ1/ ξ2 and Γ,α:〈α〉 ` κ1/ κ2 then Γ` {ξ1/α}κ1/ {ξ2/α}κ2.

Proof. By induction on the derivation of Γ,α:〈α〉 ` κ1/ κ2:

Case
Γ,α:〈α〉 |= ξ′1 v ξ′2

Γ,α:〈α〉 ` ξ′1/ ξ′2
.

Let V be an arbitrary valuation consistent with Γ. Then

(1) V (ξ1)v V (ξ2).

Let V1 = V [α 7→ V (ξ1)]. By reflexivity, V1(〈α〉)v V1(〈α〉), so V1 is consistent

with Γ,α:〈α〉, which means that

(2) V1(ξ′1)v V1(ξ′2).

288 APPENDIX A. PROOFS: A MODEL OF ALMS

Let V2 = V [α 7→ V (ξ2)]. Because V (ξ1) v V (ξ2), and by induction on the

structure of ξ′2, this means that

(3) V1(ξ′2)v V2(ξ′2),

and by transitivity,

(4) V1(ξ′1)v V2(ξ′2).

Then by lemma A.25,

(5) V1(ξ′1)= V ({ξ1/α}ξ′1) and

(6) V2(ξ′2)= V ({ξ2/α}ξ′2).

Thus,

(7) V ({ξ1/α}ξ′1)v V ({ξ2/α}ξ′2),

and since V is an arbitrary valuation consistent with Γ,

(8) Γ` {ξ1/α}ξ′1/ {ξ2/α}ξ′2.

Case
Γ,α:〈α〉,β:〈β〉 ` κ′1/ κ′2

Γ,α:〈α〉 `Πβv1 .κ′1/Πβ
v2 .κ′2

.

By the induction hypothesis,

(1) Γ,β:〈β〉 ` {ξ1/α}κ′1/ {ξ2/α}κ′2.

Then by rule CKSUB-OPER.

LEMMA 5.4 (Monotonicity of kinding, restated from p. 119).

If Γ` τ1 <:+ τ2 where Γ` τ1 : ξ1 and Γ` τ2 : ξ2, then Γ` ξ1 <: ξ2.

Proof. Generalize the induction hypothesis as follows:

If Γ` τ1 <:+ τ2, Γ` τ1 : κ1, and Γ` τ2 : κ2, then Γ` κ1/ κ2.

A.3. TYPE SOUNDNESS 289

Note that for well-formed qualifier expressions, subkinding and coarse sub-

kinding are identical, which means that the generalized induction hypothesis

implies the original lemma.

Now by induction on the subtyping derivation:

Case
τ1 τ2 Γ` τ1 : κ Γ` τ2 : κ

Γ` τ1 <:+ τ2

.

By lemma A.7, κ2 = κ= κ1; then by reflexivity of coarse subkinding.

Case
Γ` τ1 <:+ τ3 Γ` τ3 <:+ τ2 Γ` τ3 : κ3

Γ` τ1 <:+ τ2

.

By the induction hypothesis twice and transitivity.

Case
Γ` τ2 <:+ τ1

Γ` τ1 <:− τ2

.

Vacuous.

Case
Γ,β:〈β〉 ` τ′1 <:+ τ′2

Γ`λβ.τ′1 <:+ λβ.τ′2
.

By inversion of rule K-ABS, κ1 =Πβv1 .κ′1 for some κ′1 and v1 such that

(1) Γ,β:〈β〉 `β ∈ τ′1 l v1 and

(2) Γ,β:〈β〉 ` τ′1 : κ′1.

Likewise, where κ2 =Πβv2 .κ′2 such that

(3) Γ,β:〈β〉 `β ∈ τ′2 l v2 and

(4) Γ,β:〈β〉 ` τ′2 : κ′2.

By the induction hypothesis,

(5) Γ,β:〈β〉 ` κ′1/ κ′2,

which is sufficient to show that

(6) Γ`Πβv1 .κ′1/Πβ
v2 .κ′2.

290 APPENDIX A. PROOFS: A MODEL OF ALMS

Case

Γ` τ11 :Πβv1 .κ′1 Γ` τ21 :Πβv2 .κ′2
Γ` τ11 <:+ τ21 Γ` τ12 <:v1tv2 τ22

Γ` τ11τ12 <:+ τ21τ22

.

By inversion of rule K-APP twice, there are some ξ1 and ξ2 such that

(1) Γ` τ12 : ξ1,

(2) Γ` τ22 : ξ2,

(3) κ1 = {ξ1/β}κ′1,and

(4) κ2 = {ξ2/β}κ′2.

By the induction hypothesis,

(5) Γ`Πβv1 .κ′1/Πβ
v2 .κ′2,

which means that

(6) Γ,β:〈β〉 ` κ′1/ κ′2.

Now by cases on v1 tv2:

Case +.

That is, Γ ` τ12 <:+ τ22. By the induction hypothesis, Γ ` ξ1 / ξ2,

and thus by lemma A.27, Γ` {ξ1/β}κ′1/ {ξ2/β}κ′2.

Case −.

By lemma A.4, Γ ` Πβv1 .κ′1 and Γ ` Πβv2 .κ′2 . By inversion of

rule OK-OPER, this means that if β ∈ FTV(κ′1) then + v v1, and

likewise, if β ∈ FTV(κ′2) then + v v2. Since v1 t v2 = −, neither

+v v1 nor +v v2, which means that β ∉ FTV(κ′1) and β ∉ FTV(κ′2).

Thus {ξ1/β}κ′1 = κ′1 and {ξ2/β}κ′2 = κ′2. By (6), Γ,β:〈β〉 ` {ξ1/β}κ′1 /
{ξ2/β}κ′2, and since every valuation consistent with Γ is also consis-

tent with Γ,β:〈β〉, we have that Γ` {ξ1/β}κ′1/ {ξ2/β}κ′2.

A.3. TYPE SOUNDNESS 291

Case �.

As in the previous case, because v1 t v2 = � means that neither

+v v1 nor +v v2.

Case ±.

That is, Γ ` τ12 <:± τ22. By a simple induction on the subtyping

derivation, this means that τ12 τ22, Γ` τ12 : κ, and Γ` τ22 : κ. By

rule TSUB-EQ, Γ` τ12 <:+ τ22, so as in the v1 tv2 =+ case above.

Case
Γ,β:κ′ ` τ′1 <:+ τ′2

Γ`∀β:κ′.τ′1 <:+ ∀β:κ′.τ′2
.

By inversion of rule K-ALL twice and the induction hypothesis.

Case
Γ` τ11 <:− τ21 Γ` τ12 <:+ τ22 Γ` ξ1 <: ξ2

Γ` τ11
ξ1−−◦ τ12 <:+ τ21

ξ2−−◦ τ22

.

By the premise that Γ` ξ1 <: ξ2.

LEMMA A.28 (Location coverage).

If Γ;Σ. e : τ then FL(e)⊆ dom Σ.

Proof. By induction on the typing derivation.

LEMMA 5.5 (Kinding finds locations, restated from p. 120).

Suppose that Γ;Σ. v : τ and Γ` τ : ξ. If any locations appear in value v then
Γ`A<: ξ. Contrapositively, if ξ=U then FL(v)=;.

Proof. Assume that FL(v) 6= ;. By induction on the typing derivation Γ;Σ. v :

τ:

Case
Γ;Σ. v : τ′ Γ` τ′ <:+ τ Γ` τ : ξ

Γ;Σ. v : τ
.

By lemma A.4, there is some ξ′ such that Γ ` τ′ : ξ′, and by the induc-

tion hypothesis, Γ ` A <: ξ′. By lemma 5.4, Γ ` ξ′ <: ξ, and then by

transitivity.

292 APPENDIX A. PROOFS: A MODEL OF ALMS

Case
Γ;Σ. v : τ `Γ,Γ′;Σ,Σ′

Γ,Γ′;Σ,Σ′ . v : τ
.

By the induction hypothesis.

Case
`:τ ∈Σ • ` τ : ξ `Γ;Σ

Γ;Σ. ` : ref τ
.

Then Γ` ref τ : A.

Case
` (Γ;Σ), x:τ1 Γ′;Σ′ Γ′;Σ′ . e : τ2 Γ`Σ¹ ξ Γ` τ1 : ξ1

Γ;Σ.λx:τ1. e : τ1
ξ−−◦ τ2

.

By lemma A.28, FL(λx:τ1. e) ⊆ dom Σ, and since FL(λx:τ1. e) 6= ;, we

know that dom Σ must contain some locations. Then by rule B-CONSL,

ξ=A.

Case
Γ,α:κ;Σ. v′ : τ Γ` κ
Γ;Σ.Λα:κ.v′ :∀α:κ.τ

.

By the induction hypothesis Γ` τ : A, and ξ= {A/α}A=A.

Case
`Γ;Σ

Γ;Σ. 〈〉 : 1
.

Vacuous, as FL(〈〉)=;.

Case
Γ;Σ. v′ : τ1 Γ` τ2 : ξ2

Γ;Σ. inl v′ : τ1 ⊕τ2

.

By lemma A.4, there is some ξ1 such that Γ` τ1 : ξ1. If FL(inl v′) 6= ; then

FL(v′) 6= ;. Then by the induction hypothesis Γ`A<: ξ1. By rule K-SUM

and rule K-APP twice, Γ` τ1⊕τ2 : ξ1tξ2. Then Γ` ξ1 <: ξ1tξ2, and by

transitivity.

Case
Γ;Σ. v′ : τ2 Γ` τ1 : ξ

Γ;Σ. inr v′ : τ1 ⊕τ2

.

As in the previous case.

A.3. TYPE SOUNDNESS 293

Case
Γ;Σ1 . v1 : τ1 Γ;Σ2 . v2 : τ2

Γ;Σ1,Σ2 . 〈v1,v2〉 : τ1 ⊗τ2

.

By lemma A.4, there are some ξ1 and ξ2 such that Γ` τ1 : ξ1 and Γ` τ2 :

ξ2.

If FL(〈v1,v2〉) 6= ; then FL(v1) 6= ; or FL(v2) 6= ;:

Case FL(v1) 6= ;.

By the induction hypothesis, Γ ` A <: ξ1. Then by rule K-PROD,

rule K-APP twice, and transitivity.

Case FL(v2) 6= ;.

By symmetry.

Otherwise.

The remaining cases do not apply to values.

A.3.1.3 Preservation

LEMMA 5.6 (Substitution, restated from p. 120).

If

• ` (Γ;Σ1), x:τ′ Γ′;Σ′
1,

• Γ′;Σ′
1 . e : τ, and

• •;Σ2 . v : τ′, where

• the domain of Σ2 contains only locations,

then Γ;Σ1,Σ2 . {v/x} e : τ.

Proof. In several cases, we will need to know that `Γ;Σ1,Σ2, typically in order

to use rule T-WEAK. By lemma A.4, we have `Γ′;Σ′
1 and ` •;Σ2. By lemma A.4

again, `Γ;Σ1; by weakening, `Γ;Σ2. Then by lemma A.3, `Γ;Σ1,Σ2.

Now by induction on the derivation of Γ′;Σ′
1 . e : τ:

294 APPENDIX A. PROOFS: A MODEL OF ALMS

Case
Γ′;Σ′

1 . e : τ′′ Γ′ ` τ′′ <:+ τ Γ′ ` τ : ξ′

Γ′;Σ′
1 . e : τ

.

By the induction hypothesis,

(1) Γ;Σ1,Σ2 . {v/x} e : τ′′.

By observation A.1,

(2) Γ` τ′′ <:+ τ and

(3) Γ` τ : ξ′.

Then by rule T-SUBSUME.

Case
Γ′1;Σ′

11 . e : τ `Γ′1,Γ′2;Σ′
11,Σ′

12

Γ′1,Γ′2;Σ′
11,Σ′

12 . e : τ
.

We do not know whether x:τ′ is in Γ′1, Γ′2, Σ′
11, or Σ′

12:

• If x:τ′ ∈Γ′1,Σ′
11, then there exist some Γ1 and Σ11 such that

(1) ` (Γ1;Σ11), x:τ′ Γ′1;Σ′
11 and

(2) ` (Γ1,Γ′2;Σ11,Σ′
12), x:τ′ Γ′1,Γ′2;Σ′

11,Σ′
12.

Then by the induction hypothesis,

(3) Γ1;Σ11,Σ2 . {v/x} e : τ,

and by rule T-WEAK,

(4) Γ1,Γ2;Σ11,Σ12,Σ2 . {v/x} e : τ.

• If x:τ′ ∈ Γ′2,Σ′
12, then by lemma A.22, x 6∈ FV(e). This means that

{v/x} e = e, so

(5) Γ′1;Σ′
11 . {v/x} e : τ.

Then by rule T-WEAK.

Case
y:τ ∈Γ′,Σ′

1 Γ′ ` τ : ξ′ `Γ′;Σ′
1

Γ′;Σ′
1 . y : τ

.

If x = y, then {v/x} y= v and τ= τ′. Thus,

(1) Γ;Σ2 . {v/x} y : τ.

A.3. TYPE SOUNDNESS 295

Then by rule T-WEAK.

If x 6= y, then {v/x} y= y. Furthermore, this means that y:τ ∈Γ,Σ1, since

the only difference between Γ,Σ1 and Γ′,Σ′
1 is x:τ′. Then by rule T-VAR,

(2) Γ;Σ1 . {v/x} y : τ.

Then by rule T-WEAK.

Case
`:τ1 ∈Σ′

1 • ` τ1 : ξ1 `Γ′;Σ′
1

Γ′;Σ′
1 . ` : ref τ1

.

Since the only difference between Σ1 and Σ′
1 may be x:τ′, we know that

`:τ1 ∈Σ1. Furthermore, {v/x}`= `, so by rule T-PTR,

(1) •;Σ1 . ` : ref τ1.

Then by rule T-WEAK.

Case

` (Γ′;Σ′
1), y:τ1 Γ′′;Σ′′

1

Γ′′;Σ′′
1 . e2 : τ2 Γ′ `Σ′

1 ¹ ξ′1 Γ′ ` τ1 : ξ1

Γ′;Σ′
1 .λy:τ1. e2 : τ1

ξ′1−−◦ τ2

.

Note that Γ, Γ′, and Γ′′ differ only by variable bindings, so by observa-

tion A.1, we can use Γ in suitable judgments throughout.

By lemma A.4, there exists some ξ′ such that Γ` τ′ : ξ′. If x:τ′ ∈Σ′
1, then

by inversion of rule X-CONSA, there exists some ξ such that Γ`Σ1 ¹ ξ
and ξ′1 = ξtξ′. Otherwise, Σ1 =Σ′

1, so let ξ= ξ′1. In both cases,

(1) Γ` ξ<: ξ′1 and

(2) Γ`Σ1 ¹ ξ.

Let us consider whether there exists some ` ∈FL(v):

• If so, then by lemma 5.5, ξ′ =A. In order to type v, it must be that

` ∈ dom Σ2, which means that Γ ` Σ2 ¹ A. Let Σ′
2 = Σ2 and ξ′2 = A.

Furthermore, since x:τ′ ∈Σ′
1, by lemma A.9, Γ`Σ′

1 ¹A. Then ξ′1 =A,

so Γ` ξtξ′2 <: ξ′1.

296 APPENDIX A. PROOFS: A MODEL OF ALMS

• If not, then since Σ2 contains only locations, •;•. v : τ′. Let Σ′
2 = •

and ξ′2 =U. Then ξtξ′2 = ξ, so Γ` ξtξ′2 <: ξ′1.

In either case,

(3) Γ` ξtξ′2 <: ξ′1.

Since Γ`Σ1 ¹ ξ and Γ`Σ′
2 ¹ ξ′2, we have by lemma A.9 that

(4) Γ`Σ1,Σ′
2 ¹ ξtξ′2.

By lemma A.23,

(5) ` (Γ;Σ1), x:τ′, y:τ1 Γ′′;Σ′′
1,

and since we identify environments up to permutation,

(6) ` (Γ;Σ1), y:τ1, x:τ′ Γ′′;Σ′′
1.

By the same lemma, let Γ′′′ and Σ′′′
1 be such that

(7) ` (Γ;Σ1), y:τ1 Γ′′′;Σ′′′
1 and

(8) ` (Γ′′′;Σ′′′
1), x:τ′ Γ′′;Σ′′

1.

By the induction hypothesis,

(9) Γ′′′;Σ′′′
1 ,Σ′

2 . {v/x} e2 : τ2.

Note that by sorting τ1 the same way as above, we get

(10) ` (Γ;Σ1,Σ′
2), y:τ1 Γ′′′;Σ′′′

1 ,Σ′
2,

and by observation A.1,

(11) Γ` τ1 : ξ1.

Then by rule T-ABS and (4, 9–11),

A.3. TYPE SOUNDNESS 297

(12) Γ;Σ1,Σ′
2 .λy:τ1. e1 : τ1

ξtξ′2−−−−◦ τ2.

By rule K-ARR and (3),

(13) Γ` τ1
ξtξ′2−−−−◦ τ2 <:+ τ1

ξ′1−−◦ τ2.

Noting that Σ′
2 ⊆Σ2, by rule T-WEAK and rule T-SUBSUME,

(14) Γ;Σ1,Σ2 .λy:τ1. e1 : τ1
ξ′1−−◦ τ2.

Case
Γ′;Σ′

11 . e1 : τ1
ξ−−◦ τ Γ′;Σ′

12 . e2 : τ1

Γ′;Σ′
11,Σ′

12 . e1 e2 : τ
.

Let Σ11 and Σ12 be Σ′
11 and Σ′

12, respectively, but without x:τ′. We know

that x:τ′ is in one of Γ′, Σ′
11, or Σ′

12:

Case x:τ′ ∈Γ′.
Then

(1) ` (Γ;Σ11), x:τ′ Γ′;Σ11 and

(2) ` (Γ;Σ12), x:τ′ Γ′;Σ12.

Furthermore, by lemma A.4 and inversion of rule WF,

(3) Γ′ `Γ′ ¹U.

By lemma A.9, this means that

(4) Γ′ ` τ′ : U.

By lemma 5.5, FL(v) = ∅. Since we know that Σ2 contains only

locations, none of it is relevant to v, so

(5) •;•. v : τ′.

Then by the induction hypothesis twice,

(6) Γ;Σ11 . {v/x} e1 : τ1
ξ−−◦ τ and

(7) Γ;Σ12 . {v/x} e2 : τ1.

Then by rule T-APP and rule T-WEAK.

298 APPENDIX A. PROOFS: A MODEL OF ALMS

Case x:τ′ ∈Σ′
11.

Then

(1) ` (Γ;Σ11), x:τ′ Γ;Σ′
11.

Then by the induction hypothesis,

(2) Γ;Σ11,Σ2 . {v/x} e1 : τ1
ξ−−◦ τ2.

Furthermore, since x 6∈ dom(Γ′,Σ′
12), we know that x 6∈FV(e2), so

(3) Σ12 =Σ′
12,

(4) Γ=Γ′,and

(5) {v/x} e2 = e2.

Substituting those equalities into the appropriate premise, we get

(6) Γ;Σ12 . {v/x} e2 : τ1.

Then by rule T-APP.

Case x:τ′ ∈Σ′
12.

Then by symmetry with the previous case.

Case
Γ′,α:κ;Σ′

1 . v1 : τ1

Γ′;Σ′
1 .Λα:κ.v1 :∀α:κ.τ1

.

Since ` (Γ;Σ1), x:τ′ Γ′;Σ′
1, we know that ` (Γ,α:κ;Σ1), x:τ′ Γ′,α:κ;Σ′

1.

Then by the induction hypothesis,

(1) Γ,α:κ;Σ1,Σ2 . {v/x}v1 : τ1.

Then by rule T-TABS.

Case
Γ′;Σ′

1 . e1 :∀α:κ1.τ2 Γ′ ` τ1 : κ1

Γ′;Σ′
1 . e1τ1 : {τ1/α}τ2

.

By the induction hypothesis and observation A.1,

(1) Γ;Σ1,Σ2 . {v/x} e1 :∀α:κ1.τ2 and

(2) Γ` τ1 : κ1.

Then by rule T-TAPP, noting that {v/x} (e1τ1)= ({v/x} e1)τ1.

A.3. TYPE SOUNDNESS 299

Case
Γ′;Σ′

1 . e1 : τ U−−◦ τ
Γ′;Σ′

1 . fix e1 : τ
.

By the induction hypothesis and rule T-FIX.

Case
`Γ′;Σ′

1

Γ′;Σ′
1 . 〈〉 : 1

.

By lemma A.19 and rule T-UNIT.

Case
Γ′;Σ′

1 . e1 : τ1 Γ′ ` τ2 : ξ2

Γ′;Σ′
1 . inl e1 : τ1 ⊕τ2

.

By the induction hypothesis, observation A.1, and rule T-INL.

Case
Γ′;Σ′

1 . e2 : τ2 Γ′ ` τ1 : ξ1

Γ′;Σ′
1 . inr e2 : τ1 ⊕τ2

.

By the induction hypothesis, observation A.1, and rule T-INR.

Case

Γ′;Σ′
11 . e′ : τ1 ⊕τ2

` (Γ′;Σ′
12), x1:τ1 Γ′1;Σ′

121 Γ′1;Σ′
121 . e1 : τ

` (Γ′;Σ′
12), x2:τ2 Γ′2;Σ′

122 Γ′2;Σ′
122 . e2 : τ

Γ′;Σ′
11,Σ′

12 . case e′ of inl x1 → e2; inr x2 → e2 : τ
.

Let Σ11 and Σ12 be Σ′
11 and Σ′

12, respectively, but without x:τ′. By

lemma A.23,

(1) ` (Γ;Σ12), x:τ′, x1:τ1 Γ′1;Σ′
121 and

(2) ` (Γ;Σ12), x:τ′, x2:τ2 Γ′2;Σ′
122.

Then by the same lemma, let Γ′′1, Γ′′2, Σ′′
121, and Σ′′

122 be such that

(3) ` (Γ;Σ12), x1:τ1 Γ′′1;Σ′′
121,

(4) ` (Γ;Σ12), x2:τ2 Γ′′2;Σ′′
122,

(5) ` (Γ′′1;Σ′′
121), x:τ′ Γ′1;Σ′

121,and

(6) ` (Γ′′2;Σ′′
122), x:τ′ Γ′2;Σ′

122.

We know that x:τ′ is in one of Γ′, Σ′
11, or Σ′

12:

300 APPENDIX A. PROOFS: A MODEL OF ALMS

Case x:τ′ ∈Γ′.
By lemma A.4 and inversion of rule WF,

(1) Γ′ `Γ′ ¹U.

Then by lemma A.9, this means that

(2) Γ′ ` τ′ : U.

By lemma 5.5, FL(v) = ∅. Since we know that Σ2 contains only

locations,

(3) •;•. v : τ′.

By weakening,

(4) Γ′′1;•. v : τ′ and

(5) Γ′′2;•. v : τ′.

Then by the induction hypothesis three times,

(6) Γ;Σ11,•. {v/x} e : τ1 ⊕τ2,

(7) Γ′′1;Σ′′
121,•. {v/x} e1 : τ,and

(8) Γ′′2;Σ′′
122,•. {v/x} e2 : τ.

By rule T-APP,

(9) Γ;Σ11,Σ12 . {v/x} (case e of inl x1 → e1; inr x2 → e2) : τ.

Then by rule T-WEAK.

Case x:τ′ ∈Σ′
11.

Then

(1) ` (Γ;Σ11), x:τ′ Γ;Σ′
11,

so by the induction hypothesis,

(2) Γ;Σ11,Σ2 . {v/x} e′ : τ1 ⊕τ2.

Furthermore,

• Γ=Γ′, • Γ′1 =Γ′′1, • Γ′2 =Γ′′2,

• Σ12 =Σ′
12, • Σ′

121 =Σ′′
121, and • Σ′

122 =Σ′′
122.

A.3. TYPE SOUNDNESS 301

Since x:τ ∈Σ′
11, x 6∈ dom(Γ′,Σ′

12), which means that x 6∈ dom(Γ′1,Σ′
121)

and x 6∈ dom(Γ′2,Σ′
122). This means that x 6∈ FV(e1) and x 6∈ FV(e2).

Thus, {v/x} e1 = e1 and {v/x} e2 = e2, which gives us

(3) Γ′′1;Σ′′
121 . {v/x} e1 : τ and

(4) Γ′′2;Σ′′
122 . {v/x} e2 : τ.

Then by rule T-CASE.

Case x:τ′ ∈Σ′
12.

This means that Γ′ =Γ and Σ′
11 =Σ11. Furthermore, x 6∈ dom(Γ′,Σ′

11),

which means that x 6∈FV(e′). Thus, we know that {v/x} e′ = e′, so

(1) Γ;Σ11 . {v/x} e′ : τ1 ⊕τ2.

From our assumptions, we have •;Σ2 . v : τ′. By the induction

hypothesis twice,

(2) Γ′′1;Σ′′
121,Σ2 . {v/x} e1 : τ and

(3) Γ′′2;Σ′′
122,Σ2 . {v/x} e2 : τ.

Note that

(4) ` (Γ;Σ12,Σ2), x1:τ1 Γ′′1;Σ′′
121,Σ2 and

(5) ` (Γ;Σ12,Σ2), x2:τ2 Γ′′2;Σ′′
122,Σ2.

Then by rule T-CASE.

Case
Γ′;Σ′

11 . v1 : τ1 Γ′;Σ′
12 . v2 : τ2

Γ′;Σ′
11,Σ′

12 . 〈v1,v2〉 : τ1 ⊗τ2

.

As in the T-APP case.

Case

Γ′;Σ′
11 . e′ : τ1 ⊗τ2

` (Γ′;Σ′
12), x1:τ1, x2:τ2 Γ′′;Σ′′

12 Γ′′;Σ′′
12 . e1 : τ

Γ′;Σ′
11,Σ′

12 . let〈x1, x2〉 = e′ in e1 : τ
.

As in the T-CASE case.

Case
Γ;Σ. e1 : τ1

Γ;Σ. new e1 : ref τ1

.

By the induction hypothesis and rule T-NEW.

302 APPENDIX A. PROOFS: A MODEL OF ALMS

Case
Γ;Σ1 . e1 : ref τ1 Γ;Σ2 . e2 : τ2

Γ;Σ1,Σ2 . swap e1 e2 : ref τ2 ⊗τ1

.

As in the T-APP case.

Case
Γ;Σ. e1 : ref τ1

Γ;Σ. delete e1 : 1
.

By the induction hypothesis and rule T-DELETE.

LEMMA A.29 (Replacement).

If •;Σ.E[e] : τ then there exist some contexts Σ1 and Σ2 and some type τ′ such
that

• •;Σ1 . e : τ′ and

• •;Σ′
1,Σ2 .E[e′] : τ for any e′ such that •;Σ′

1 . e′ : τ′.

Proof. By induction on the structure of E:

Case [].

Let Σ1 =Σ and Σ2 = •.

Case E′ e2.

That is,

(1) •;Σ.E′[e] e2 : τ.

By inversion of rule T-APP,

(2) •;Σ′
1 .E′[e] : τ2

ξ−−◦ τ and

(3) •;Σ′
2 . e2 : τ2

for some Σ′
1, Σ′

2, ξ, and τ2. By the induction hypothesis at E′, there exist

some contexts Σ1 and Σ′
12 and some type τ′ such that

(4) •;Σ1 . e : τ′ and

(5) •;Σ′
1,Σ′

12 .E′[e′] : τ2
ξ−−◦ τ.

A.3. TYPE SOUNDNESS 303

Let Σ2 =Σ′
12,Σ′

2. Then by rule T-APP,

(6) •;Σ′
1,Σ′

12,Σ′
2 .E′[e′] e2 : τ.

Case v1 E′.

As in the previous case, mutatis mutandem.

Case E′τ2.

That is,

(1) •;Σ.E′[e]τ2 : {τ2/α}τ1

where τ= {τ2/α}τ1. By inversion of rule T-TAPP,

(2) •;Σ.E′[e] :∀α:κ.τ1 and

(3) • ` τ2 : κ.

By the induction hypothesis at E′, there exist some contexts Σ1 and Σ2

and some type τ′ such that

(4) •;Σ1 . e : τ′′ and

(5) •;Σ′
1,Σ2 .E′[e′] :∀α:κ.τ1.

Then by rule T-TAPP,

(6) •;Σ′
1,Σ2 .E′[e′]τ2 : {τ2/α}τ1.

Case fix E′.

As in the previous case.

Case inl E′.

As in the previous case.

304 APPENDIX A. PROOFS: A MODEL OF ALMS

Case inr E′.

As in the previous case.

Case case E′ of inl x1 → e1; inr x2 → e2.

As in the previous case.

Case 〈E′, e2〉.
As in the E′ e2 case.

Case 〈v1,E′〉.
As in the v1 E′ case.

Case let〈x1, x2〉 =E′ in e1.

As in the E′τ case.

Case new E′.

As in the E′τ case.

Case swap E′ e2.

As in the E′ e2 case.

Case swap v1 E′.

As in the v1 E′ case.

Case delete E′.

As in the E′τ case.

LEMMA 5.8 (Preservation, restated from p. 121).

If . (s, e) : τ and (s, e) 7−→ (s′, e′) then . (s′, e′) : τ.

Proof. Without loss of generality, we consider only the case of rule CXT,

(s,E[e]) 7−→ (s′,E[e′]), where (s, e) 7−→ (s′, e′) not by rule CXT. (All derivations

may have exactly one instance of rule CXT at the root because the empty

context is an evaluation context and the composition of two evaluation contexts

is an evaluation context.)

A.3. TYPE SOUNDNESS 305

By inversion of rule CONF, there must be some Σ1 and Σ2 such that Σ1 .

s :Σ1,Σ2 and •;Σ2 .E[e] : τ. Then by lemma A.29, there are some τ′, Σ21, and

Σ22 such that:

• •;Σ21 . e : τ′ and

• •;Σ′
21,Σ22 .E[e′′] : τ for any e′′ such that •;Σ′

21 . e′′ : τ′.

In cases where s = s′, it is sufficient to show that •;Σ21 . e′ : τ′, which allows us

to replace e with e′ and reconstruct the same configuration typing. For cases

where s 6= s′, we will need to rederive the configuration typing using the new

store.

We proceed by cases on the reduction relation, in each case inverting

the typing relation. We need not consider the non–syntax-directed rules T-

SUBSUME and T-WEAK:

• If the final rule is T-SUBSUME, then there must be some τ′′ such that

•;Σ21 . e : τ′′ and • ` τ′′ <:+ τ′. If we can show that τ′′ is preserved, then

we can reapply rule T-SUBSUME to get τ′.

• If the final rule is T-WEAK, we can push it upward in the derivation—and

thus ignore it—unless we are typing an abstraction, since rule T-ABS is

the only rule affected by unused elements in the affine environment.

Now by cases on the reduction relation:

Case (s, (λx:τ2. e1)v2) 7−→ (s, {v2/x} e1).

By inversion of rule T-APP, there exist some contexts Σ211 and Σ212 and

some qualifier expression ξ such that

(1) •;Σ211 .λx:τ2. e1 : τ2
ξ−−◦ τ′ and

(2) •;Σ212 . v2 : τ2.

Without loss of generality, split Σ21 so that Σ211 contains the bare

minimum to type λx:τ2. e1, so that typing the abstraction does not require

weakening.

By inversion of rule T-ABS,

306 APPENDIX A. PROOFS: A MODEL OF ALMS

(3) ` (•;Σ211), x:τ2 Γ′;Σ′
211,

(4) Γ′;Σ′
211 . e1 : τ′,

(5) • `Σ211 ¹ ξ,and

(6) • ` τ2 : ξ2.

By lemma 5.6, •;Σ211,Σ212 . {v2/x} e1 : τ′.

Case (s, (Λα:κ.v)τ1) 7−→ (s, {τ1/α}v).

By inversion of rule T-TAPP, there exists some type τ2 such that

(1) • ` τ1 : κ and

(2) •;Σ21 .Λα:κ.v :∀α:κ.τ2

where τ′ = {τ1/α}τ2. Then by inversion of rule T-TABS,

(3) α:κ;Σ21 . v : τ2.

By lemma A.21, •;Σ21 . {τ1/α}v : {τ1/α}τ2.

Case (s,fix v1 v2) 7−→ (s,v1 (fix v1)v2).

By inversion of rule T-APP, there exist some contexts Σ211 and Σ212 and

some qualifier expression ξ such that

(1) •;Σ211 . fix v1 : τ2
ξ−−◦ τ′ and

(2) •;Σ212 . v2 : τ2.

It suffices to show that •;Σ211 . v1 (fix v1) : τ2
ξ−−◦ τ′ as well.

By inversion of rule T-FIX,

(3) •;Σ211 . v1 : (τ2
ξ−−◦ τ′) U−−◦ τ2

ξ−−◦ τ′.

Because Σ211 came from the store typing of s, and a store typing does not

contain variable bindings, we can apply lemma 5.5 and strengthen to get

(4) •;•. v1 : (τ2
ξ−−◦ τ′) U−−◦ τ2

ξ−−◦ τ′.

A.3. TYPE SOUNDNESS 307

Then,

(4)

(4)

•;•. fix v1 : τ2
ξ−−◦ τ′

T-FIX

•;•. v1 (fix v1) : τ2
ξ−−◦ τ′

T-APP
` •;Σ211

•;Σ211 . v1 (fix v1) : τ2
ξ−−◦ τ′

T-WEAK.

Case (s,case inl v of inl x1 → e1; inr x2 → e2) 7−→ (s, {v/x1} e1).

By inversion of rule T-CASE, there exist some contexts Σ211 and Σ212

and some types τ1 and τ2 such that

(1) •;Σ211 . inr v : τ1 ⊕τ2,

(2) ` (•;Σ212), x1:τ1 Γ1;Σ2121,

(3) Γ1;Σ2121 . e1 : τ′,

(4) ` (•;Σ212), x2:τ2 Γ2;Σ2122, and

(5) Γ2;Σ2122 . e2 : τ′.

By inversion of rule T-INL, •;Σ211 . v : τ1.

By lemma 5.6, •;Σ211,Σ212 . {v/x1} e1 : τ′.

Case (s,case inr v of inl x1 → e1; inr x2 → e2) 7−→ (s, {v/x2} e2).

As in the previous case.

Case (s, let〈x1, x2〉 = 〈v1,v2〉 in e) 7−→ (s, {v1/x1} {v2/x2} e).

By inversion of rule T-CASE, there exist some contexts Σ211 and Σ212

and some types τ1 and τ2 such that

(1) •;Σ211 . 〈v1,v2〉 : τ1 ⊗τ2,

(2) ` (•;Σ212), x1:τ1, x2:τ2 Γ′;Σ′
212, and

(3) Γ′;Σ′
212 . e1 : τ′.

By inversion of rule T-PAIR, there exist some contexts Σ2111 and Σ2112

such that

308 APPENDIX A. PROOFS: A MODEL OF ALMS

(4) •;Σ2111 . v1 : τ1 and

(5) •;Σ2112 . v2 : τ2.

Now consider ` (•;Σ212), x1:τ1, x2:τ2 Γ′;Σ′
212. This must be derived by

either rule X-CONSA or X-CONSU. By cases:

Case X-CONSA.

Then ` (•;Σ212, x1:τ1), x2:τ2 Γ′;Σ′
212. By lemma 5.6,

(1) •;Σ2112,Σ212, x1:τ1 . {v2/x2} e1 : τ′.

Since ` (•;Σ2112,Σ212), x1:τ1 •;Σ2112,Σ212, x1:τ2, by lemma 5.6

again,

(2) •;Σ2111,Σ2112,Σ212 . {v1/x1} {v2/x2} e1 : τ′.

Case X-CONSU.

Then ` (x1:τ1;Σ212), x2:τ2 Γ′;Σ′
212, and by rule T-WEAK,

(1) x1:τ1;Σ2112 . v2 : τ2.

By lemma 5.6,

(2) x1:τ1;Σ2112,Σ212 . {v2/x2} e1 : τ′.

Since ` (•;Σ2112,Σ212), x1:τ1 x1:τ2;Σ2112,Σ212, then by lemma 5.6

again,

(3) •;Σ2111,Σ2112,Σ212 . {v1/x1} {v2/x2} e1 : τ′.

Case (s,new v) 7−→ (s] {` 7→ v},`).

By rule T-NEW, τ′ = ref τ′′, where •;Σ21 . v : τ′′. Then by rule S-CONS,

(1) Σ1,Σ21 . s] {` 7→ v} :Σ1,Σ21,Σ22,`:τ′′,

and by rule T-PTR,

(2) •;`:τ′′ . ` : ref τ′′.

By lemma A.29,

(3) •;`:τ′′,Σ22 .E[`] : τ,

A.3. TYPE SOUNDNESS 309

and by rule CONF,

(4) . (s] {` 7→ v},E[`]) : τ.

Case (s1] {` 7→ v1},swap `v2) 7−→ (s1] {` 7→ v2},〈`,v1〉).
By inversion of rules T-SWAP and T-PTR,

(1) •;Σ′
211,`:τ1 . ` : ref τ1 and

(2) •;Σ212 . v2 : τ2 where

(3) Σ21 =Σ′
211,`:τ1,Σ212 and

(4) τ′ = ref τ2 ⊗τ1.

Since s = s1] {` 7→ v1}, we have that

(5) Σ1 . s1] {` 7→ v1} :Σ1,Σ′
211,Σ212,Σ22,`:τ1.

By inversion of rule S-CONS,

(6) Σ11 . s1 :Σ11,Σ12,Σ′
211,Σ212,Σ22 and

(7) •;Σ12 . v1 : τ1.

Then by rule S-CONS again,

(8) Σ11,Σ212 . s1] {` 7→ v2} :Σ11,Σ12,Σ′
211,Σ212,Σ22,`:τ2.

By rule T-PTR,

(9) •;Σ′
211,`:τ2 . ` : ref τ2,

and by rule T-PAIR,

(10) •;Σ12,Σ′
211,`:τ2 . 〈`,v1〉 : ref τ2 ⊗τ1.

By lemma A.29,

(11) •;Σ12,Σ22,Σ′
211,`:τ2 .E[〈`,v1〉] : τ,

310 APPENDIX A. PROOFS: A MODEL OF ALMS

and by rule CONF,

(12) . (s1] {` 7→ v2},E[〈`,v1〉]) : τ.

Case (s′] {` 7→ v},delete `) 7−→ (s′,〈〉).

By inversion of rule T-DELETE,

(1) •;Σ21 . ` : ref τ′′

for some type τ′′; by inversion of rule T-PTR, `:τ′′ ∈Σ21. Without loss of

generality, let Σ′
21,`:τ′′ =Σ21.

Since s = s′] {` 7→ v}, we have that

(2) Σ1 . s′] {` 7→ v} :Σ1,Σ′
21,Σ22,`:τ′′.

Then by inversion of rule S-CONS, we have that

(3) Σ11 . s′ :Σ1,Σ′
21,Σ22.

By rule T-UNIT,

(4) •;Σ12,Σ′
21 . 〈〉 : 1,

by lemma A.29,

(5) •;Σ12,Σ′
21,Σ22 .E[〈〉] : τ,

and finally

(6) . (s′,〈〉) : τ

by rule CONF.

A.3. TYPE SOUNDNESS 311

τ1 τ2 (parallel reduction)

PR-REFL

τ τ

PR-ARR
τ11 τ21 τ12 τ22

τ11
ξ1−−◦ τ12 τ21

ξ2−−◦ τ22

PR-ALL
τ1 τ2

∀α:κ.τ1 ∀α:κ.τ2

PR-ABS
τ1 τ2

λα.τ1 λα.τ2

PR-APP
τ11 τ21 τ12 τ22

τ11τ12 τ21τ22

PR-BETA
τ11 τ21 τ12 τ22

(λα.τ11)τ12 {τ22/α}τ21

Figure A.2: One-step parallel type reduction

A.3.1.4 Type Equivalence and Parallel Reduction

This section follows Pierce’s soundness proof for Fω (2002, p. 454).

DEFINITION A.30 (Parallel type reduction).

Figure A.2 defines one-step parallel reduction () on types. I will also use
(), (∗), and (∗) to denote the symmetric, transitive-reflexive, and transitive-
symmetric-reflexive closures of one-step parallel reduction, respectively.

Unlike Pierce’s, my parallel reduction is coarser than type equivalence,

because rule PR-ARR relates arrows with different qualifiers.

LEMMA A.31 (Parallel type reduction contains type equivalence).

If τ τ′ then τ ∗ τ′.

Proof. We give a derivation τ = τ0 τ1 · · · τk = τ′, by induction on the

derivation of τ τ′:

Case τ τ.

Let k = 0.

Case
τ′ τ

τ τ′
.

By the induction hypothesis, we have a derivation τ′ = τ0 τ1 · · ·
τk = τ. Then τ= τk τk−1 · · · τ0 = τ′ is also a valid derivation.

312 APPENDIX A. PROOFS: A MODEL OF ALMS

Case
τ τ′′ τ′′ τ′

τ τ′
.

By the induction hypothesis we have a derivation connecting τ to τ′′, and

by the induction hypothesis again, we have a derivation connecting τ′′

to τ′. Then the concatenation is these two derivations is also a valid

derivation.

Case
τ11 τ21 τ12 τ22

τ11
ξ−−◦ τ12 τ21

ξ−−◦ τ22

.

By the induction hypothesis twice, we have derivations:

(1) τ11 = τ0 τ1 · · · τk = τ21 and

(2) τ12 = τ′0 τ′1 · · · τ′k = τ22.

Then there is a derivation

(3) τ11
ξ−−◦ τ12 = τ0

ξ−−◦ τ12 τ1
ξ−−◦ τ12 · · · τk

ξ−−◦ τ12 = τ21
ξ−−◦ τ12 =

τ21
ξ−−◦ τ′0 τ21

ξ−−◦ τ′1 · · · τ21
ξ−−◦ τ′k = τ21

ξ−−◦ τ22.

Case
τ τ′

∀α:κ.τ ∀α:κ.τ′
.

By the induction hypothesis twice, we have a derivation:

(1) τ= τ0 τ1 · · · τk = τ′.

Then there is a derivation

(2) ∀α:κ.τ=∀α:κ.τ0 ∀α:κ.τ1 · · · ∀α:κ.τk =∀α:κ.τ′.

Case
τ1 τ2

λα.τ1 λα.τ2

.

As in the previous case.

A.3. TYPE SOUNDNESS 313

Case
τ11 τ21 τ12 τ22

τ11τ12 τ21τ22

.

As in the arrow type case.

Case (λα.τ1)τ2 {τ2/α}τ1.

Let k = 1, since (λα.τ1)τ2 {τ2/α}τ1.

LEMMA A.32 (Parallel type reduction contains subtyping).

If Γ` τ <:v τ′ then τ ∗ τ′.

Proof. By induction on the subtyping derivation, using lemma A.31 for the

rule TSUB-EQ case.

LEMMA A.33 (Parallel substitution and reduction).

If τ1 τ2 then {τ1/α}τ {τ2/α}τ.

Proof. By induction on the structure of τ.

LEMMA A.34 (Type substitution on parallel reduction).

If τ1 τ2 and τ′1 τ′2 then {τ1/α}τ′1 {τ2/α}τ′2.

Proof. By induction on the derivation of τ′1 τ′2, with one non-trivial case:

Case
τ11 τ21 τ12 τ22

(λβ.τ11)τ12 {τ22/β}τ21

.

By the induction hypothesis twice,

(1) {τ1/α}τ11 {τ2/α}τ21 and

(2) {τ1/α}τ12 {τ2/α}τ22.

By rule PR-BETA,

(3) (λβ. {τ1/α}τ11) {τ1/α}τ12 {{τ2/α}τ22/β} {τ2/α}τ21.

314 APPENDIX A. PROOFS: A MODEL OF ALMS

Note that (λβ. {τ1/α}τ11) {τ1/α}τ12 = {τ1/α} ((λβ.τ11)τ12). Also, because

β is fresh for τ2, we know that {{τ2/α}τ22/β} {τ2/α}τ21 = {τ2/α} {τ22/β}τ21.

Thus,

(4) {τ1/α} ((λβ.τ11)τ12) {τ2/α} {τ22/β}τ21

as desired.

LEMMA A.35 (Single-step diamond property of parallel reduction).

If τ τ1 and τ τ2 then there exists some τ′ such that τ1 τ′ and τ2 τ′:

τ
�(v�

τ1
�'

τ2
w�

τ′

Proof. We start by considering cases involving rule PR-REFL, which always

applies:

• If τ τ1 by rule PR-REFL and τ τ2 by some rule R (which may be

rule PR-REFL as well), then let τ′ = τ2. Then τ1 τ′ by rule R and

τ2 τ′ by rule PR-REFL.

• If τ τ1 by some rule R and τ τ2 by rule PR-REFL then by symmetry

from the previous case.

We now need only consider derivations that do not involve rule PR-REFL at

the root.

By induction on the structure of τ:

Case β.

This only reduces by rule PR-REFL.

Case λβ.τ′′.

The only two rules that allow reduction of λβ.τ′′ are rule PR-ABS and

rule PR-REFL, and we’ve already considered that latter. Thus, it must

be that τ τ1 and τ τ2 both by rule PR-ABS. Then by inversion, there

must be some types τ′1 and τ′2 such that

A.3. TYPE SOUNDNESS 315

(1) τ1 =λβ.τ′1,

(2) τ2 =λβ.τ′2,

(3) τ′′ τ′1,and

(4) τ′′ τ′2.

By the induction hypothesis, there exists some τ′′′ such that

(5) τ′1 τ′′′ and

(6) τ′2 τ′′′.

Then let τ′ =λβ.τ′′′, and both τ1 and τ2 reduce to τ′′′ by rule PR-ABS.

Case τ′1τ
′
2.

Other that rule PR-REFL, there are two rules that might apply here in

any combination, PR-APP and PR-BETA.

• If τ τ1 and τ τ2 both by rule PR-APP, that is,

τ′1 τ11 τ′2 τ12

τ′1τ
′
2 τ11τ12

and
τ′1 τ21 τ′2 τ22

τ′1τ
′
2 τ21τ22

where τ1 = τ11τ12 and τ2 = τ21τ22.

By the induction hypothesis twice, there exist some types τ′′1 and τ′′2
such that

(1) τ11 τ′′1,

(2) τ21 τ′′1,

(3) τ12 τ′′2,and

(4) τ22 τ′′2.

Then let τ′ = τ′′1 τ′′2, and both τ1 and τ2 reduce to τ′ by rule PR-APP.

• If τ τ1 by rule PR-APP and τ τ2 by rule PR-BETA, that is,

τ′′1 τ11 τ′2 τ12

(λα.τ′′1)τ′2 (λα.τ11)τ12

and
τ′′1 τ21 τ′2 τ22

(λα.τ′′1)τ′2 {τ22/α}τ21

where

316 APPENDIX A. PROOFS: A MODEL OF ALMS

(5) τ′1 =λα.τ′′1,

(6) τ1 = (λα.τ11)τ12,and

(7) τ2 = {τ22/α}τ21.

By the induction hypothesis, twice, there exist some τ′′′1 and τ′′′2 such

that

(8) τ11 τ′′′1 ,

(9) τ21 τ′′′1 ,

(10) τ12 τ′′′2 ,and

(11) τ22 τ′′′2 .

Then by rule PR-BETA and lemma A.34,

(12) (λα.τ11)τ12 {τ′′′2 /α}τ′′′1 and

(13) {τ22/α}τ21 {τ′′′2 /α}τ′′′1 .

• If τ τ1 by rule PR-BETA and τ τ2 by rule PR-APP, then by

symmetry from the previous case.

• If τ τ1 and τ τ2 both by rule PR-BETA, that is,

τ′′1 τ11 τ′2 τ12

(λα.τ′′1)τ′2 {τ12/α}τ11

and
τ′′1 τ21 τ′2 τ22

(λα.τ′′1)τ′2 {τ22/α}τ21

where

(14) τ′1 =λα.τ′′1,

(15) τ1 = {τ12/α}τ11,and

(16) τ2 = {τ22/α}τ21.

By the induction hypothesis, twice, there exist some τ′′′1 and τ′′′2 such

that

(17) τ11 τ′′′1 ,

(18) τ21 τ′′′1 ,

(19) τ12 τ′′′2 ,and

(20) τ22 τ′′′2 .

A.3. TYPE SOUNDNESS 317

Then by lemma A.34 twice,

(21) {τ12/α}τ11 {τ′′′2 /α}τ′′′1 and

(22) {τ22/α}τ21 {τ′′′2 /α}τ′′′1 .

Case τ′1
ξ−−◦ τ′2.

As in the both-by-PR-APP part of the previous case, but using rule PR-

ARR.

Case ∀β:κ.τ′.

As in the PR-ABS case, but using rule PR-ALL.

Case χ.

This only reduces by rule PR-REFL.

LEMMA A.36 (Parallel reduction confluence).

If τ ∗ τ1 and τ ∗ τ2 then there exists some τ′ such that τ1
∗ τ′ and τ2

∗ τ′.

Proof. First by induction on length of the reduction sequence for τ ∗ τ1:

Case τ 0 τ1.

That is, τ= τ1. Then let τ′ = τ2, because τ1
∗ τ2.

Case τ τ′1
k τ1.

We would like to show that there exists some τ′′ such that τ′1
∗ τ′′ and

τ2 τ′′. By induction on length of the reduction sequence for τ ∗ τ2:

Case τ 0 τ2.

That is, τ= τ2. Then let τ′′ = τ′1, because τ τ′1 and τ′1
∗ τ′1.

Case τ τ′2
j τ2.

Because τ τ′1 and τ τ′2, there exists some τ′12 such that τ′1 τ′12

and τ′2 τ′12, by lemma A.35.

Now we have that τ′2 τ′12 and τ′2
j τ2. Since that reduction

sequence is shorter than the current case, we can apply the inner

induction hypothesis, by which there exists some τ′′ such that τ′12
∗

τ′′ and τ2 τ′′. By transitivity, τ′1 τ′12
∗ τ′′.

318 APPENDIX A. PROOFS: A MODEL OF ALMS

Then by the outer induction hypothesis, there exists some τ′ such that

τ1
∗ τ′ and τ′′ ∗ τ′. Since τ τ′1 and τ2 τ′′, we therefore have:

(1) τ τ′1
∗ τ1

∗ τ′ and

(2) τ ∗ τ2 τ′′ ∗ τ′.

LEMMA A.37 (Parallel reduction closure confluence).

If τ ∗ τ′ then there exists some type τ′′ such that τ ∗ τ′′ and τ′ ∗ τ′′.

Proof. By induction on the derivation of τ ∗ τ′:

Case τ 0 τ′.

Let τ′′ = τ= τ′.

Case τ τ1
k τ′.

By the induction hypothesis, there exists some τ′′ such that τ1
∗ τ′′ and

τ′ ∗ τ′′. Then τ τ1
∗ τ′′ as well.

τ *4 τ1 jt
k *4

∗
�"

τ′

∗
}�

τ′′

Case τ τ1
k τ′.

By the induction hypothesis, there exists some τ′′1 such that τ1
∗ τ′′1 and

τ′ ∗ τ′′1. Then by lemma A.36, there exists some τ′′ such that τ ∗ τ′′ and

τ′′1
∗ τ′′. Then τ′ ∗ τ′′1

∗ τ′′ as well.

τ

∗

�

τ1jt jt k *4

∗
�!

τ′

∗
}�

τ′′ τ′1∗jt

COROLLARY A.38 (Subtyping confluence).

If Γ` τ1 <:v τ2 then there exists some τ′ such that τ1
∗ τ′ and τ2

∗ τ′.

Proof. By lemma A.32 and lemma A.37.

A.3. TYPE SOUNDNESS 319

A.3.1.5 Progress

DEFINITION A.39 (Faulty expressions).

Define the faulty expressions with respect to store s inductively as follows:

Qs ::= faulty expressions
| vτ where v is not Λα:κ.v′

| vv′ where v is not λx:τ. e
| case v of inl x1 → e1; inr x2 → e2 where v 6∈ {inl v1, inr v2}

| let〈x1, x2〉 = v in e where v is not 〈v1,v2〉
| swap vv′ where v is not `
| delete v where v is not `
| swap `v′ where ` 6∈ dom s
| delete ` where ` 6∈ dom s
| E[Qs]

A configuration (s, e) is faulty when e is faulty with respect to s.

LEMMA A.40 (Uniform evaluation).

For all configurations with closed term e, either the configuration takes a step,
e is a value, or the configuration is faulty.

Proof. In each case, I will show one of:

(Q) e is faulty with respect to s,

(V) e is a value, or

(R) there is a configuration (s′, e′) such that (s, e) 7−→ (s′, e′).

By induction on e:

Case x.

Not closed, so it contradicts the antecedent.

Case λx:τ. e1.

Then (V).

320 APPENDIX A. PROOFS: A MODEL OF ALMS

Case e1 e2.

Let E1 = [] e2. By the induction hypothesis at e1, one of:

(Q) Then E1[e1] is faulty as well, so (Q).

(V) Let v1 = e1 and E2 = v1 []. By the induction hypothesis at e2, one of:

(Q) Then E2[e2] is faulty as well, so (Q).

(V) Let v2 = e2. Then by cases on v1:

Case λx:τ. e11.
Then (s, (λx:τ. e11)v2) 7−→ (s, {v2/x} e11) by rule βv, so (R).

Otherwise.
If v1 is not an abstraction, then (Q).

(R) That is, (s, e2) 7−→ (s′, e′2). Then (s,E2[e2]) 7−→ (s′,E2[e′2]), so (R).

(R) That is, (s, e1) 7−→ (s′, e′1). Then (s,E1[e1]) 7−→ (s′,E1[e′1]), so (R).

Case Λα:κ.v1.

Then (V).

Case e1τ.

Let E1 = []τ. By the induction hypothesis at e1, one of:

(Q) Then E1[e1] is faulty as well, so (Q).

(V) Let v1 = e1. Then by cases on v1:

Case Λα:κ.v11.
Then (s, (Λα:κ.v11)τ) 7−→ (s, {τ/α}v11) by rule βv, so (R).

Otherwise.
If v1 is not a type abstraction, then (Q).

(R) That is, (s, e1) 7−→ (s′, e′1). Then (s,E1[e1]) 7−→ (s′,E1[e′1]), so (R).

Case fix e1.

Let E= fix []. By the induction hypothesis at e1, one of:

(Q) Then E[e1] is faulty as well, so (Q).

(V) Let v1 = e1. Then (V).

A.3. TYPE SOUNDNESS 321

(R) That is, (s, e1) 7−→ (s′, e′1). Then (s,E[e1]) 7−→ (s′,E1[e′1]), so (R).

Case 〈〉.
Then (V).

Case inl e1.

Let E= inl []. By the induction hypothesis at e1, one of:

(Q) Then E[e1] is faulty as well, so (Q).

(V) Let v1 = e1. Then inl v1 is a value, so (V).

(R) That is, (s, e1) 7−→ (s′, e′1). Then (s,E[e1]) 7−→ (s′,E1[e′1]), so (R).

Case inr e2.

As in the previous case.

Case case e′ of inl x1 → e1; inr x2 → e2.

Let E= case [] of inl x1 → e1; inr x2 → e2. Then by the induction hypothesis

at e′, one of:

(Q) Then E1[e1] is faulty as well, so (Q).

(V) Let v′ = e′. Then by cases on v′:

Case inl v′1.
Then (s,case inl v′1 of inl x1 → e1; inr x2 → e2) 7−→ (s, {v′1/x1} e1) by

rule CASEL, so (R).

Case inr v′2.
Likewise, but by rule CASER, (R).

Otherwise.
If v′ is not a sum injection, then (Q).

(R) That is, (s, e1) 7−→ (s′, e′1). Then (s,E1[e1]) 7−→ (s′,E1[e′1]), so (R).

Case 〈e1, e2〉.
As in the application case, with one change: If both e1 and e2 are values,

then (V).

322 APPENDIX A. PROOFS: A MODEL OF ALMS

Case let〈x1, x2〉 = e′ in e1.

Let E= let〈x1, x2〉 = [] in e1. Then by the induction hypothesis at e′, one

of:

(Q) Then E1[e1] is faulty as well, so (Q).

(V) Let v′ = e′. Then by cases on v′:

Case 〈v1,v2〉.
Then (s, let〈x1, x2〉 = 〈v1,v2〉 in e1) 7−→ (s, {v1/x1} {v2/x2} e1) by

rule LETPAIR, so (R).

Otherwise.
If v′ is not a pair, then (Q).

(R) That is, (s, e1) 7−→ (s′, e′1). Then (s,E1[e1]) 7−→ (s′,E1[e′1]), so (R).

Case new e1.

Let E= new []. By the induction hypothesis at e1, one of:

(Q) Then E[e1] is faulty as well, so (Q).

(V) Let v1 = e1. Then by rule NEW (s,new v1) 7−→ (s] {` 7→ v1},`), so (R).

(R) That is, (s, e1) 7−→ (s′, e′1). Then (s,E[e1]) 7−→ (s′,E1[e′1]), so (R).

Case swap e1 e2.

As in the application case, except when both e1 and e2 are values. Call

them v1 and v2. Then by cases on v1:

Case `.

If ` ∈ dom s, then let s′] {` 7→ v} = s, and (s′] {` 7→ v},swap `v2) 7−→
(s′] {` 7→ v2},〈`,v〉) by rule SWAP, so (R). Otherwise, (Q).

Otherwise.

If v1 is not a store location, then (Q).

Case delete e1.

Let E= delete []. By the induction hypothesis at e1, one of:

(Q) Then E[e1] is faulty as well, so (Q).

A.3. TYPE SOUNDNESS 323

(V) Let v1 = e1. Then by cases on v1:

Case `.
If ` ∈ dom s, then let s′] {` 7→ v2} = s, and by rule DELETE,

(s′] {` 7→ v2},delete `) 7−→ (s′,〈〉), so (R). Otherwise, (Q).

Otherwise.
If v1 is not a store location, then (Q).

(R) That is, (s, e1) 7−→ (s′, e′1). Then (s,E[e1]) 7−→ (s′,E1[e′1]), so (R).

Case `.

Then (V).

DEFINITION A.41 (Concrete types).

Let T be the set of types and K j be the set of kinds of arity j. Define the six
sets of concrete types as follows:

CARR = {τ1
ξ−−◦ τ2 | τ1,τ2 ∈T ,ξ ∈K 0}

CALL = {∀α:κ.τ1 | j ∈N,κ ∈K j,τ1 ∈T }

CUNIT = {1}

CSUM = {τ1 ⊕τ2 | τ1,τ2 ∈T }

CPROD = {τ1 ⊗τ2 | τ1,τ2 ∈T }

CREF = {ref τ1 | τ1 ∈T }

Now define each Ti as the set of types that can reduce to each C i:

Ti = {τ | τ ∈T ,τ′ ∈C i,τ ∗ τ′}

LEMMA A.42 (Concrete closure).

If τ ∈C i and τ ∗ τ′ then τ′ ∈C i.

Proof. By induction on the length of the reduction sequence and cases on τ:

324 APPENDIX A. PROOFS: A MODEL OF ALMS

Case τ1
ξ−−◦ τ2.

The only rules that apply are rule PR-REFL and rule PR-ARR, neither

of which changes the shape of the type.

Case ∀α:κ.τ1.

The only rules that apply are rule PR-REFL and rule PR-ALL, neither of

which changes the shape of the type.

Case 1.

The only rule that applies is rule PR-REFL, which does not change the

shape of the type.

Case (⊕)τ1τ2.

The only rules that apply are rule PR-REFL and rule PR-APP, which

may change τ1 and τ2 but cannot change (⊕).

Case (⊗)τ1τ2.

The only rules that apply are rule PR-REFL and rule PR-APP, which

may change τ1 and τ2 but cannot change (⊗).

Case ref τ1.

The only rules that apply are rule PR-REFL and rule PR-APP, which

may change τ1 but cannot change ref.

COROLLARY A.43 (Partition of types).

If τ ∈Ti and τ ∈T j then i = j.

Proof. Type τ must reduce to types in both C i and C j, which by lemma A.36

must in turn reduce to some common type τ′. By lemma A.42, τ′ is in both C i

and C j, and since the six sets of concrete types are mutually disjoint, those

A.3. TYPE SOUNDNESS 325

must be the same set.

Ti 3 τ ∈T j
∗
�&

∗
x�

C i 3 τ1
∗
�&

τ2 ∈C j
∗
x�

C i 3 τ′ ∈C j

COROLLARY A.44 (Subtyping preserves form).

If Γ` τ1 <:v τ2 and τ2 ∈Ti then τ1 ∈Ti.

Proof. By the definition of Ti, there exists some τ′2 ∈ C i such that τ2
∗ τ′2.

By corollary A.38, there exists some τ′ such that τ2
∗ τ′ and τ1

∗ τ′. By

lemma A.36, there exists some τ such that τ′ ∗ τ and τ′2
∗ τ.

τ1
<:v

∗
�&

τ2

∗

�

∗ *4 τ′2 ∈C i

∗

�

τ′ ∗ *4 τ ∈C i

Since τ′2 ∈ C i, by lemma A.42, τ ∈ C i as well. Since τ1
∗ τ, then by the

definition of Ti, τ1 ∈Ti.

LEMMA A.45 (Canonical forms).

The concrete type of a value dictates its form. Suppose that •;Σ. v : τ.

If τ is . . . , then v is

τ1
ξ−−◦ τ2 ∈CARR λx:τ′. e for some x, τ′ and e

∀α:κ.τ′ ∈CALL Λα:κ.v′ for some value v′

1 ∈CUNIT 〈〉
τ1 ⊕τ2 ∈CSUM inl v′ or inr v′ for some value v′

τ1 ⊗τ2 ∈CPROD 〈v1,v2〉 for some values v1 and v2

ref τ′ ∈CREF ` for some location `

326 APPENDIX A. PROOFS: A MODEL OF ALMS

Proof. We generalize the induction hypothesis to use the sets Ti in place of

each set C i. Since the Ti are disjoint, by corollary A.43, finding that a type is

in one of the sets means we need not consider the others.

By induction on the typing derivation:

Case
Γ;Σ. v : τ′ Γ` τ′ <:+ τ Γ` τ : ξ

Γ;Σ. v : τ
.

If τ ∈T j, then by corollary A.44, τ′ ∈T j as well. Then by the induction

hypothesis, v has the right form.

Case
Γ;Σ. v : τ `Γ,Γ′;Σ,Σ′

Γ,Γ′;Σ,Σ′ . v : τ
.

By the induction hypothesis.

Case
`:τ′ ∈Σ • ` τ′ : ξ `Γ;Σ

Γ;Σ. ` : ref τ′
.

Then ref τ′ ∈CREF ⊂TREF, and ` has the right form.

Case
` (Γ;Σ), x:τ1 Γ′;Σ′ Γ′;Σ′ . e : τ2 Γ`Σ¹ ξ Γ` τ1 : ξ1

Γ;Σ.λx:τ1. e : τ1
ξ−−◦ τ2

.

Then τ1
ξ−−◦ τ2 ∈CARR ⊂TARR, and λx:τ1. e has the right form.

Case
Γ,α:κ;Σ. v′ : τ′

Γ;Σ.Λα:κ.v′ :∀α:κ.τ′
.

Then ∀α:κ.τ′ ∈CALL ⊂TALL, and Λα:κ.v′ has the right form.

Case
`Γ;Σ

Γ;Σ. 〈〉 : 1
.

Then 1 ∈CUNIT ⊂TUNIT, and 〈〉 has the right form.

Case
Γ;Σ. v′ : τ1 Γ` τ2 : ξ

Γ;Σ. inl v′ : τ1 ⊕τ2

.

Then τ1 ⊕τ2 ∈CSUM ⊂TSUM, and inl v′ has the right form.

A.3. TYPE SOUNDNESS 327

Case
Γ;Σ. v′ : τ2 Γ` τ1 : ξ

Γ;Σ. inr v′ : τ1 ⊕τ2

.

Then τ1 ⊕τ2 ∈CSUM ⊂TSUM, and inr v′ has the right form.

Case
Γ;Σ1 . v1 : τ1 Γ;Σ2 . v2 : τ2

Γ;Σ1,Σ2 . 〈v1,v2〉 : τ1 ⊗τ2

.

Then τ1 ⊗τ2 ∈CPROD ⊂TPROD, and 〈v1,v2〉 has the right form.

Otherwise.

The remaining rules to not apply to values.

LEMMA A.46 (Faulty expressions).

If term e is faulty with respect to store s, then there is no τ such that . (s, e) : τ.

Proof by contradiction. Suppose that . (s, e) : τ′ and that e is faulty with

respect to s. By inversion of rule CONF, there exist some contexts Σ1 and

Σ2 such that

(1) Σ1 . s :Σ1,Σ2 and

(2) •;Σ2 . e : τ′.

It may end with some amount of subsumption and weakening, but prior to

that there must be an instance of the appropriate syntax-directed rule for e,

yielding

(3) •;Σ21 . e : τ

for some Σ21 and τ.

Since e is faulty, let Qs = e. We generalize the induction hypothesis over τ

and proceed by induction on the structure of Qs:

Case vτ2 where v 6≈Λα′:κ′.v′.

By inversion of rule T-TAPP, there are some α1, κ1, and τ1 such that

(1) •;Σ21 . v :∀α1:κ1.τ1.

328 APPENDIX A. PROOFS: A MODEL OF ALMS

By lemma A.45, v must therefore have the form Λα1:κ1.v1, which

contradicts the side condition that v 6≈Λα′:κ′.v′.

Case vv′ where v 6≈λx′′:τ′′. e′′.

By inversion of rule T-APP, there are some τ1, τ2, and ξ1 such that

(1) •;Σ21 . v : τ1
ξ−−◦ τ2.

By lemma A.45, v must therefore have the form λx1:τ1. e1, which contra-

dicts the side condition.

Case case v of inl x1 → e1; inr x2 → e2 where v ∉ {inl v′1, inr v′2}.

By inversion of rule T-CASE, there are some τ1 and τ2 such that

(1) •;Σ21 . v : τ1 ⊕τ2.

By lemma A.45, v must therefore have either the form inl v1 or the form

inr v1, both of which contradict the side condition.

Case let〈x1, x2〉 = v in e′ where v 6≈ 〈v′1,v′2〉.
By inversion of rule T-UNPAIR, there are some τ1 and τ2 such that

(1) •;Σ21 . v : τ1 ⊗τ2.

By lemma A.45, v must therefore have the form 〈v1,v2〉, which contra-

dicts the side condition.

Case swap vv′ where v 6≈ `′.
By inversion of rule T-SWAP, there is some τ1 such that

(1) •;Σ21 . v : ref τ1.

By lemma A.45, v must therefore have the form `, which contradicts the

side condition.

Case delete v where v 6≈ `′.
As in the previous case, but using rule T-DELETE instead of rule T-SWAP.

Case swap `v′ where ` 6∈ dom s.

By inversion of rule T-SWAP, there is some τ1 such that

A.3. TYPE SOUNDNESS 329

(1) •;Σ21 . ` : ref τ1,

and by inversion of rule T-PTR,

(2) `:τ1 ∈Σ21.

Since Σ2 =Σ21,Σ22, this means that

(3) `:τ1 ∈Σ2.

Recall that Σ1 . s :Σ1,Σ2. Without loss of generality, because contexts

are identified up to permutation, let Σ′
2,`:τ1 =Σ2. In other words,

(4) Σ1 . s :Σ1,Σ′
2,`:τ1.

By S-CONS, this can only be the case if s = s′] {` 7→ v′} for some s′ and v′,
which contradicts the side condition that ` 6∈ dom s.

Case delete ` where ` 6∈ dom s.

As in the previous case, but using rule T-DELETE instead of rule T-SWAP.

Case E[Q′
s].

By lemma A.29, there are some typing contexts Σ211 and Σ212 and some

type τ1 such that

(1) •;Σ211 .Q′
s : τ1.

By weakening,

(2) •;Σ21 .Q′
s : τ1,

and by the induction hypothesis at Q′
s with τ1, this cannot be so.

LEMMA 5.7 (Progress, restated from p. 121).

If . (s, e) : τ then either e is a value, or there exist some s′ and e′ such that
(s, e) 7−→ (s′, e′).

330 APPENDIX A. PROOFS: A MODEL OF ALMS

Proof. Please see p. 329. C

THEOREM 5.9 (Type soundness, restated from p. 121).

If . ({}, e) : τ then either e diverges or there exists some store s and value v such
that ({}, e) ∗7−→ (s,v) and . (s,v) : τ.

Proof. Please see p. 330. C

APPENDIX B

Additional Proofs for Chapter 7

B.1 Properties of Types and Stores

In this section, I prove several properties of types and store types.

LEMMA B.1 (Type substitution on types preserves qualifiers).

For any qualifier-respecting type substitution θ, 〈θτ′〉 v 〈τ′〉 and 〈(θττ′)A 〉 v
〈(ττ′)A 〉.

Proof. By induction on the structure of τ′ and by induction on the structure of

ττ′.

LEMMA B.2 (Type conversion is well-behaved).

1. For any FC type ττ, (ττA)C = ττ.

2. For any opaque FA type ρ, (ρC)A = ρ.

3. For any FA type τ, 〈(τC)A 〉 v 〈τ〉.

4. For any FA type τ and opaque FA type ρ, if τC = ρC then τ= ρ.

Proof.

1. By induction on the structure of ττ.

2. (ρC)A = {ρ}A = ρ

331

332 APPENDIX B. PROOFS: MIXING AFFINE & CONVENTIONAL TYPES

3. By induction on the structure of τ:

Case τ1
q−−◦ τ2.

〈((τ1
q−−◦ τ2)C)A 〉 = 〈(τC

1 → τC
2)A 〉 = 〈(τC

1)A
U−−◦ (τC

2)A 〉 =Uv q.

Case ∀αq.τ′.

〈((∀αq.τ′)C)A 〉 = 〈∀βU. (({βU/αq}τ′)C)A 〉
= 〈(({βU/αq}τ′)C)A 〉
v 〈{βU/αq}τ′〉 IH

v 〈τ′〉 lemma B.1

= 〈∀αq.τ′〉

Case αq,ref τ′,τ1 ⊗τ2.

These are opaque, so (τC)A = τ.

Case {αα}.

〈({αα}C)A 〉 = 〈ααA 〉 = 〈{αα}〉.

4. Then ρC = {ρ}. By inspection of the translation function, the only τ such

that τC = {ρ} is ρ.

DEFINITION B.3 (Unlimited and affine restriction).

Define the unlimited restriction of Γ, written Γ|U, to be Γ restricted to the
portion of its domain that it does not map to affine FA types. Define the
unlimited restriction of Σ, written Σ|U, to be Σ restricted to the portion of its
domain that it does not map to FA types, affine or unlimited.

That is,

•|U = •

(Γ, x : τ)|U =
Γ|U, x : τ if 〈τ〉 =U

Γ|U if 〈τ〉 =A

(Σ,` : ττ)|U =Σ|U,` : ττ

(Σ,` : τ)|U =Σ|U
(Σ,` : [τ]`

′
)|U =Σ|U,` : [τ]`

′

B.1. PROPERTIES OF TYPES AND STORES 333

Likewise, define the affine restrictions d|QA and S|QA to be the remain-
ing portions of Γ and Σ, respectively. That is, Γ=Γ|U,Γ|A and Σ=Σ|U,Σ|A (up
to exchange).

If Σ1|U =Σ2|U, we say that Σ1 ∼U Σ2, and likewise for typing contexts; clearly
∼U is an equivalence relation.

LEMMA B.4 (Context splitting properties).

Commutativity If Γ Γ1�Γ2 then Γ Γ2�Γ1. Likewise, if Σ Σ1�Σ2

then Σ Σ2�Σ1.

Associativity There is some Γ23 such that Γ Γ1�Γ23 and Γ23 Γ2�Γ3 if
and only if there is some Γ12 such that Γ Γ12�Γ3 and Γ12 Γ1�Γ2.
Likewise for store types.

Absorption If Γ Γ1�Γ2|U then Γ1 =Γ and Γ2 ∼U Γ. Likewise for store types.
As a trivial corollary, for any Γ, Γ Γ�Γ|U, and for any Σ, Σ Σ�Σ|U.

Equivalence For any Γ1 and Γ2, if there exists some Γ such that Γ Γ1�Γ2,
then Γ1 ∼U Γ2. Likewise for store types.

Disjunction For any Γ1 and Γ2, if there exists some Γ such that Γ Γ1�Γ2,
then dom(Γ1|A)∩dom(Γ2|A)=∅. Likewise for store types.

Permutation If Γ Γ1�Γ2 and Γ′ Γ1�Γ2, then Γ is a permutation of Γ′.
Likewise for store types.

Recombination If Γ1 ∼U Γ2 and domΓ1∩domΓ2 =∅, then there exists some
Γ such that Γ Γ1�Γ2. Likewise for store types.

Proof. Each case by a trivial structural induction.

DEFINITION B.5 (Context notation).

The previous lemma justifies a notational convention: For any typing contexts
Γ1 and Γ2, if there exists some Γ such that Γ Γ1�Γ2, then I may write Γ1�Γ2

for Γ; if there exists no such Γ, then Γ1�Γ2 is undefined. Likewise for store

334 APPENDIX B. PROOFS: MIXING AFFINE & CONVENTIONAL TYPES

types. This notation extends from the binary case to any number of typing
contexts or store types.

OBSERVATION B.6 (Context recombination).

Suppose that some store type Γ splits into several parts Γ1� · · ·�Γk. Then we
know that Γi ∼U Γj for all i and j, by induction on the number of splits and
lemma B.4. Likewise, we know that domΓi ∩domΓj =∅ for all i 6= j, again by
induction on the number of splits and lemma B.4. Then Γi�Γj is defined for all
i 6= j, and likewise for larger combinations of subcontexts. Thus, when I split
a context into several parts, I am free to recombine the parts in any order or
combination.

This observation holds for store types as well.

LEMMA B.7 (Protection is free).

If a store has a type, then protecting or unprotecting any part of its type preserves
the typing. In particular, for any Σ1, Σ2, and `,

M;Σ1B s :Σ2,Σ3 ⇐⇒ M;Σ1B s :Σ2, [Σ3]` .

Proof. By induction on Σ3, noting that rules RS-LOCA and RS-LOCAPROT

have the same premises.

LEMMA B.8 (Contexts close typed terms).

The free variables, type variables, and locations in a well-typed term are
contained in the contexts used to type it.

1. If M;Σ;ΓΓ.C e : ττ then FV(e)⊆ domΓΓ and FL(e)⊆ domΣ.

2. If M;Σ;Γ.A e : τ then FV(e)⊆ domΓ and FL(e)⊆ domΣ.

Proof. By induction on the type rules and the definition of free locations and

variables.

B.2. EVALUATION CONTEXTS AND SUBSTITUTION 335

B.2 Evaluation Contexts and Substitution

In this section, I prove several lemmas about terms in holes and about

substitution. In lemma B.11, I show that if a well-typed term is decomposed

into an evaluation context and a subterm in the hole, then the subterm types,

and the evaluation context types with a suitable replacement term in the

hole as well. Unlike the usual replacement theorem, lemma B.11 allows

changing the typing context for the replacement term. I also prove a standard

substitution lemma.

We begin, however, with an observation about how one may often ignore

subsumption rule (rule RAT-SUBSUME), which is not syntax directed, when

dealing with type derivations.

OBSERVATION B.9 (Subsumption and proof by inversion).

Observe, first, that multiple adjacent applications of rule RAT-SUBSUME may
always be condensed into one, by the transitivity of (<:). By induction, any
instance of multiple adjacent subsumptions may be rewritten to have only
one subsumption. Furthermore, any derivation in FA that does not end with
a subsumption may have a subsumption added at the root, by reflexivity of
the subtype relation. Thus, without loss of generality, we may consider any
type derivation in FA to end with rule RAT-SUBSUME, with a different rule
preceding it in the derivation.

Now we consider inverting type judgments of the form M;Σ;Γ.A e : τ. The
subsumption rule may always appear at the root, and in general only one or
two other rules will match the syntax of e. Denote the applicable syntax-specific
rule for e as rule R. Because we do not consider proofs with multiple adjacent
subsumptions, the premise to rule RAT-SUBSUME must be the conclusion of a
different rule. But because e is the same, only rule R applies!:

A1 · · · Ak

M;Σ;Γ.A e : τ<
R

τ′ <: τ

M;Σ;Γ.A e : τ
RAT-SUBSUME

Thus, when inverting a type judgment for the FA subcalculus, we may safely
consider inverting the syntax-specific judgment for e at an arbitrary type τ< <: τ.

336 APPENDIX B. PROOFS: MIXING AFFINE & CONVENTIONAL TYPES

If our goal is to reconstruct a new type judgment giving τ, by subsumption it is
sufficient to reconstruct a type judgment giving τ<.

NOTATION B.10 (The type of an evaluation context).

The lemma relies on the notion of giving a type to an evaluation context
independent of the expression in the hole. I use the following notations:

M;Σ;ΓΓ.C E : [ττ′]ττ , (∀e′,Σ′) M;Σ′;•.C e′ : ττ′ =⇒M;Σ�Σ′;ΓΓ.C E[e′] : ττ

M;Σ;ΓΓ.C E : [τ′]ττ , (∀e′,Σ′) M;Σ′;•.A e′ : τ′ =⇒M;Σ�Σ′;ΓΓ.C E[e′] : ττ

M;Σ;Γ.A E : [τ′]τ , (∀e′,Σ′) M;Σ′;•.A e′ : τ′ =⇒M;Σ�Σ′;Γ.A E[e′] : τ

M;Σ;Γ.A E : [ττ′]τ , (∀e′,Σ′) M;Σ′;•.C e′ : ττ′ =⇒M;Σ�Σ′;Γ.A E[e′] : τ

LEMMA B.11 (Terms in holes are typeable and replaceable).

1. If M;Σ;ΓΓ.C E[e′] : ττ, then there exist some Σ Σ1�Σ2 and ττ′ such that
M;Σ1;ΓΓ.C e′ : ττ′ and M;Σ2;ΓΓ.C E : [ττ′]ττ.

2. If M;Σ;ΓΓ.C E[e′] : ττ, then there exist some Σ Σ1�Σ2 and τ′ such that
M;Σ1;•.A e′ : τ′ and M;Σ2;ΓΓ.C E : [τ′]ττ.

3. If M;Σ;Γ.A E[e′] : τ, then there exist some Σ Σ1�Σ2, Γ Γ1�Γ2, and
τ′ such that M;Σ1;Γ1 .A e′ : τ′ and M;Σ2;Γ2 .A E : [τ′]τ.

4. If M;Σ;Γ.A E[e′] : τ, then there exist some Σ Σ1�Σ2 and ττ′ such that
M;Σ1;•.C e′ : ττ′ and M;Σ2;Γ.A E : [ττ′]τ.

In particular, if E[e′] is closed, then so is e′ (and likewise for the other three
cases).

Proof. We take the statement of the theorem as an induction hypothesis in

four parts and proceed by mutual induction on the structures of E and E.

1. Consider first E. Suppose e′′ and Σ′ such that M;Σ′;•.C e′′ : ττ′. It suffices

to show that M;Σ2�Σ′;•.C E[e′′] : ττ. Then by cases:

B.2. EVALUATION CONTEXTS AND SUBSTITUTION 337

Case [].

Then E[e′] = e′.

Let ττ′ = ττ, Σ1 =Σ and Σ2 =Σ|U.

Note that E[e′′] = e′′. Then by weakening, M;Σ2�Σ′;ΓΓ .C e′′ : ττ′.
Thus, M;Σ2;ΓΓ.C E : [ττ′]ττ.

Case E′e2.

This only types if

(1) M;Σ1;ΓΓ.C E′[e′] : ττ1 → ττ and

(2) M;Σ2;ΓΓ.C e2 : ττ1 where

(3) Σ Σ1�Σ2.

By the induction hypothesis, there exist some ττ′, Σ11, and Σ12 such

that

(4) Σ1 Σ11�Σ12,

(5) M;Σ11;ΓΓ.C e′ : ττ′ and

(6) M;Σ12;ΓΓ.C E′ : [ττ′]ττ1 → ττ.

Then

(7) M;Σ12�Σ′;ΓΓ.C E′[e′′] : ττ1 → ττ.

By rule RCT-APP, M;Σ12�Σ2�Σ′;ΓΓ .C E′[e′′]e2 : ττ, noting that

Σ Σ11� (Σ12�Σ2).

Case (⇐
g f
τ′)E′.

This only types if

(1) (τ′)C = ττ and

(2) M;Σ;•.A E′[e′] : τ′.

By part 4 of the induction hypothesis, there exist some ττ′′ and

Σ Σ1�Σ2 such that

(3) M;Σ1;•.C e′ : ττ′′ and

(4) M;Σ2;•.A E′ : [ττ′′]τ′.

Then,

338 APPENDIX B. PROOFS: MIXING AFFINE & CONVENTIONAL TYPES

(5) M;Σ2�Σ′;•.A E′[e′′] : τ′.

By rule RCT-BOUNDARY, M;Σ2�Σ′;ΓΓ.C (⇐
g f
τ′)(E′[e′′]) : ττ.

The remaining cases are all similar.

2. The second part proceeds mutatis mutandis, with two notable changes:

• The E = [] case is vacuous.

• The boundary case appeals to part 3 of the induction hypothesis.

3. For the third part, suppose an e′′ such that M;Σ′;•.A e′′ : τ′. It suffices

to show that M;Σ2�Σ′;•.A E[e′′] : τ. Then by cases on E:

Case [].

Then E[e′]= e′. Let τ′ = τ, Σ1 =Σ, Σ2 =Σ|U, Γ1 =Γ, and Γ2 =Γ|U.

Note that E[e′′]= e′′.

Then by weakening M;Σ2�Σ′;Γ2 .A e′′ : τ′.

Case E1τ2.

Consider the type derivation for E1[e′]τ2. According to observa-

tion B.9, without loss of generality, there exists some τ< <: τ with

rule RAT-TAPP concluding that E1[e′]τ2 has that type, followed by

a subsumption. This can be the case only if

(1) M;Σ;Γ.A E1[e′] :∀αq.τ′< where

(2) τ′ = {τ2/αq}τ′< and

(3) 〈τ′<〉 v q.

By induction, there exist some τ′, Σ1�Σ2!Σ, and Γ1�Γ2! Γ

such that

(4) M;Σ1;Γ1 .A e′ : τ′ and

(5) M;Σ2;Γ2 .A E′ : [τ′]∀αq.τ′′

Then,

(6) M;Σ2�Σ′;Γ2 .A E′[e′′] :∀αq.τ′′.

B.2. EVALUATION CONTEXTS AND SUBSTITUTION 339

By rule RAT-TAPP and rule RAT-SUBSUME, then, M;Σ2�Σ′;Γ2 .A

E′[e′′]τ2 : τ.

Case let〈y1, y2〉 = E′ in e2.

This only types if

(1) M;Σ1;Γ1 .A E′[e′] : τ1 ⊗τ2 and

(2) M;Σ2;Γ2, y1 : τ1, y2 : τ2 .A e2 : τ<

for some τ1, τ2, Σ1�Σ2!Σ and Γ1�Γ2!Γ.

By induction, there exist some τ′, Σ11�Σ12!Σ1, and Γ11�Γ12!

Γ1 such that

(3) M;Σ11;Γ11 .A e′ : τ′ and

(4) M;Σ12;Γ12 .A E′ : [τ′]τ1 ⊗τ2

Then

(5) M;Σ12�Σ′;Γ12 .A E′[e′′] : τ1 ⊗τ2.

By rule RAT-LETPAIR,

(6) M;Σ11�Σ2�Σ′;Γ11�Γ2 .A let〈y1, y2〉 = E′[e′′] in e2 : τ<,

noting that Σ Σ12� (Σ11�Σ2).

Case (τ< ⇐
f g

)E′.

This only types if

(1) M;Σ;•.C E′[e′] : τC< .

By part 4 of the induction hypothesis, there exist some τ′ and

Σ1�Σ2!Σ such that

(2) M;Σ1;•.A e′ : τ′ and

(3) M;Σ2;•.C E′ : [τ′]τC<

Then

(4) M;Σ2�Σ′;•.C E′[e′′] : τC< .

By rule RAT-BOUNDARY, M;Σ2�Σ′;Γ2 .A (τ< ⇐
f g

)E′[e′′] : τ<.

The remaining cases are all similar.

340 APPENDIX B. PROOFS: MIXING AFFINE & CONVENTIONAL TYPES

4. The proof of the fourth part follows the proof of the third, again mutatis
mutandis, where again the hole case is vacuous and the boundary case

appeals to part 1.

The next several lemmas concern substitution types on typing contexts,

types on expressions, and values on expressions.

LEMMA B.12 (Type substitution on typing contexts preserves qualifiers).

If θ is a qualifier-respecting type substitution then 〈θΓ〉 v 〈Γ〉.

Proof. By induction on Γ with lemma B.1.

LEMMA B.13 (Type substitution preserves context splitting).

For any qualifier-respecting type substitution θ, if Γ Γ1�Γ2 then θΓ

(θΓ1,Γ′2)� (θΓ2,Γ′1) (up to exchange), for some Γ′1 and Γ′2.1

Proof. By induction on the derivation of Γ0 Γ01�Γ02:

Case
Γ Γ1�Γ2 〈τ〉 =A

Γ, x : τ Γ1, x : τ�Γ2

.

By cases on 〈θτ〉:
Case U.

Then
IH

θΓ θΓ1,θΓ′′2�θΓ2,θΓ′′1

case

〈θτ〉 =U

θΓ, x : θτ θΓ1, x : θτ,Γ′′2�θΓ2, x : θτ,Γ′′1.

So Γ′1 =Γ′′1, x : θτ and Γ′2 =Γ′′2.

Case A.

Then
IH

θΓ θΓ1,θΓ′2�θΓ2,θΓ′1

case

〈θτ〉 =A

θΓ, x : θτ θΓ1, x : θτ,Γ′2�θΓ2,Γ′1.
1Each Γ′i (for i ∈ {1,2}) is the largest subcontext of Γi such that Γ′i|A =Γ′i and (θΓ′i)|U = θΓ′i,

but this fact is not necessary, so I will not prove it.

B.2. EVALUATION CONTEXTS AND SUBSTITUTION 341

Case
Γ Γ1�Γ2 〈τ〉 =A

Γ, x : τ Γ1�Γ2, x : τ
.

By symmetry

Case
Γ Γ1�Γ2 〈τ〉 =U

Γ, x : τ Γ1, x : τ�Γ2, x : τ
.

Then
IH

θΓ θΓ1,θΓ′2�θΓ2,θΓ′1

lemma B.1

〈θτ〉 =U

θΓ, x : θτ θΓ1, x : θτ,Γ′2�θΓ2, x : θτ,Γ′1.

Case • •�•.

Then Γ′1 =Γ′2 = •.

LEMMA 7.4 (Type substitution on expressions preserves types, restated from

p. 182).

For any qualifier-respecting type substitution θ and any Σ such that FTV(Σ)=;:

1. If M;Σ;ΓΓ.C e : ττ then M;Σ;θΓΓ.C θe : θττ.

2. If M;Σ;Γ.A e : τ then M;Σ;θΓ.A θe : θτ.

Proof. Note first that FV(e) = FV(θe) and FL(e) = FL(θe); likewise FV(e) =
FV(θe) and FL(e)=FL(θe),

1. By induction on the structure of e:

Case Λββ.v′.

By rule RCT-TABS, ττ=∀ββ.ττ′, so it must be the case that

A

M;Σ;ΓΓ.C v′ : ττ′

M;Σ;ΓΓ.C Λββ.v′ :∀ββ.ττ′
.

342 APPENDIX B. PROOFS: MIXING AFFINE & CONVENTIONAL TYPES

Then,
A,IH

M;Σ;θΓΓ.C θv′ : θττ′

M;Σ;θΓΓ.C θ(Λββ.v′) : θ(∀ββ.ττ′).
.

Case λx:ττ′′.e′.

By rule RCT-ABS, ττ= ττ′′ → ττ′. So it must be the case that

A

M;Σ;ΓΓ,x : ττ′′ .C e′ : ττ′
B

〈Σ|FL(λx:ττ′′.e′)〉 =U

M;Σ;ΓΓ.C λx:ττ′′.e′ : ττ′′ → ττ′
.

Note that 〈Σ|FL(θe′)〉 =U.

Then,
A,IH

M;Σ;θ(ΓΓ,x : ττ′′).C θe′ : θττ′ B

M;Σ;θΓΓ.C θ(λx:ττ′′.e′) : θ(ττ′′ → ττ′)
.

Case x.

By rule RCT-VAR, it must be the case that

x : ττ ∈ΓΓ
M;Σ;ΓΓ.C x : ττ

.

Since θx= x,
x : θττ ∈ θΓΓ

M;Σ;θΓΓ.C θx : θττ
.

Case f.

By rule RCT-MOD, it must be the case that

(f : ττ= v) ∈M FTV(ττ)=;
M;Σ;ΓΓ.C f : ττ

.

Thus θττ= ττ, and since θf= f,

(f : θττ= v) ∈M FTV(θττ)=;
M;Σ;θΓΓ.C θf : θττ

.

B.2. EVALUATION CONTEXTS AND SUBSTITUTION 343

Case f g.

By rule RCT-MODA, it must be the case that

(f : τ′ = v) ∈M FTV(τ′)=;
M;Σ;ΓΓ.C f g : (τ′)C

,

where (τ′)C = ττ.

Thus θτ′ = τ′, and since θ f g = f g,

(f : θτ= v) ∈M FTV(θτ)=;
M;Σ;θΓΓ.C θ f g : θ((τ′)C)

.

Case e1ττ2.

By rule RCT-TAPP, it must be the case that

A

M;Σ;ΓΓ.C e1 :∀ββ.ττ′

M;Σ;ΓΓ.C e1ττ2 : {ττ2/ββ}ττ′
,

where ττ= {ττ2/ββ}ττ′.

By Barendregt’s convention, we may assume that αα 6= ββ, and thus

θ(∀ββ.ττ′)=∀ββ.θττ′. Noting that {θττ2/ββ}◦θ = θ ◦ {ττ2/ββ},

A,IH

M;Σ;θΓΓ.C θe1 :∀ββ.θττ′

M;Σ;θΓΓ.C θ(e1ττ2) : θ{ττ2/ββ}ττ′
.

Case e1 e2.

By rule RCT-APP, it must be the case that

A

Σ Σ1�Σ2

B

M;Σ1;ΓΓ.C e1 : ττ2 → ττ

C

M;Σ2;ΓΓ.C e2 : ττ2

M;Σ;ΓΓ.C e1 e2 : ττ
.

Then, by IH,

(1) M;Σ1;θΓΓ.C θe1 : θ(ττ2 → ττ) and

344 APPENDIX B. PROOFS: MIXING AFFINE & CONVENTIONAL TYPES

(2) M;Σ2;θΓΓ.C θe2 : θττ2,

and thus M;Σ;θΓΓ.C θ(e1 e2) : θττ.

Case (⇐
g f
τ′) e′.

By rule RCT-BOUNDARY, it must be the case that

A

M;Σ;•.A e′ : τ′
B

FTV(τ′)=;
M;Σ;ΓΓ.C (⇐

g f
τ′) e′ : (τ′)C

,

where (τ′)C = ττ.

Note that θτ′ = τ′. Then,

A,IH (part 2)

M;Σ;•.A θe′ : θτ′
B

FTV(θτ′)=;
M;Σ;θΓΓ.C θ (⇐

g f
τ′) e′ : θ((τ′)C)

.

Case (⇐
g f
τ′)` v′.

There are three ways to type such an expression:

• If by rule RCT-BLESSED, it must be the case that

A

M;Σ1,Σ2;•.A v′ : τ′
B

〈τ′〉 =A

C

FTV(τ′)=;
M;[Σ1]`,` :B, [Σ2]`;ΓΓ.C (⇐

g f
τ′)` v′ : (τ′)C

,

where (τ′)C = ττ and [Σ1]`,` :B, [Σ2]` =Σ.

Note that θτ′ = τ′. Then,

A,IH (part 2)

M;Σ1,Σ2;•.A θv′ : θτ′
B

〈θτ′〉 =A

C

FTV(θτ′)=;
M;[Σ1]`,` :B, [Σ2]`;θΓΓ.C θ (⇐

g f
τ′)` v′ : θ(τ′)C

.

B.2. EVALUATION CONTEXTS AND SUBSTITUTION 345

• If by rule RCT-DEFUNCT, it must be the case that

A

〈τ′〉 =A

B

FTV(τ′)=;
M;[Σ1]`,` :D, [Σ2]`;ΓΓ.C (⇐

g f
τ′)` v′ : (τ′)C

,

where (τ′)C = ττ and [Σ1]`,` :B, [Σ2]` =Σ.

Note that θτ′ = τ′. Then,

A

〈θτ′〉 =A

B

FTV(θτ′)=;
M;[Σ1]`,` :D, [Σ2]`;θΓΓ.C θ (⇐

g f
τ′)` v′ : θ(τ′)C

.

• The rule RCT-SEALED case is similar to the RCT-BLESSED

case, except that Σ is not protected.

That completes the first part.

2. By induction on the structure of e. Most cases are the same as the first

part, but I show several that differ non-trivially:

Case λx:τ′′. e′.

By rule RAT-ABS, it must be the case that

A

M;Σ;Γ, x : τ′′ .A e′ : τ′
B

〈Σ|FL(λx:τ′′. e′)〉t〈Γ|FV(λx:τ′′. e′)〉 = q

M;Σ;Γ.A λx:τ′′. e′ : τ′′
q−−◦ τ′

.

where τ= τ′′ q−−◦ τ′.
Note that FV(λx:τ′′. e′)=FV(θ (λx:τ′′. e′)), so

(1) 〈Γ|FV(θ (λx:τ′′. e′))〉 = q.

Then by lemma B.12,

(2) 〈θΓ|FV(θ (λx:τ′′. e′))〉 v q,

so

346 APPENDIX B. PROOFS: MIXING AFFINE & CONVENTIONAL TYPES

(3) 〈Σ|FL(θ (λx:τ′′. e′))〉t〈θΓ|FV(θ (λx:τ′′. e′))〉 = q′

where q′ v q.

Then,

A,IH

M;Σ;θ(Γ, x : τ′′).A θe′ : θτ′ (3)

M;Σ;θΓ.A θ (λx:τ′′. e′) : θ(τ′′
q′
−−◦ τ′)

· · · q′ v q · · ·
τ′′

q′
−−◦ τ′ <: τ′′

q−−◦ τ′

M;Σ;θΓ.A θ (λx:τ′′. e′) : θ(τ′′
q−−◦ τ′)

.

Case e1 e2.

By rule RAT-APP, it must be the case that

A

M;Σ1;Γ1 .A e1 : τ2
q′
−−◦ τ

B

M;Σ2;Γ2 .A e2 : τ2

M;Σ1�Σ2;Γ1�Γ2 .A e1 e2 : τ
,

using the notation of definition B.5.

Then

(1) M;Σ1;θΓ1 .A θe1 : θ(τ2
q′
−−◦ τ) by A, IH

(2) M;Σ2;θΓ2 .A θe2 : θτ2 by B, IH

(3) θΓ (θΓ1,Γ′2)� (θΓ2,Γ′1) by lemma B.13

(4) M;Σ1;θΓ1,Γ′2 .A θe1 : θ(τ2
q′
−−◦ τ) by (1), weak.

(5) M;Σ2;θΓ2,Γ′1 .A θe2 : θτ2 by (2), weak.

(6) M;Σ;θΓ.A θ(e1 e2) : θτ by (3–5).

Case `.

By rule RAT-LOC, it must be the case that

` : τ′ ∈Σ
M;Σ;Γ.A ` : ref τ′

,

where τ= ref τ′.

B.2. EVALUATION CONTEXTS AND SUBSTITUTION 347

Note that FTV(Σ)=;, so FTV(τ′)=;, so θτ′ = τ′. Then,

` : θτ′ ∈Σ
M;Σ;θΓ.A θ` : θ (ref τ′)

.

Case (τ⇐
f g

)e′.

By rule RAT-BOUNDARY, it must be the case that

A

M;Σ;•.C e′ : τC

B

FTV(τ)=;
M;Σ;Γ.A (τ⇐

f g
)e′ : τ

.

Then,
A,IH (part 1)

M;Σ;•.C θe′ : θ(τC)

B,θτ= τ
FTV(θτ)=;

M;Σ;θΓ.A θ (τ⇐
f g

)e′ : θτ
.

The remaining cases are the same as in the first part, with context

splitting as in this (the second) part.

LEMMA 7.6 (No hidden locations, restated from p. 183).

The type of a value reveals whether locations might appear in that value:

1. If M;Σ;•.C v : ττ then Σ.C v worthy.

2. If M;Σ;• .A v : τ then 〈Σ|FL(v)〉 v 〈τ〉. That is, if τ is unlimited then
Σ;•.A v worthy.

Proof. By mutual induction on v and v.

1. By cases on v:

Case Λαα.v′.

By inversion of rule RCT-TABS and the induction hypothesis at v′,
since FL(v′)=FL(Λαα.v′).

Case λx:ττ′.e′.

By inversion of rule RCT-ABS.

348 APPENDIX B. PROOFS: MIXING AFFINE & CONVENTIONAL TYPES

Case (⇐
g f
τ′)` v′.

There three possible rules for typing this term: rule RCT-BLESSED,

rule RCT-DEFUNCT, and rule RCT-SEALED.

The first two require that Σ= [Σ1]`,` : ττ, [Σ2]` for particular Σ1, Σ2,

and ττ. By inspection of the definition of [Σ]`, it is clear that there

are no bare FA types in the range of Σ. Thus, 〈Σ|FL(v)〉 =U.

For rule RCT-SEALED, by inversion, it must be the case that

(1) 〈τ′〉 =U and

(2) M;Σ;•.A v′ : τ′.

By the induction hypothesis (part 2),

(3) 〈Σ|FL(v′)〉 v 〈τ′〉 =U.

Since FL((⇐
g f
τ′)` v′) = FL(v′)∪ {`}, and since Σ(`) = ττ′, we see that

〈Σ|FL(v)〉 =U.

2. By cases on v:

Case Λαq.v′.

By rule RAT-TABS, it must be the case that

(1) M;Σ;•.A Λα
q.v′ :∀αq.τ′ where

(2) ∀αq.τ′ = τ′, and thus

(3) 〈τ〉 = 〈∀αq.τ′〉 = 〈τ′〉.

By inversion, it must be the case that

(4) M;Σ;•.A v′ : τ′.

By the induction hypothesis,

(5) 〈Σ|FL(v′)〉 v 〈τ′〉,

and since FL(v′)=FL(v), we have that 〈Σ|FL(v)〉 v 〈τ〉.
Case λx:τ′. e′.

Let q= 〈τ〉. Then by inversion of rule RAT-ABS,

(1) q= q1 tq2 where

(2) 〈•|FV(v)〉 = q1 and

B.2. EVALUATION CONTEXTS AND SUBSTITUTION 349

(3) 〈Σ|FL(v)〉 = q2.

Since q1 =U=⊥, we know that q2 = q= 〈τ〉.
Case 〈v1,v2〉.

This has a pair type of the form τ1 ⊗τ2, and therefore

〈Σ|FL(v)〉 = 〈Σ|FL(v1)∪FL(v2)〉 def. of FL(〈v1,v2〉)
= ∣∣Σ|FL(v1) ∪Σ|FL(v2)

∣∣ set theory

= 〈Σ|FL(v1)〉t〈Σ|FL(v2)〉 monotonicity of | · |
v 〈τ1〉t〈τ2〉 IH twice; monotonicity of t
= 〈τ〉 def. of 〈τ1 ⊗τ2〉.

Case `.

By inversion of rule RAT-LOC, this has type ref τ′ if and only if

` : τ′ ∈Σ. Then

〈τ〉 = 〈ref τ′〉
=A

= 〈•,` : τ′〉
= 〈Σ|{`}〉
= 〈Σ|FL(`)〉.

Case (τ⇐
f g

)•v′.

By inversion of rule RAT-WRAPPED, we know that

(1) M;Σ;•.C v′ : τC .

Then by part 1 of the induction hypothesis,

(2) 〈Σ|FL(v′)〉 =U.

Since FL(v)=FL(v′), we have that 〈Σ|FL(v)〉 =Uv q for all q.

LEMMA B.14 (Substitution and worthiness).

1. If Σ1 .C e worthy and Σ2 .C v worthy, where Σ Σ1�Σ2, then Σ .C

{v/x}e worthy.

350 APPENDIX B. PROOFS: MIXING AFFINE & CONVENTIONAL TYPES

2. If Σ1;Γ, x : τ.A e worthy and Σ2;•.A v worthy, where Σ Σ1�Σ2, then
Σ;Γ.A {v/x}e worthy.

Proof.

1. Suppose that Σ1 .C e worthy and Σ2 .C v worthy. Then by definition 7.5,

〈Σ1|FL(e)〉 = U and 〈Σ2|FL(v)〉 = U. This means that all the locations of e
have FC types or protected FA types in Σ1, and likewise for v and Σ2.

Since Σ Σ1�Σ2, by lemma B.4, Σ1 ∼U Σ2, so Σ1|FL(e) =Σ2|FL(v). Note

that FL({v/x}e)=FL(e)∪FL(v). Therefore, 〈Σ|FL({v/x}e)〉 = 〈Σ|FL(e)∪FL(v)〉 =
〈Σ1|FL(e)〉t〈Σ2|FL(v)〉 =U. Thus, Σ.C {v/x}e worthy.

2. Suppose that Σ1;Γ, x : τx .A e worthy and Σ2;•.A v worthy. Then by the

same reasoning as in the previous part, 〈Σ|FL({v/x}e)〉 = U. It remains to

be shown that 〈Γ|FV({v/x}e)〉 =U.

By definition 7.5, 〈Γ1, x : τx|FV(e)〉 =U. Since v types in the empty typing

context, we know that FV(v) =;. Then by induction on e, FV({v/x}e) =
FV(e)\ {x}. Thus, Γ1|FV({v/x}e) is merely a restriction of Γ1, x : τx|FV(e), so

its qualifier must be U as well. Thus, Σ;Γ1 .A {v/x}e worthy.

LEMMA 7.7 (Substitution, restated from p. 183).

1. If M;Σ1;ΓΓ,x : ττx .C e : ττ and M;Σ2;• .C v : ττx where Σ Σ1�Σ2, then
M;Σ;ΓΓ.C {v/x}e : ττ.

2. If M;Σ1;Γ, x : τx .A e : τ and M;Σ2;• .A v : τx where Σ Σ1�Σ2, then
M;Σ;Γ.A {v/x}e : τ.

Proof. By induction on the structure of the type derivation for e or e. We

consider each proof tree by the expression in its conclusion (where possible).

1. If x ∉FV(e), then {v/x}e= e, so the conclusion holds by weakening.

Otherwise, by cases in e, considering multiple type rules where necessary.

Let value substitution θ = {v/x}.

B.2. EVALUATION CONTEXTS AND SUBSTITUTION 351

Case Λαα.v′.

By rule RCT-TABS, it must be the case that

(1) M;Σ1;ΓΓ,x : ττx .C v′ : ττ′, where

(2) ττ=∀αα.ττ′.

By the induction hypothesis,

(3) M;Σ;ΓΓ.C θv′ : ττ′.

By evasive relettering, Λαα.θv′ = θ (Λαα.v′).

Then by rule RCT-TABS,

(4) M;Σ;ΓΓ.C θ(Λαα.v′) :∀αα.ττ′.

Case λy:ττy.e′.

Without loss of generality, assume that x 6= y. By rule RCT-ABS, it

must be the case that

(1) M;Σ1;ΓΓ,x : ττx,y : ττy .C e′ : ττ′ where

(2) ττ= ττy → ττ′ and

(3) Σ1 .C λy:ττy.e′ worthy.

By exchange and the induction hypothesis,

(4) M;Σ;ΓΓ,y : ττy .C θe′ : ττ′.

By lemma B.14,

(5) Σ.C θ(λy:ττy.e′) worthy.

Thus, by rule RCT-ABS, M;Σ;ΓΓ.C θ(λy:ττy.e′) : ττy → ττ′.

Case y.

Either x= y or x 6= y:

Case x= y.
Then ττ= ττx, by inversion of rule RCT-VAR.

Since θx= v,

(1) M;Σ2;•.C θx : ττ.

Then by weakening.

352 APPENDIX B. PROOFS: MIXING AFFINE & CONVENTIONAL TYPES

Case x 6= y.
Then θy= y, so by inversion of rule RCT-VAR, y : ττ ∈ΓΓ. Then

by rule RCT-VAR. Other cases where x ∉FV(e) will be similar.

Case e′
1ττ2.

By inversion of rule RCT-TAPP, we have that

(1) M;Σ1;ΓΓ,x : ττx .C e′
1 :∀αα.ττ′ where

(2) {ττ2/αα}ττ′ = ττ.

By the induction hypothesis,

(3) M;Σ;ΓΓ.C θe′
1 :∀αα.ττ′.

Then by rule RCT-TAPP,

(4) M;Σ;ΓΓ.C θ(e′
1ττ2) : {ττ2/αα}ττ′.

Case e1 e2.

By inversion of rule RCT-APP,

(1) M;Σ11;ΓΓ,x : ττx .C e1 : ττ′ → ττ and

(2) M;Σ12;ΓΓ,x : ττx .C e2 : ττ′,where

(3) Σ1 Σ11�Σ12,

for some ττ′.

By lemma 7.6, v is worthy, thus Σ2|U is sufficient for typing v.

By the induction hypothesis (twice),

(4) M;Σ11�Σ2|U;ΓΓ.C θe1 : ττ′ → ττ and

(5) M;Σ12�Σ2|U;ΓΓ.C θe2 : ττ′.

By lemma B.4,

(6) Σ11 Σ11�Σ2|U and

(7) Σ12 Σ12�Σ2|U,

and thus

(8) M;Σ11;ΓΓ.C θe1 : ττ′ → ττ and

(9) M;Σ12;ΓΓ.C θe2 : ττ′.

B.2. EVALUATION CONTEXTS AND SUBSTITUTION 353

Then by rule RCT-APP and weakening,

(10) M;Σ;ΓΓ.C θ(e1 e2) : ττ.

Case g.

By weakening, as before when x ∉FV(e).

Case f g.

x ∉FV(e).

Case (⇐
g f
τ′) e′.

By inversion of rule RCT-BOUNDARY, it must be the case that

(1) M;Σ1;•.A e′ : τ′.

Thus FV(e′)=;, so by weakening as before when x ∉FV(e).

Case (⇐
g f
τ′)` v′.

There are three rules that may be at the root of our type derivation.

In two, rules RCT-BLESSED and RCT-SEALED, this is as in the pre-

vious case where x ∉FV(e), noting that since τ′ remains wrappable.

We must consider the case of rule RCT-DEFUNCT.

Then we know that,

(1) (τ′)C = ττ,

(2) Σ1 = [Σ11]`,` :D, [Σ12]`,

(3) FTV(τ′)=;,

(4) τ′ ∈ W and

(5) 〈τ′〉 =A.

This is sufficient to prove that

(6) M;Σ1;ΓΓ.C (⇐
g f
τ′)`θ v′ : ττ

for any ΓΓ and v′. Then by weakening.

2. If x ∉ FV(e), then {v/x}e = e, so the conclusion holds by weakening.

Otherwise we consider cases on the root of the type derivation.

The structural cases for e are insufficient due to rules with overlapping

conclusions, so in the case of subsumption, we identify the rule at the

354 APPENDIX B. PROOFS: MIXING AFFINE & CONVENTIONAL TYPES

root of the derivation; when unambiguous among the remaining cases,

we identify the subject term at the root. (Let substitution θ = {v/x}.)

Case RAT-SUBSUME.

Then by inversion, we know that there exists some τ< such that

(1) M;Σ1;Γ, x : τx .A e : τ< and

(2) τ< <: τ.

By the induction hypothesis,

(3) M;Σ;Γ.A θe : τ<,

and then by rule RAT-SUBSUME.

Case Λαq.v′.

As for FC .

Case λy:τy. e′.

Without loss of generality, assume that x 6= y.

By inversion of rule RAT-ABS, we know that

(1) M;Σ1;Γ, x : τx, y : τy .A e′ : τ′ and

(2) 〈Γ, x : τx|FV(λy:τy. e′)〉t〈Σ1|FL(λy:τy. e′)〉 = qwhere

(3) τ= τy
q−−◦ τ′,

for some τ′ and q.

By exchange and the induction hypothesis,

(4) M;Σ1;Γ, y : τy .A θe′ : τ′.

By rules RAT-ABS and RAT-SUBSUME, it will suffice to show that

〈Γ|FV(λy:τy.θe′)〉t〈Σ|FL(λy:τy.θe′)〉 v q. If q=A, then this holds trivially,

so we only need to show the case where q=U. Assuming that q=U,

it suffices to show that Σ;Γ.A θ (λy:τy. e′) worthy.

If q=U then by (2),

(5) 〈Γ, x : τx|FV(λy:τy. e′)〉 =U and

(6) 〈Σ1|FL(λy:τy. e′)〉 =U.

That is,

B.2. EVALUATION CONTEXTS AND SUBSTITUTION 355

(7) Σ1;Γ, x : τx .A λy:τy. e′ worthy.

Because we already considered the case where x ∉FV(e) (trivial, by

weakening), we consider here only the case where x ∈FV(e). This

means that x ∈ dom(Γ, x : τx|FV(λy:τy. e′)). Then from (5) and by the

definition of qualifiers of typing contexts, this means that 〈τx〉 =U.

Since M;Σ2;•.A v : τx, by lemma 7.6,

(8) Σ2;•.A v worthy.

Then by lemma B.14, (7), and (8),

(9) Σ;Γ.A θ (λy:τy. e′) worthy,

as desired.

Case y.

If x 6= y, then as before when x ∉FV(e).

Otherwise, τ= τx by rule RAT-VAR.

Since θ y= v,

(1) M;Σ2;•.A θy : τ.

Then by weakening.

Case e′1τ2.

As for FC .

Case e1 e2.

By inversion of rule RAT-APP,

(1) M;Σ11;Γ1 .A e1 : τ′
q−−◦ τ,

(2) M;Σ12;Γ2 .A e2 : τ′,

(3) Σ1 Σ11�Σ12,and

(4) Γ, x : τx Γ1�Γ2

for some τ′.

By the definition of context splitting, there are three ways to reach

(4):

356 APPENDIX B. PROOFS: MIXING AFFINE & CONVENTIONAL TYPES

Case
Γ Γ′1�Γ2 〈τx〉 =A

Γ, x : τx Γ′1, x : τx�Γ2

.

In particular, x ∉ dom Γ2, so it must not be free in e2; thus

θe2 = e2.

We apply the induction hypothesis only to e1, yielding

(1) M;Σ11�Σ2;Γ′1 .A θe1 : τ′
q−−◦ τ.

By rule RAT-APP,

(2) M;Σ;Γ.A θ(e1 e2) : τ.

Case
Γ Γ1�Γ

′
2 〈τx〉 =A

Γ, x : τx Γ1�Γ
′
2, x : τx

.

By symmetry.

Case
Γ Γ′1�Γ

′
2 〈τx〉 =U

Γ, x : τx Γ′1, x : τx�Γ
′
2, x : τx

.

As in the RCT-APP for FC .

Case f ,g f ,`.

x ∉FV(e).

Case 〈v1,v2〉.
As in the RAT-APP case above.

Case let〈y1, y2〉 = e1 in e2.

As in the RAT-APP case above.

Case (τ⇐
f g

)e′.

By inversion of rule RAT-BOUNDARY, it must be the case that

(1) M;Σ1;•.C e′ : τC .

Thus FV(e)=;.

Case (τ⇐
f g

)•v′.

As in the previous case, with a second premise that τC ∈ W.

B.3. PRESERVATION 357

B.3 Preservation

Observe that changing the type of a location from B to D in a store context Σ

does not break the typing of an expression using Σ. Furthermore, changing

the value in a location in the store from B to D does not change the typing of

the store, except that it updates the type associated with that location in the

store context. To be precise:

LEMMA B.15 (Going defunct).

1. If M;Σ1,` :B;•.C e : ττ then M;Σ1,` :D;•.C e : ττ

2. If M;Σ1,` :B;•.A e : τ then M;Σ1,` :D;•.A e : τ

3. If M;Σ1, [Σ2]`,` :D;•.C e : ττ then M;Σ1,Σ2|U,` :D;•.C e : ττ

4. If M;Σ1, [Σ2]`,` :D;•.A e : τ then M;Σ1,Σ2|U,` :D;•.A e : τ

5. If M;Σ1, [Σ′]`,` :BB s] {` 7→ BLSSD} :Σ2, [Σ′]`,` :B

then M;Σ1,Σ′|U,` :DB s] {` 7→ DFNCT} :Σ2,Σ′,` :D.

Proof.

1. Observe that there are only two rules that mention store context bindings

of the form ` : ττ′ (note that ττ′ is an FC types):

RCT-BLESSED Then the subterm types in the new store context by

rule RCT-DEFUNCT.

RCT-DEFUNCT Vacuous, as it requires that ` :D, which contradicts the

assumption.

Thus, we can construct a new derivation.

2. Likewise.

3. By induction on the length of Σ2. The only rule that makes use of a

protected binding like `′ : [τ]` is rule RCT-BLESSED. But since ` :D, that

rule never applies. Thus, such a binding for `′ is irrelevant to the typing.

The remaining bindings are present in Σ2|U.

358 APPENDIX B. PROOFS: MIXING AFFINE & CONVENTIONAL TYPES

4. Likewise.

5. By inversion of rule RS-LOCC,

(1) Σ1, [Σ′]`,` :B Σ′
1�Σ

′
2,

(2) M;Σ′
1B s :Σ2, [Σ′]`,and

(3) M;Σ′
2;•.C BLSSD :B

for some Σ′
1 and Σ′

2.

Note that (3) requires no context to type, so any affine assumptions in

Σ1, [Σ′]`,` : B may be distributed to Σ′
1. (If not all of them are, we may

assume that they are by weakening.) Hence,

(4) M;Σ1, [Σ′]`,` :BB s :Σ2, [Σ′]`.

Now by induction on the length of s: Consider that the derivation of (4)

types each value vi in the range of s using Σ′
i, [Σ

′]`,` :B where Σ′
i is some

portion split from Σ1. By parts 1 and 2 of this lemma, each vi may be

given the same type using Σ′
i, [Σ

′]`,` : D. Then by parts 3 and 4, each

value vi may be given the same type using Σ′
i,Σ

′|U,` :D. Thus,

(5) M;Σ1,Σ′|U,` :DB s :Σ2, [Σ′]`.

Then by lemma B.7,

(6) M;Σ1,Σ′|U,` :DB s :Σ2,Σ′.

Note that

(7) Σ1,Σ′|U,` :D Σ1,Σ′|U,` :D�Σ1|U,Σ′|U,` :D and

(8) M;Σ1|U,Σ′|U,` :D;•.C DFNCT :D.

Then by rule RS-LOCC and (6–8),

(9) M;Σ1,Σ′|U,` :DB s] {` 7→ DFNCT} :Σ2,Σ′,` :D.

B.3. PRESERVATION 359

LEMMA B.16 (Canonical Forms).

1. For FC :

a) If M;Σ;ΓΓ.C v :∀αα.ττ then v is either:

• Λαα.v′ for some v′, or

• (⇐
g f

∀βq.τ′)` v′ where ∀αα.ττ= (∀βq.τ′)C for some `, g, f , βq, τ′,

and v′.

b) If M;Σ;ΓΓ.C v : ττ1 → ττ2 then v is either:

• λx:ττ1.e for some e, or

• (⇐
g f
τ1

q−−◦ τ2)` v′ where ττ1 → ττ2 = (τ1
q−−◦ τ2)C for some `, g, f , τ1,

q, τ2, and v′.

c) If M;Σ;ΓΓ.C v : {ρ} then v= (⇐
g f
ρ)` v′ for some `, g, f , ρ, and v′.

2. For FA :

a) If M;Σ;Γ.A v :∀αq.τ then v is either:

• Λαq.v′ for some v′, or

• (∀αq.τ⇐
f g

)•v′ for some f , g, and v′.

b) If M;Σ;Γ.A v : τ1
q−−◦ τ2 then v is either:

• λx:τ1. e for some e, or

• (τ1
q−−◦ τ2 ⇐

f g
)•v′ for some g, f , and v′.

c) If M;Σ;Γ.A v : τ1 ⊗τ2 then v = 〈v1,v2〉 for some v1 and v2.

d) If M;Σ;Γ.A v : ref τ then v = ` for some `.

e) If M;Σ;Γ.A v : {αα} then v = ({αα}⇐
f g

)•v′ for some `, g, f , αα, and v′.

Proof. We exhaustively consider the values and their possible types, showing

that no possibilities contradict the lemma:

1. By cases on v:

Case Λαα.v′.

This types only by rule RCT-TABS, which gives it a type of the form

∀αα.ττ. Therefore, Λαα.v′ is a possibility for part (a).

360 APPENDIX B. PROOFS: MIXING AFFINE & CONVENTIONAL TYPES

Case λx:ττ.e.

This types only by rule RCT-ABS, which gives it a type of the form

ττ→ ττ′. Therefore, λx:ττ.e is a possibility for part (b).

Case (⇐
g f
τ)` v′.

This types only by rules RCT-SEALED, RCT-BLESSED, and RCT-

DEFUNCT, all of which require that τ ∈ W. Each of these gives v
type τC . By cases on τ:

Case ρ.
Then τC = {ρ}, so this is a possibility for part (c).

Case τ1
q−−◦ τ2.

Then τC = (τ1
q−−◦ τ2)C , so this is a possibility for part (b).

Case ∀αq.τ′.
Then τC = (∀αq.τ′)C , so this is a possibility for part (a).

Case {αα}.
Vacuous: contradicts the premise that τ ∈ W .

2. In FA , besides the rules mentioned for each syntactic form, each may

type by rule RAT-SUBSUME with the syntax-specific rule proving the

premise to the subsumption. We merely note that subtyping relates only

types that are the same but for potentially different qualifiers q on each

function type, which we do not distinguish in this lemma.

By cases on v:

Case Λαq.v′.

This types only by rule RAT-TABS, which gives it a type of the form

∀αq.τ; thus part (a).

Case λx:τ. e.

This types only by rule RAT-ABS, which gives it a type of the form

τ1
q−−◦ τ2; thus part (b).

Case 〈v1,v2〉.
This types only by rule RAT-PAIR, which gives it a type of the form

τ1 ⊗τ2; thus part (c).

B.3. PRESERVATION 361

Case `.

This types only by rule RAT-LOC, which gives it a type of the form

ref τ; thus part (d).

Case (τ⇐
f g

)•v′.

This types only by rule RAT-WRAPPED, which requires that τC ∈ W.

By cases on τ:

Case ρ.
Then τC = {ρ}, which contradicts that τC ∈ W; thus, vacuous.

Case τ1
q−−◦ τ2.

This is a possibility for part (b).

Case ∀αq.τ′.
This is a possibility for part (a).

Case {αα}.
This is a possibility for part (e).

LEMMA 7.8 (Preservation, restated from p. 184).

If MBC1 : ττ and C1 7−→M C2 then MBC2 : ττ.

Proof. Let (s1,e01) = C1 and (s2,e02) = C2. Since MB (s1,e01) : ττ, then by

inversion of rule RCONF, we know that

(i) (∀m ∈M) M`m okay,

(ii) M;Σ1B s1 :Σ,

(iii) Σ Σ1�Σ2 and

(iv) M;Σ2;•.C e01 : ττ.

Now by cases on the derivation of (s1,e01) 7−→M (s2,e02):

Case
(s1,e1)−→M (s2,e2)

(s1,E[e1]) 7−→M (s2,E[e2])
.

Then by lemma B.11, there exist some Σ21�Σ22!Σ2 and ττ′ such that

(v) M;Σ21;•.C e1 : ττ′ and

362 APPENDIX B. PROOFS: MIXING AFFINE & CONVENTIONAL TYPES

(vi) M;Σ22;•.C E : [ττ′]ττ.

We need to find some Σ′ Σ′
1�Σ

′
21�Σ

′
22 such that

(ii′) M;Σ′
1B s2 :Σ′,

(v′) M;Σ′
21;•.C e2 : ττ′, and

(vi′) M;Σ′
22;•.C E : [ττ′]ττ.

Then by instantiating (vi′), we have M;Σ′
21�Σ

′
22;•.C E[e2] : ττ, and the

rest follows by rule RCONF. (If s1 = s2, we let Σ′ = Σ and Σ′
1 = Σ1 and

Σ′
21 =Σ21 and Σ′

22 =Σ22; then it suffices to show that M;Σ21;•.C e′
2 : ττ′.)

By cases on the derivation of (s1,e1)−→M (s2,e2):

Case (Λαα.v)ττ2 −→M {ττ2/αα}v.

By inversion of rule RCT-TAPP, we know that

(1) M;Σ21;•.C Λαα.v :∀αα.ττ1 where

(2) ττ′ = {ττ2/αα}ττ1.

Then, by inversion of rule RCT-TABS, we know that

(3) M;Σ21;•.C v : ττ1.

By lemma 7.4, noting that {ττ2/αα} respects qualifiers, we then con-

clude that

(4) M;Σ21;•.C {ττ2/αα}v : {ττ2/αα}ττ2.

Case (λx:ττx.e)v−→M {v/x}e.

By inversion of rule RCT-APP, we know that there exist some

Σ211�Σ212!Σ21 such that

(1) M;Σ211;•.C λx:ττx.e : ττx → ττ′ and

(2) M;Σ212;•.C v : ττx.

Then, by inversion of rule RCT-ABS on the former, we know that

(3) M;Σ211;•,x : ττx .C e : ττ′.

By lemma 7.7, we have that M;Σ21;•.C {v/x}e : ττ′.

B.3. PRESERVATION 363

Case
(g : ττ′′ = v) ∈M

g−→M v
.

By inversion of rule RCT-MOD, ττ′′ = ττ′.

Then

(1) M` g : ττ′ = v okay by (i),

(2) M;• C̀ v : ττ′ by inv. of MODULEC,

(3) M;•;•.C v : ττ′ by lemma 7.1, and

(4) M;Σ21;•.C v : ττ′ by weakening.

Case
(f : τ′′ = v) ∈M

f g −→M (⇐
g f
τ′′) f

.

By inversion of rule RCT-MODA, (τ′′)C = ττ′.

Then

(1) M;Σ21;•.A f : τ′′ by RAT-MOD,

(2) M;Σ21;•.C (⇐
g f
τ′′) f : ττ′ by RCT-BOUNDARY.

Case
v 6= ({αα} ⇐

f ′g′
)•v′

(s1, (⇐
g f
τ′′)v)−→M (s1] {` 7→ BLSSD}, (⇐

g f
τ′′)` v)

.

By inversion of rule RCT-BOUNDARY,

(1) M;Σ21;•.A v : τ′′ where

(2) (τ′′)C = ττ′.

Because v 6= ({αα} ⇐
f ′g′

)•v′, by the contrapositive of lemma B.16, we

know that τ′′ is not of the form {αα}; thus

(3) τ′′ ∈ W .

Then by cases on 〈τ′′〉:
Case U.

Then by rule RCT-SEALED and weakening, M;Σ21,` : B;• .C

(⇐
g f
τ′′)` v : ττ′. Let Σ′

21 = Σ21,` : B, Σ′
22 = Σ22,` : B, and so on.

Clearly M;Σ1,` :BBs1]{` 7→ BLSSD} :Σ1,` :B by rule RS-LOCC

and weakening.

364 APPENDIX B. PROOFS: MIXING AFFINE & CONVENTIONAL TYPES

Case A.
Then by rule RCT-BLESSED,

(4) M;[Σ21]`,` :B;•.C (⇐
g f
τ′′)` v : ττ′.

That satisfies (v′).
Then let

(5) Σ′
1 =Σ1, [Σ21|A]`,` :B,

(6) Σ′
21 = [Σ21]`,` :B,

(7) Σ′
22 =Σ22, [Σ21|A]`,` :B,and

(8) Σ′ =Σ|U,Σ1|A,Σ22|A, [Σ21|A]`,` :B.

It should be apparent that Σ′ =Σ′
1�Σ

′
21�Σ

′
22.

From (vi) and by weakening,

(9) M;Σ′
22;•.C E : [ττ′]ττ.

That satisfies (vi′).
It remains to show (ii′): M;Σ′

1B s2 :Σ′. Then,

(10) M;Σ1B s1 :Σ by (ii), lemma B.4

(11) M;Σ1B s1] {` 7→ BLSSD} :Σ,` :B by RS-LOCC

(12) M;Σ1B s2 :Σ,` :B by subst.

(13) M;Σ1B s2 :Σ|U,Σ1|A,Σ21|A,Σ22|A,` :B

by lemma B.4

(14) M;Σ1B s2 :Σ|U,Σ1|A,Σ21|A, [Σ22|A]`,` :B

by lemma B.7

(15) M;Σ1B s2 :Σ′ by (8)

(16) M;Σ′
1B s2 :Σ′ by weakening.

Case (s, (⇐
g f
τ′′)(({αα} ⇐

f ′g′
)•v))−→M (s,v).

By inversion of rules RCT-BOUNDARY and RAT-WRAPPED, we

know that

(1) ττ′ = αα and

(2) M;Σ21;•.C v : αα.

B.3. PRESERVATION 365

Case (s1, ((⇐
g f

∀αq.τ1)` v)ττ2)−→M check (s1,`,〈τ1〉, (⇐
g f

{ττA
2 /αq}τ1)(vττA

2),g).

Consider the three cases of check:

Case 〈∀αq.τ1〉 =U.
Then

(1) (s1,e1)−→M (s1, (⇐
g f

{ττA
2 /αq}τ1)(vττA

2)).

By inversion of rules RCT-TAPP and RCT-SEALED,

(2) M;Σ21;•.A v :∀αq.τ1 and

(3) ττ′ = ({ττA
2 /αq}τ2)C .

Then

(4) M;Σ21;•.A vττA
2 : {ττA

2 /αq}τ1 by RAT-TAPP

(5) M;Σ21;•.C (⇐
g f

{ττA
2 /αq}τ1)(vττA

2) : ({ττA
2 /αq}τ1)C

by RCT-Boundary.

Case 〈∀αq.τ1〉 =A and s1 = s′1] {` 7→ BLSSD}.
Then

(1) (s1,e1)−→M (s′1] {` 7→ DFNCT}, (⇐
g f

{ττA
2 /αq}τ1)(vττA

2)).

By inversion of rules RCT-TAPP and RCT-BLESSED,

(2) M;Σ′
21;•.A v :∀αq.τ1 where

(3) Σ21 = [Σ′
21]`,` :B and

(4) ττ′ = ({ττA
2 /αq}τ2)C .

Then,

(5) M;Σ′
21,` :D;•.A v :∀αq.τ1 by weakening,

(6) M;Σ′
21,` :D;•.A vττA

2 : {ττA
2 /αq}τ1

by RAT-TAPP

(7) M;Σ′
21,` :D;•.C (⇐

g f
{ττA

2 /αq}τ1)(vττA
2) : ({ττA

2 /αq}τ1)C

by RCT-Boundary.

This satisfies (ii′).
Now let

(8) Σ′
1 =Σ1|A,Σ′

21|U,` :D,

(9) Σ′
22 =Σ22|A,Σ′

21|U,` :D,and

366 APPENDIX B. PROOFS: MIXING AFFINE & CONVENTIONAL TYPES

(10) Σ′ =Σ1|A,Σ22|A,Σ′
21,` :D.

It should be apparent that Σ′ =Σ′
1�Σ

′
21�Σ

′
22.

Suppose some e◦ and Σ◦ such that M;Σ◦;•.C e◦ : ττ′. Then,

(11) M;Σ◦�Σ22;•.C E[e◦] : ττ by (vi),

(12) M;Σ◦�Σ22|A,Σ21|U;•.C E[e◦] : ττ by Σ22 ∼U Σ21,

(13) M;Σ◦�Σ22|A, ([Σ′
21]`,` :B)|U;•.C E[e◦] : ττ

by (3),

(14) M;Σ◦�Σ22|A, [Σ′
21]`,` :B;•.C E[e◦] : ττ

by def. Σ|U,

(15) M;Σ◦�Σ22|A,Σ′
21|U,` :D;•.C E[e◦] : ττ

by lemma B.15,

(16) M;Σ◦�Σ′
22;•.C E[e◦] : ττ by (9).

This satisfies (vi′).
It remains to show that M;Σ′

1B s2 :Σ′:

(17) M;Σ1B s′1] {` 7→ BLSSD} :Σ by (ii), subst,

(18) M;Σ1|A, [Σ′
21]`,` :BB s′1] {` 7→ BLSSD} :

Σ1|A,Σ22|A, [Σ′
21]`,` :B by (3)

(19) M;Σ1|A,Σ′
21|U,` :DB s′1] {` 7→ DFNCT} :

Σ1|A,Σ22|A,Σ′
21,` :D by lemma B.15

(20) M;Σ′
1B s2 :Σ′ by (8, 10), subst.

Otherwise.
Then (s1,e1) −→M blame g, and by rule RBLAME, blame g has

whatever type is needed.

Case (s1, ((⇐
g f
τ1

q−−◦ τ2)` v1)v2)−→M check (s1,`,q, (⇐
g f
τ2)(v1 ((τ1 ⇐

f g
)v2)),g).

Consider the three cases of check:

Case q=U.
Then

(1) (s1,e1)−→M (s1, (⇐
g f
τ2)(v1 ((τ1 ⇐

f g
)v2)))

By inversion of rules RCT-APP and RCT-SEALED, there exist

some Σ211�Σ212!Σ21 such that

B.3. PRESERVATION 367

(2) M;Σ211;•.A v1 : τ1
q−−◦ τ2,

(3) M;Σ212;•.C v2 : τC
1 ,and

(4) ττ′ = τC
2 .

Then

(5) M;Σ212;•.A (τ1 ⇐
f g

)v2 : τ1 by (3–4),

RAT-BOUNDARY
(6) M;Σ21;•.A v1 ((τ1 ⇐

f g
)v2) : τ2 by (2, 5), RAT-APP.

Case q=A and s1 = s′1] {` 7→ BLSSD}.
Then

(1) (s1,e1)−→M (s′1] {` 7→ DFNCT}, (⇐
g f
τ2)(v1 ((τ1 ⇐

f g
)v2)))

By inversion of rule RCT-APP, there exist some Σ211�Σ212!

Σ21 such that

(2) M;Σ211;•.C (⇐
g f
τ1

q−−◦ τ2)v1 : τC
1 → τC

2 ,

(3) M;Σ212;•.C v2 : τC
1 ,and

(4) ττ′ = τC
2 .

Then by inversion of rule RCT-BLESSED, there exists some

Σ′
211 such that

(5) M;Σ′
211;•.A v1 : τ1

q−−◦ τ2 where

(6) Σ211 = [Σ′
211]`,` :B.

Then for v2,

(7) M;Σ212|A,Σ211|U;•.C v2 : τC
1 by Σ212 ∼U Σ211,

(8) M;Σ212|A, [Σ′
211]`,` :B;•.C v2 : τC

1

by (6),

(9) M;Σ212|A,Σ′
211|U,` :D;•.C v2 : τC

1

by lemma B.15.

(10) M;Σ212|A,Σ′
211|U,` :D;•.A (τ1 ⇐

f g
)v2 : τ1

by RAT-BOUNDARY.

Then,

(11) M;Σ′
211,` :D;•.A v1 : τ1

q−−◦ τ2 by weakening,

(12) M;Σ′
211,Σ212|A,` :D;•.A v1 ((τ1 ⇐

f g
)v2) : τ2

by (10), RAT-APP,

368 APPENDIX B. PROOFS: MIXING AFFINE & CONVENTIONAL TYPES

(13) M;Σ′
211,Σ212|A,` :D;•.C (⇐

g f
τ2)(v1 ((τ1 ⇐

f g
)v2)) : τC

2

by RCT-BOUNDARY.

This satisfies (ii′).
Now let

(14) Σ′
1 =Σ1|A,Σ′

211|U,` :D,

(15) Σ′
21 =Σ′

211,Σ212|A,` :D,

(16) Σ′
22 =Σ22|A,Σ′

211|U,` :D,and

(17) Σ′ =Σ1|A,Σ22|A,Σ′
211,Σ212|A,` :D.

It should be apparent that Σ′ =Σ′
1�Σ

′
21�Σ

′
22.

Suppose some e◦ and Σ◦ such that M;Σ◦;•.C e◦ : ττ′. Then,

(18) M;Σ◦�Σ22;•.C E[e◦] : ττ by (vi),

(19) M;Σ◦�Σ22|A,Σ21|U;•.C E[e◦] : ττ by Σ22 ∼U Σ21,

(20) M;Σ◦�Σ22|A, ([Σ′
211]`,Σ212|A,` :B)|U;•.C E[e◦] : ττ

by (6),

(21) M;Σ◦�Σ22|A, [Σ′
211]`,` :B;•.C E[e◦] : ττ

by def. Σ|U,

(22) M;Σ◦�Σ22|A,Σ′
211|U,` :D;•.C E[e◦] : ττ

by lemma B.15,

(23) M;Σ◦�Σ′
22;•.C E[e◦] : ττ by (16).

This satisfies (vi′).
It remains to show that M;Σ′

1B s2 :Σ′:

(24) M;Σ1B s′1] {` 7→ BLSSD} :Σ by (ii), subst,

(25) M;Σ1|A, [Σ′
211]`,` :BB s′1] {` 7→ BLSSD} :

Σ1|A,Σ22|A, [Σ′
211]`,Σ212|A,` :B by (6)

(26) M;Σ1|A,Σ′
211|U,` :DB s′1] {` 7→ DFNCT} :

Σ1|A,Σ22|A,Σ′
211,Σ212|A,` :D by lemma B.15

(27) M;Σ′
1B s2 :Σ′ by (14, 17), subst.

Otherwise.
Then (s1,e1) −→M blame g, and by rule RBLAME, blame g has

whatever type is needed.

B.3. PRESERVATION 369

That completes the CXT-C case of 7−→M . Now for the CXT-A case:

Case
(s1, e1)−→M (s2, e2)

(s1,E[e1]) 7−→M (s2,E[e2])
.

Then by lemma B.11, there exist some Σ21�Σ22!Σ2 and τ′ such that

(v) M;Σ21;•.A e1 : τ′ and

(vi) M;Σ22;•.A E : [τ′]τ.

We need to find some Σ′ Σ′
1�Σ

′
21�Σ

′
22 such that

(ii′) M;Σ′
1B s2 :Σ′,

(v′) M;Σ′
21;•.A e2 : τ′, and

(vi′) M;Σ′
22;•.A E : [τ′]τ.

Then by instantiating (vi′), we have M;Σ′
21�Σ

′
22;•.A E[e2] : τ, and the

rest follows by rule RCONF. (If s1 = s2, we let Σ′ = Σ and Σ′
1 = Σ1 and

Σ′
21 =Σ21 and Σ′

22 =Σ22; then it suffices to show that M;Σ21;•.A e2 : τ′.)

By cases on the derivation of (s1, e1)−→M (s2, e2):

Case (s1, (Λαq.v)τ2)−→M (s1, {αq/αq}v)).

By inversion of rule RAT-TAPP, we know that

(1) M;Σ21;•.A Λα
q.v :∀αq.τ1 and

(2) 〈τ2〉 v qwhere

(3) τ′ = {τ2/αq}τ1.

Then, by inversion of rule RAT-TABS, we know that

(4) M;Σ21;•.A v : τ1.

By (2), substitution {τ2/αq} respects qualifiers, so by lemma 7.4, we

then conclude that

(5) M;Σ21;•.A {τ2/αq}v : {τ2/αq}τ2.

370 APPENDIX B. PROOFS: MIXING AFFINE & CONVENTIONAL TYPES

Case (s1, (λx:τx. e)v)−→M (s1, {v/x}e).

As for FC .

Case
(g : τ′′ = v) ∈M

(s1, g)−→M (s1,v)
.

As for FC .

Case
(g : ττ′′ = v) ∈M

(s,g f)−→M (s, ((ττ′′)A ⇐
f g

)g)
.

By inversion of rule RAT-MODC, (ττ′′)A = τ′.
Then

(1) M;Σ21;•.C f : ττ′′ by RCT-MOD,

(2) M;Σ21;•.A (τ′′ ⇐
f g

)g : τ′ by RCT-BOUNDARY.

Case
(g :> τ′′ = g′) ∈M

(s,g f)−→M (s, (τ′′ ⇐
f g

)g′)
.

By inversion of rule RAT-MODI, τ′′ = τ′.
By (i),

(1) M` g :> τ′ = g′ okay,

and by inversion of rule INTERFACE

(2) (g′ : (τ′)C = v) ∈M.

Then,

(3) M;Σ21;•.C g′ : (τ′)C by RCT-MOD

(4) M;Σ21;•.A (τ′ ⇐
f g

)g′ : τ′ by RAT-BOUNDARY.

Case (s1, let〈x, y〉 = 〈v1,v2〉 in e)−→M (s1, {v1/x}{v2/y}e).

By inversion of rule RAT-LETPAIR,

(1) Σ21 Σ211�Σ212,

(2) M;Σ211;•.A 〈v1,v2〉 : τ1 ⊗τ2,and

(3) M;Σ212;•, x : τ1, y : τ2 .A e : τ′.

Then by inversion of rule RAT-PAIR,

B.3. PRESERVATION 371

(4) Σ211 Σ2111�Σ2112,

(5) M;Σ2111;•.A v1 : τ1,and

(6) M;Σ2112;•.A v2 : τ2.

By lemma B.4, Σ212�Σ2112 is defined. Then,

(7) M;Σ212�Σ2112;•.A {v2/y}e : τ′ by lemma 7.7,

(8) M;Σ21;•.A {v1/x}{v2/y}e : τ′ by lemma 7.7.

Case (s1,new v)−→M (s1] {` 7→ v},`).

By inversion of rule RAT-NEW,

(1) M;Σ21;•.A v : τ′′ where

(2) τ′ = ref τ′′.

Then let

(3) Σ′
1 =Σ1�Σ21,

(4) Σ′
21 = •,` : τ′′,

(5) Σ′
22 =Σ22,and

(6) Σ′ =Σ,` : τ′′.

Note that s2 = s1] {` 7→ v}. Then,

(7) M;Σ1B s1 :Σ by (ii),

(8) M;Σ1�Σ21B s1] {` 7→ v} :Σ,` : τ′′ by (1), RS-LOCA,

(9) M;Σ′
1B s2 :Σ′ by subst,

satisfying (ii′).

By rule RAT-LOC,

(10) M;•,` : τ′′;•.A ` : ref τ′′,

satisfying (v′).

Finally, by (vi) and Σ′
22 =Σ22,

(11) M;Σ′
22;•.A E : [τ′]τ,

for (vi′).

372 APPENDIX B. PROOFS: MIXING AFFINE & CONVENTIONAL TYPES

Case (s′1] {` 7→ v1},swap〈`,v2〉)−→M (s′1] {` 7→ v2},〈`,v1〉).
Note that s1 = s′1] {` 7→ v1} and s2 = s′1] {` 7→ v2}.

By inversion of rule RAT-SWAP,

(1) M;Σ21;•.A 〈`,v2〉 : ref τ1 ⊗τ2,where

(2) τ′ = ref τ2 ⊗τ1.

By inversion of rules RAT-PAIR and RAT-LOC,

(3) Σ21 =Σ212,` : τ1,

(4) M;•,` : τ1;•.A ` : ref τ1,and

(5) M;Σ212;•.A v2 : τ2.

From (ii), we know that

(6) M;Σ1B s′1] {` 7→ v1} :Σ1�Σ212�Σ22,` : τ1.

Then by inversion of rule RS-LOCA,

(7) Σ1 Σ11�Σ12,

(8) M;Σ11B s′1 :Σ11�Σ12�Σ212�Σ22,and

(9) M;Σ12;•.A v1 : τ1.

Let

(10) Σ′
1 =Σ11�Σ212,

(11) Σ′
21 =Σ12,` : τ2,

(12) Σ′
22 =Σ22,and

(13) Σ′ =Σ11�Σ12�Σ212�Σ22,` : τ2.

Then

(14) M;Σ11�Σ212B s′1] {` 7→ v2} :Σ11�Σ12�Σ212�Σ22,` : τ2.

by (5, 8), RS-LOCA,

(15) M;Σ′
1B s2 :Σ′ by subst,

for (ii′).

For (v′),

(16) M;•,` : τ2;•.A ` : ref τ2 by RAT-LOC,

B.3. PRESERVATION 373

(17) M;Σ12,` : τ2;•.A 〈`,v1〉 : ref τ2 ⊗τ1 by RAT-PAIR.

Finally, for (vi′), note that Σ′
22 =Σ22.

Case
v 6= (⇐

g′ f ′
ρ)` v′

(s, (τ′ ⇐
f g

)v)−→M (s, (τ′ ⇐
f g

)•v)
.

By inversion of rule RAT-BOUNDARY,

(1) M;Σ21;•.C v : (τ′)C and

(2) τ′ = τ.

Because v 6= (⇐
g′ f ′

ρ)` v′, by the contrapositive of lemma B.16, we

know that (τ′)C is not of the form {ρ}; thus

(3) (τ′)C ∈ W.

This is the necessary additional premise to show that

(4) M;Σ21;•.A (τ′ ⇐
f g

)•v : τ′

by rule RAT-WRAPPED.

Case (s, (τ′ ⇐
f g

)((⇐
g′ f ′

ρ)` v))−→M check (s,`,〈ρ〉,v,g′).

By inversion of rule RAT-BOUNDARY, M;Σ21;•.C (⇐
g′ f ′

ρ)` v : τC and

τ′ = τ.

Consider the three cases of check:

Case 〈ρ〉 =U.
Then

(1) (s1, e1)−→M (s1,v).

Then by inversion of rule RCT-SEALED,

(2) M;Σ21;•.A v : ρ where

(3) τC = ρC .

By lemma B.2, τ= ρ. Thus, by (2) and substitution,

(4) M;Σ21;•.A v : τ.

Case 〈ρ〉 =A and s1 = s′1] {` 7→ BLSSD}.
Then

(1) (s1, e1)−→M (s′1] {` 7→ DFNCT},v).

374 APPENDIX B. PROOFS: MIXING AFFINE & CONVENTIONAL TYPES

Then by inversion of rule RCT-BLESSED,

(2) M;Σ′
21;•.A v : ρ where

(3) Σ21 = [Σ′
21]`,` :B and

(4) τC = ρC .

By lemma B.2, τ= ρ. Then,

(5) M;Σ′
21;•.A v : τ by (2),

(6) M;Σ′
21,` :D;•.A v : τ by weakening.

This satisfies (ii′).
The remainder of this case follows the C-Bτ case above.

Otherwise.
Then (s1, e1) −→M blame g, and by rule RBLAME, blame g has

whatever type is needed.

Case (s, ((∀αq.τ1 ⇐
f g

)•v)τ2)−→M (s, ({τ2/αq}τ1 ⇐
f g

)(vτC
2)).

By inversion of rule RAT-TAPP,

(1) M;Σ21;•.A (∀αq.τ1 ⇐
f g

)•v :∀αq.τ1 where

(2) τ= {τ2/αq}τ1.

Then by inversion of rule RAT-WRAPPED,

(3) M;Σ21;•.C v :∀ββ. ({{ββ}/αq}τ1)C

Then,

(4) M;Σ21;•.C vτC
2 : ({τ2/αq}τ1)C by RCT-TAPP,

(5) M;Σ21;•.A ({τ2/αq}τ1 ⇐
f g

)(vτC
2) : {τ2/αq}τ1

by RAT-BOUNDARY.

Case (s, ((τ1
q−−◦ τ2 ⇐

f g
)•v1)v2)−→M (s, (τ2 ⇐

f g
)(v1 ((⇐

g f
τ1)v2))).

By inversion of rule RAT-APP,

(1) Σ21 Σ211�Σ212,

(2) M;Σ211;•.A (τ1
q−−◦ τ2 ⇐

f g
)•v1 : τ1

q−−◦ τ2 and

(3) M;Σ222;•.A v2 : τ1 where

(4) τ= τ2.

B.4. PROGRESS 375

Then by inversion of rule RAT-WRAPPED,

(5) M;Σ211;•.C v1 : τC
1 → τC

2 .

Then,

(6) M;Σ222;•.C (⇐
g f
τ1)v2 : τC

1 by RCT-BOUNDARY,

(7) M;Σ22;•.C v1 ((⇐
g f
τ1)v2) : τC

2 by RCT-APP,

(8) M;Σ22;•.A (τ2 ⇐
f g

)(v1 ((⇐
g f
τ1)v2)) : τ2 by RAT-BOUNDARY.

Note that τ2 = τ.

B.4 Progress

In this section I prove a progress lemma, starting with several definitions.

DEFINITION B.17 (Closed configurations and module contexts).

A configuration C is closed when all locations in the expression and the store
are mapped by the store. A module context M is closed when all module names
occurring in M are also defined in M. A configuration C is closed with respect
to a module context M when C is closed and all module names occurring in
C are defined in M.

DEFINITION B.18 (Redexes).

In the definition of the relation −→M , every rule has either the form (s,e)−→M C′ or
the form (s, e)−→M C′. We call the expressions e and e, respectively, FC redexes
and FA redexes, and denote the classes of redexes with the metasyntactic
variables R and R, respectively.

LEMMA B.19 (Redexes and evaluation contexts).

If (s1,e1) 7−→M (s2,e2), then either:

• We can decompose e1 =E[R] and e2 =E[e′
2]. Then for any other evalua-

tion context E′[]C , we have that (s1,E′[R]) 7−→M (s2,E′[e′
2]) as well.

376 APPENDIX B. PROOFS: MIXING AFFINE & CONVENTIONAL TYPES

• We can decompose e1 =E[R] and e2 =E[e′2]. Then for any other evalua-
tion context E′[]A , we have that (s1,E′[R]) 7−→M (s2,E′[e′2]) as well.

Proof. By cases on the derivation of (s1,e1) 7−→M (s2,e2).

DEFINITION B.20 (FA reduction).

While configurations contain a top-level FC expression, it will be helpful to
define the reduction relation 7−→M for configurations with an FA expression—of
the form (s, e)—as follows:

(s, e)−→M (s′, e′)

(s,E[e]) 7−→M (s′,E[e′])

(s,e)−→M (s′,e′)

(s,E[e]) 7−→M (s′,E[e′])

LEMMA B.21 (FA reduction).

If (s, e) 7−→M (s′, e′) then (s,E[e]) 7−→M (s′,E[e′]).

Proof. By cases on (s, e) 7−→M (s′, e′), following definition B.20:

Case
(s, e0)−→M (s′, e′0)

(s,E′[e0]) 7−→M (s′,E′[e′0])
.

Then E[E′] is an evaluation context, and E[E′[e0]] 7−→M E[E′[e′0]] by

rule CXT-A.

Case
(s,e0)−→M (s′,e′

0)

(s,E′[e0]) 7−→M (s′,E′[e′
0])

.

Then E[E′] is an evaluation context, and E[E′[e0]] 7−→M E[E′[e′
0]] by

rule CXT-C.

LEMMA 7.10 (Uniform evaluation, restated from p. 185).

For any C closed with respect to M, either C is faulty or an answer, or there
exists some C′ closed with respect to M such that C 7−→M C′.

B.4. PROGRESS 377

Proof. If C = blame g for some module g, then C is an answer. Otherwise, C
must be of the form (s,e).

We therefore generalize our induction hypothesis as follows.

1. For any s and e, if the configuration (s,e) is closed with respect to closed

M, then one of:

(Q) e is faulty with respect to s (and hence the configuration is faulty),

(A) e is a value (and hence the configuration is an answer), or

(R) there exist some s′ and e′ such that (s,e) |-> (s′,e′), which is also

closed with respect to M (let C′ = (s′,e′)).

2. For any s and e, if the configuration (s, e) is closed with respect to closed

M, then one of:

(Q) e is faulty with respect to s,

(A) e is a value, or

(R) there exist some s′ and e′ such that (s, e) 7−→M (s′, e′), which is also

closed with respect to M.

We proceed by mutual induction on the structures of e and e:

1. Cases on e:

Case v.

Then (A).

Case x.

Vacuous, because e is closed.

Case g.

Because C is closed in M, we know that there exists some (f : ττ=
v) ∈M, thus (s,g) 7−→M (s,v). Because M is closed, we know that v is

closed in M. Hence (R).

Case e1ττ2.

Consider the induction hypothesis at e1, noting that E1 = []ττ2 is an

evaluation context.

378 APPENDIX B. PROOFS: MIXING AFFINE & CONVENTIONAL TYPES

(Q) Then (Q).

(A) Let v1 = e1. Now by cases on v1:

Case Λαα.v′
1.

Then (s,e) 7−→M (s, {ττ2/αα}v′
1), hence (R).

Case λx:ττ′.e′.
Then v1 ∈QΛ, so (Q).

Case (⇐
g f
τ)` v′1.

If τ=∀αq.τ′ for some αq and τ′, then

(s,e) 7−→M check (s,`,〈τ′〉, (⇐
g f

{ττA /αq}τ′)(v′1ττ
A),g),

hence (R); otherwise (Q).

(R) That is, (s,e1) 7−→M (s′,e′
1). Then (s,E1[e1]) 7−→M (s′,E1[e′

1]) by

lemma B.19, hence, (R).

Case e1 e2.

Consider first the induction hypothesis at e1, noting that E1 = []e2

is an evaluation context.

(Q) Then (Q).

(A) Let v1 = e1, and note that E2 = v1 [] is an evaluation context.

We now apply the induction hypothesis to e2:

(Q) Then (Q).

(A) Let v2 = e2. Now by cases on v1:

Case Λαα.v′
1.

Then (Q).

Case λx:ττ.e′
1.

Then (s,e) 7−→M (s, {v2/x}e′
1), hence (R).

Case (⇐
g f
τ)` v′1.

If τ= τ1
q−−◦ τ2, then

(s,e) 7−→M check (s,`,〈τ′〉, (⇐
g f
τ2)(v′1 ((τ1 ⇐

f g
)v2)),g)

hence (R); otherwise (Q).

(R) That is, (s,e2) 7−→M (s′,e′
2). Then (s,E2[e2]) 7−→M (s′,E2[e′

2])

by lemma B.19, hence, (R).

B.4. PROGRESS 379

(R) That is, (s,e1) 7−→M (s′,e′
1). Then (s,E1[e1]) 7−→M (s′,E1[e′

1]) by

lemma B.19, hence, (R).

Case f g.

Because C is closed in M, we know that there exists some (f : τ=
v) ∈ M, thus (s, f g) 7−→M (s, (⇐

g f
τ) f); which is closed in M as well.

Hence (R).

Case (⇐
g f
τ) e1.

Apply part 2 of the induction hypothesis to (s, e1), noting that E′ =
(⇐

g f
τ)[] is an evaluation context:

(Q) Then (Q).

(A) Let v = e1. Then by cases on v:

Case ({αα} ⇐
f ′g′

)•v′.

Then (s,e) 7−→M (s,v′) by rule C-UNWRAP.

Otherwise.
Then (s,e) 7−→M (s] {` 7→ BLSSD}, (⇐

g f
τ)` v) by rule C-SEAL.

Hence, (R).

(R) That is, (s, e1) 7−→M (s′, e′1). Then by lemma B.21, (s,e) 7−→M
(s′, (⇐

g f
τ) e′1), so (R).

2. Cases on e:

Case v.

Then (A).

Case f .

As for FC in the previous case.

Case e1τ2.

This is the same as part 1, except that in the case where e1 is a

value, it might also be a location or pair. Both of these are in QΛ,

hence for both of these possibilities, (Q).

380 APPENDIX B. PROOFS: MIXING AFFINE & CONVENTIONAL TYPES

Case e1 e2.

This is the same as part 1, except that in the case where e1 is a

value, it might also be a location or pair. Both of these are in Qλ,

hence for both of these possibilities, (Q).

Case new e1.

By the induction hypothesis on e1, noting that E1 = new [] is an

evaluation context:

(Q) Then (Q).

(A) Let v = e1. Then (s, e) 7−→M (s] {` 7→ v},`).

(R) That is, (s, e1) 7−→M (s, e′1). Then (s, e) 7−→M (s,new e′1), hence (R).

Case swap e1.

By the induction hypothesis on e1, noting that E1 = swap [] is an

evaluation context:

(Q) Then (Q).

(A) Let v = e1. There are two possibilities, by cases on v:

Case 〈`,v2〉 where ∃s′,v1 s.t. s = s′] {` 7→ v1}.
Then (s, e) 7−→M (s′] {` 7→ v2},〈`,v1〉).

Otherwise.
Then v ∈Q↔

s , hence (Q).

(R) That is, (s, e1) 7−→M (s, e′1). Then (s, e) 7−→M (s,swap e′1), hence (R).

Case let〈x, y〉 = e1 in e2.

By the induction hypothesis at e1, noting that let〈x, y〉 = [] in e2 is

an evaluation context:

(Q) Then (Q).

(A) Then e1 is a value. If e1 has the form 〈v1,v2〉, then (s, e) 7−→M
(s, {v1/x}{v2/y}e2), hence (R). Otherwise, e1 ∈Q⊗, so (Q).

(R) Then (R).

Case g f .

Because C is closed in M, we know that one of:

• there is some (g : ττ = v) ∈ M, and thus (s, e) 7−→M (s, (ττA ⇐
f g

)f),
which is also closed in M; or

B.4. PROGRESS 381

• there is some (g :> τ = g′) ∈ M, and thus (s, e) 7−→M (s, (τ⇐
f g

)g′),
which is also closed in M;

hence (R).

Case (τ⇐
f g

)e1.

Apply part 1 of the induction hypothesis to (s,e1), noting that E′ =
(τ⇐

f g
)[] is an evaluation context:

(Q) Then (Q).

(A) Let v= e1. Then by cases on v:

Case (⇐
g′ f ′

ρ)` v′.

Then (s, e) 7−→M check (s,`,〈ρ〉,v′,g′), by rule A-UNSEAL.

Otherwise.
Then (s, e) 7−→M (s, (τ⇐

f g
)•v) by rule A-WRAP.

Hence, (R).

(R) That is, (s,e1) 7−→M (s′,e′
1). Then by lemma B.21, (s, e) 7−→M

(s′, (τ⇐
f g

)e′
1), so (R).

LEMMA 7.11 (Faulty expressions are ill-typed, restated from p. 185).

1. For expression Qs faulty with respect to s, there exist no M, Σ1, Σ2, and ττ

such that

• M;Σ1B s :Σ1�Σ2 and

• M;Σ2;•.C Qs : ττ.

2. For expression Qs faulty with respect to s, there exist no M, Σ1, Σ2, and τ

such that

• M;Σ1B s :Σ1�Σ2 and

• M;Σ2;•.A Qs : τ.

Proof by contradiction. We proceed by mutual induction on the structure of

Qs and Qs, taking the statement of the lemma as the induction hypothesis.

1. Suppose that M;Σ2;•.C Qs : ττ. Then by cases on Qs:

382 APPENDIX B. PROOFS: MIXING AFFINE & CONVENTIONAL TYPES

Case QΛττ2.

This types only by rule RCT-TAPP, which requires that QΛ have a

type ∀αα.ττ1. By cases on QΛ:

Case λx:ττ′.e′.
This has a function type.

Case (⇐
g f
τ′)` v′ where τ′ 6≈ ∀αq.τ′′.

This does not have a universal type.

Thus, both cases lead to a contradiction.

Case Qλv2.

This types only by rule RCT-APP, which requires that Qλ have a

type ττ1 → ττ2. By cases on Qλ:

Case Λαα.v′.
This has a universal type.

Case (⇐
g f
τ′)` v′ where τ′ 6≈ τ′1

q−−◦ τ′2.
This does not have a function type.

Thus, both cases lead to a contradiction.

Case E[Q′
s].

By our assumption,

(1) M;Σ1B s :Σ1�Σ2 and

(2) M;Σ2;•.C E[Q′
s] : ττ.

Then by lemma B.11,

(3) M;Σ21;•.C Q′
s : ττ′

for some ττ′ and Σ2 Σ21�Σ22.

By weakening,

(4) M;Σ2;•.C Q′
s : ττ′,

but by the induction hypothesis (part 1) this cannot be so.

Case E[Q′
s].

As in the previous case, using part 2 of the induction hypothesis.

2. Suppose that M;Σ1;•.A Qs : τ. Then by cases on Qs:

B.4. PROGRESS 383

Case QΛτ2.

By induction on the derivation, this must type by rule RAT-TAPP.

(The two rules that apply are RAT-TAPP and RAT-SUBSUME, and

apply the inner induction hypothesis to the latter until reaching

RAT-TAPP.) Rule RAT-TAPP requires that QΛ have a type ∀αq.τ1.

By cases on QΛ:

Case λx:τ′. e′.
This has a function type.

Case 〈v1,v2〉.
This has a product type.

Case `.
This has a reference type.

Case (τ′ ⇐
f g

)e′ where τ′ 6≈ ∀βq′
.τ′′.

This does not have a universal type.

Thus, all cases lead to a contradiction.

Case Qλ v2.

As in the previous case, showing the contradiction that Qλ must

have a function type but cannot.

Case let〈x, y〉 =Q⊗ in e2.

As in the previous case, showing the contradiction that Q⊗ must

have a product type but cannot.

Case swap Q↔
s .

This types only by rule RAT-SWAP (again by induction on the

derivation to deal with RAT-SUBSUME), which requires that Q↔
s

have a type ref τ1 ⊗τ2. By lemma B.16, for Q↔
s to have a product

type it must be 〈v1,v2〉 for some v1 and v2. Then by inversion of

rule RAT-PAIR, v1 must have type ref τ1, so by lemma B.16 again, v1

must be some location `. By inversion of rule RAT-LOC, ` : τ1 ∈Σ1.

The only possibility for Q↔
s in the shape of a pair is 〈v1,v2〉 such

that v1 is not a location ` ∈ dom Σ, which contradicts that ` : τ1 ∈Σ1,

since Σ Σ1�Σ2.

384 APPENDIX B. PROOFS: MIXING AFFINE & CONVENTIONAL TYPES

Case E[Q′
s].

By our assumption,

(1) M;Σ1B s :Σ1�Σ2 and

(2) M;Σ2;•.A E[Q′
s] : τ.

Then by lemma B.11,

(3) M;Σ21;•.A Q′
s : τ′

for some τ′ and Σ2 Σ21�Σ22.

By weakening,

(4) M;Σ2;•.A Q′
s : τ′,

but by the induction hypothesis (part 2) this cannot be so.

Case E[Q′
s].

As in the previous case, but using part 1 of the induction hypothesis.

The proof concludes with corollary 7.12 (Progress) on p. 185 and theo-

rem 7.13 (Strong soundness) on p. 186.

APPENDIX C

Additional Proofs for Chapter 8

C.1 Properties of λURAL

In this section, I state and prove several propositions about λURAL, including

two lemmas from §8.4.2.

LEMMA C.1 (Qualifier subsumption transitivity).

If ∆` ξ1 ¹ ξ′ and ∆` ξ′ ¹ ξ2 then ∆` ξ1 ¹ ξ2.

Proof. By cases on the derivation of ∆` ξ1 ¹ ξ′:

Case
∆` ξ : QUAL

∆`U¹ ξ
.

That is, ξ1 =U, so by rule QSUB-BOT.

Case
∆` ξ : QUAL

∆` ξ¹ L
.

That is, ξ′ = L. By cases on the derivation of ∆` ξ′ ¹ ξ2:

Case
∆` ξ : QUAL

∆`U¹ ξ
.

That is, ξ′ =U, but since ξ′ = L, this case is vacuous.

Case
∆` ξ : QUAL

∆` ξ¹ L
.

That is, ξ2 = L, so by rule QSUB-TOP.

385

386 APPENDIX C. PROOFS: SUBSTRUCTURAL TYPES & CONTROL

Case
∆` ξ : QUAL

∆` ξ¹ ξ
.

That is, ξ2 = ξ′ = L, so by rule QSUB-TOP.

Case
∆` ξ : QUAL

∆` ξ¹ ξ
.

That is, ξ1 = ξ′. Then by a simple substitution.

LEMMA C.2 (Meet and join properties).

Commutativity

• ξ1 uξ2 = ξ2 uξ1

• ξ1 tξ2 = ξ2 tξ1

Associativity

• ξ1 u (ξ2 uξ3)= (ξ1 uξ2)uξ3

• ξ1 t (ξ2 tξ3)= (ξ1 tξ2)tξ3

Completeness

If ∆` ξ1 ¹ ξ2 then

• ξ1 uξ2 = ξ1

• ξ1 tξ2 = ξ2

Soundness

If ∆` ξ1 : QUAL and ∆` ξ2 : QUAL then

• ∆` ξ1 uξ2 ¹ ξ2 when ξ1 uξ2 is defined

• ∆` ξ1 ¹ ξ1 tξ2 when ξ1 tξ2 is defined

Optimality

If ∆` ξ1 : QUAL and ∆` ξ2 : QUAL then

• if ∆` ξ¹ ξ1 and ∆` ξ¹ ξ2 then ∆` ξ¹ ξ1 uξ2 whenever
ξ1 uξ2 is defined

• if ∆` ξ1 ¹ ξ and ∆` ξ2 ¹ ξ then ∆` ξ1 tξ2 ¹ ξ whenever
ξ1 tξ2 is defined

C.1. PROPERTIES OF λURAL 387

Domain

The meet ξ1 uξ2 is not defined if and only if one of:

• ξ1 is a variable and ξ2 is A or R;

• ξ2 is a variable and ξ1 is A or R; or

• ξ1 and ξ2 are two distinct variables.

Likewise for joins.

Substitution

Meet and join respect substitution:

• {ι/α}(ξ1 uξ2)= {ι/α}ξ1 u {ι/α}ξ2 when ξ1 uξ2 is defined

• {ι/α}(ξ1 tξ2)= {ι/α}ξ1 t {ι/α}ξ2 when ξ1 tξ2 is defined

Proof.

Commutativity By inspection.

Associativity By inspection. Any multi-meet containing only Ls

and one qualifier ξ (possibly repeated) is ξ; if it contains U

at all or both A and R then it is U; otherwise it is undefined.

Any multi-join containing only Us and one qualifier ξ (possibly

repeated) is ξ; if it contains L at all or both A and R then it is

L; otherwise it is undefined.

Completeness By induction on the qualifier subsumption deriva-

tion:

Case
∆`α : QUAL

∆`U¹α
.

Then Uuα=U and Utα=α.

Case
q1 ¹ q2

∆` q1 ¹ q2

.

By cases on the derivation of q1 ¹ q2:

Case q¹ q.
Then quq= q= qtq.

Case U¹ q.
Then Uuq=U and Utq= q.

388 APPENDIX C. PROOFS: SUBSTRUCTURAL TYPES & CONTROL

Case q¹ L.
Then quL= q and qtL= L.

Case
∆`α : QUAL

∆`α¹ L
.

Then αuL=α and αtL= L.

Case
∆` ξ : QUAL

∆` ξ¹ ξ
.

Then ξuξ= ξ= ξtξ.
Soundness

• We consider whether ∆` ξ1 uξ2 ¹ ξ2 by cases on ξ1 and

ξ2:

∆` ξ1 uξ2 ¹ ξ2
ξ2

U R A L α

ξ1

U U¹U U¹R U¹A U¹ L U¹α
R U¹U R¹R U¹A R¹ L ×
A U¹U U¹R A¹A A¹ L ×
L U¹U R¹R A¹A L¹ L α¹α
α U¹U × × α¹ L α¹α
β U¹U × × β¹ L ×

(× indicates that ξ1 uξ2 is undefined)

• We consider whether ∆` ξ1 ¹ ξ1 tξ2 by cases on ξ1 and

ξ2:

∆` ξ1 ¹ ξ1 tξ2
ξ2

U R A L α

ξ1

U U¹U U¹R U¹A U¹ L U¹α
R R¹R R¹R R¹ L R¹ L ×
A A¹A A¹ L A¹A A¹ L ×
L L¹ L L¹ L L¹ L L¹ L L¹ L

α α¹α × × α¹ L α¹α
β β¹β × × β¹ L ×

(× indicates that ξ1 tξ2 is undefined)

C.1. PROPERTIES OF λURAL 389

Optimality

Let ∆` ξ1 : QUAL and ∆` ξ2 : QUAL. Then:

• Suppose that ∆` ξ¹ ξ1 and ∆` ξ¹ ξ2 and consider the

possibilities by which ξ1 uξ2 may be defined:

Case Luξ2 = ξ2.
By the assumption that ∆` ξ¹ ξ2.

Case ξ1 uL = ξ.
By symmetry.

Case ξ1 uξ1 = ξ1.
That is, ξ1 = ξ2. Then by the assumption that ∆` ξ¹
ξ1.

Case Uuξ2 = U.
That is, ξ1 = U. Then ∆ ` ξ ¹ U. By inspection of

the rules for qualifier subsumption, this implies that

ξ = U, so by rule QSUB-BOT.

Case ξ1 uU = U.
By symmetry.

Case AuR = U.
By inspection of the rules for qualifier subsumption,

∆` ξ¹A only if ξ is U or A, and ∆` ξ¹A only if ξ is

U or R. Then ξ = U, so by rule QSUB-BOT.

Case RuA = U.
By symmetry.

• By duality.

Domain

By inspection of the tables in the soundness case.

Substitution

By cases on the definition of meet:

Case Luξ= ξ.
Then {ι/α}(Luξ)= {ι/α}ξ= Lu {ι/α}ξ= {ι/α}Lu {ι/α}ξ.

390 APPENDIX C. PROOFS: SUBSTRUCTURAL TYPES & CONTROL

Case ξuL= ξ.
By symmetry with the previous case.

Case ξuξ= ξ.
Then {ι/α}(ξuξ)= {ι/α}ξ= {ι/α}ξu {ι/α}ξ.

Case Uuξ=U.
Then {ι/α}(Uuξ)= {ι/α}U=U=Uu {ι/α}ξ= {ι/α}Uu {ι/α}ξ.

Case ξuU=U.
By symmetry with the previous case.

Case AuR=U.
Then {ι/α}(AuR)= {ι/α}U=U=AuR= {ι/α}Au {ι/α}R.

Case RuA=U.
By symmetry with the previous case.

Dually for join.

LEMMA C.3 (Lower bound of undefined meets).

If ξ1 uξ2 is undefined, ∆` ξ¹ ξ1, and ∆` ξ¹ ξ2, then ξ = U.

Proof. If either ξ1 or ξ2 is U or L, or if ξ1 = ξ2, or if one is A and the other R,

then the meet is defined. That leaves only two possibilities:

• One is A or R and the other is a variable α. The only possibilities for ξ to

be less than α are if ξ is α or U. But since α is not less than A nor R, we

know that ξ = U.

• They are different variables α and β. As before, the only ways that

∆` ξ¹α is if ξ is either α or U. Similarly, for ∆` ξ¹β, ξ must be β or U.

Since α 6= β, we know that ξ = U

Note that we do not simply define the meet in such cases to be U, because

then meets would not be preserved by substitution.

LEMMA C.4 (Properties of bounds).

1. If ∆` ξ1 ¹ ξ2 then ∆` ξ1 : QUAL and ∆` ξ2 : QUAL.

2. If ∆` τ¹ ξ then ∆` τ :?.

C.1. PROPERTIES OF λURAL 391

3. If ∆` τ :? then ∆` τ¹ L.

4. If ∆`Γ¹ ξ and x:τ ∈Γ then ∆` τ¹ ξ.

5. If ∆` τ :? for all τ such that x:τ ∈Γ, then ∆`Γ¹ L.

Proof.

1. By induction on the derivation.

2. By cases on the derivation and the previous part.

3. If τ is a type variable, then by rule B-VAR. Otherwise, by inversion of

rules K-TYPE, QSUB-TOP, and B-TYPE.

4. By induction on the derivation.

5. By induction on Γ and the rules for context bounding.

LEMMA 8.4 (Value strengthening, restated from p. 223).

Any qualifier that upper bounds the type of a value also bounds the portion
of the type context necessary for typing that value. That is, if ∆;Γ` v : τ and
∆` τ¹ ξ then there exist some Γ1 and Γ2 such that

• ∆`Γ Γ1�Γ2,

• ∆;Γ1 ` v : τ,

• ∆`Γ1 ¹ ξ, and

• ∆`Γ2 ¹A.

Proof. By induction on the derivation of ∆;Γ` v : τ:

Case
∆` τ :?

∆;•, x:τ` x : τ
.

Let Γ1 = •, x:τ and Γ2 = •.

Case
∆` ξ : QUAL ∆`Γ¹ ξ ∆;Γ, x:τ1 ` e : τ2

∆;Γ`λx. e : ξ(τ1(τ2)
.

Let Γ1 =Γ and Γ2 = •.

392 APPENDIX C. PROOFS: SUBSTRUCTURAL TYPES & CONTROL

Case
∆` ξ : QUAL ∆`Γ¹ ξ ∆,α:κ;Γ` e : τ

∆;Γ`Λ. e : ξ∀α:κ.τ
.

Let Γ1 =Γ and Γ2 = •.

Case
∆` τ1 ¹ ξ ∆` τ2 :? ∆;Γ` v1 : τ1

∆;Γ` inl v1 : ξ(τ1 ⊕τ2)
.

By the induction hypothesis, there exist some Γ1 and Γ2 such that

(1) ∆`Γ Γ1�Γ2,

(2) ∆;Γ1 ` v1 : τ1,

(3) ∆`Γ2 ¹A,and

(4) ∆`Γ1 ¹ ξ.

Then,

(5) ∆;Γ1 ` inl v1 : ξ(τ1 ⊕τ2) by rule T-INL .

Case
∆` τ2 ¹ ξ ∆` τ1 :? ∆;Γ` v2 : τ2

∆;Γ` inr v2 : ξ(τ1 ⊕τ2)
.

By symmetry with the previous case.

Case

∆` ξ′ : QUAL ∆;Γ` v1 : ξ1(τ1(τ)

∆` ξ1 ¹ ξ ∆;Γ` v2 : ξ2(τ2(τ) ∆` ξ2 ¹ ξ
∆;Γ` [v1,v2] : ξ(ξ

′
(τ1 ⊕τ2)(τ)

.

By the induction hypothesis, there exist some Γ11 and Γ21 such that

(1) ∆`Γ Γ11�Γ21,

(2) ∆;Γ12 ` v1 : ξ1(τ1(τ),

(3) ∆`Γ21 ¹A,and

(4) ∆`Γ11 ¹ ξ1.

C.1. PROPERTIES OF λURAL 393

Likewise, by the induction hypothesis, there exist some Γ12 and Γ22 such

that

(5) ∆`Γ Γ12�Γ22,

(6) ∆;Γ13 ` v2 : ξ2(τ2(τ),

(7) ∆`Γ22 ¹A,and

(8) ∆`Γ12 ¹ ξ2.

Then let Γ1 =Γ11∪Γ12 and let Γ2 =Γ21∩Γ22. Note that because each pair

is split from the same Γ, they agree everywhere that they are defined.

Furthermore, note that if ξ1 upper bounds the qualifiers of the codomain

of Γ11 and ξ2 upper bounds the qualifiers of the codomain of Γ12, then ξ

upper bounds the qualifiers of the codomain of Γ1:

(9) ∆`Γ1 ¹ ξ.

Furthermore,

(10) ∆;Γ1 ` v1 : ξ1(τ1(τ) by weak.

(11) ∆;Γ1 ` v2 : ξ2(τ2(τ) by weak.

(12) ∆;Γ1 ` [v1,v2] : ξ(ξ
′
(τ1 ⊕τ2)(τ) by rule T-SUME.

Case

∆`Γ Γ1�Γ2

∆;Γ1 ` v1 : τ1 ∆` τ1 ¹ ξ ∆;Γ2 ` v2 : τ2 ∆` τ2 ¹ ξ
∆;Γ` 〈v1,v2〉 : ξ(τ1 ⊗τ2)

.

By the induction hypothesis, there exist some Γ11 and Γ21 such that

(1) ∆`Γ1 Γ11�Γ12,

(2) ∆;Γ11 ` v1 : τ1,

(3) ∆`Γ12 ¹A,and

(4) ∆`Γ11 ¹ ξ.

394 APPENDIX C. PROOFS: SUBSTRUCTURAL TYPES & CONTROL

Likewise, by the induction hypothesis, there exist some Γ21 and Γ21 such

that

(5) ∆`Γ2 Γ21�Γ22,

(6) ∆;Γ21 ` v2 : τ2,

(7) ∆`Γ22 ¹A,and

(8) ∆`Γ21 ¹ ξ.

Then let Γ1 =Γ11∪Γ21 and let Γ2 =Γ12∪Γ22. Note that because each pair

is split from the same Γ, they agree everywhere that they are defined.

Note also that Γ can be split as

(9) ∆`Γ Γ1�Γ2.

Furthermore, note that because ξ upper bounds the qualifiers of the

codomains of both Γ11 and Γ21, it also upper bounds the qualifiers of the

codomain of Γ1:

(10) ∆`Γ1 ¹ ξ.

Furthermore,

(11) ∆;Γ1 ` v1 : τ1 by weak.

(12) ∆;Γ1 ` v2 : τ2 by weak.

(13) ∆;Γ1 ` 〈v1,v2〉 : ξ(τ1 ⊗τ2) by rule T-PROD.

Case
∆` ξ′ : QUAL ∆;Γ` v : ξ(τ1(

ξ(τ2(τ))

∆;Γ` uncurry v : ξ(ξ
′
(τ1 ⊗τ2)(τ)

.

As in the inl v case.

Case
∆` ξ : QUAL

∆;• ` 〈〉 : ξ1
.

Let Γ1 =Γ2 = •.

C.1. PROPERTIES OF λURAL 395

Case
∆` ξ : QUAL ∆` τ :? ∆;Γ` v : ξ

′
1

∆;Γ` ignore v : ξ(τ(τ)
.

As in the inl v case.

Case
∆`Γ Γ′1�Γ

′
2 ∆;Γ′1 ` v : τ ∆`Γ′2 ¹A

∆;Γ` v : τ
.

By the induction hypothesis, there exist some Γ11 and Γ12 such that

(1) ∆`Γ′1 Γ11�Γ12,

(2) ∆;Γ11 ` v : τ,

(3) ∆`Γ12 ¹A,and

(4) ∆`Γ11 ¹ ξ.

Then let Γ1 =Γ11 and let Γ2 =Γ′2∪Γ12. Note that because ∆`Γ′2 ¹A and

∆`Γ12 ¹A, we know that ∆`Γ2 ¹A as well.

LEMMA 8.3 (Dereliction, restated from p. 223).

If ∆;Γ` v : ξ(τ1(τ2) and ∆` ξ¹ ξ′ then ∆;Γ`λx.v x : ξ
′
(τ1(τ2).

Proof. By lemma 8.4, there exist some Γ1 and Γ2 such that:

(1) ∆`Γ Γ1�Γ2,

(2) ∆;Γ1 ` v : ξ(τ1(τ2),

(3) ∆`Γ2 ¹A,and

(4) ∆`Γ1 ¹ ξ.

Then:

(5) ∆;•, x:τ1 ` x : τ1 by rule T-VAR

(6) ∆;Γ1, x:τ1 ` v x : τ2 by rule T-APP

(7) ∆`Γ1 ¹ ξ′ by ind. Γ1, trans.

(8) ∆;Γ1 `λx.v x : ξ
′
(τ1(τ2) by rule T-ABS.

396 APPENDIX C. PROOFS: SUBSTRUCTURAL TYPES & CONTROL

C.2 Properties of λURAL(C) and the Translation

In this section, I prove several propositions about λURAL(C) and the CCoS

translation, including those from §8.4.

LEMMA C.5 (λURAL(C) Regularity).

1. If D C̀ G G1�G1 and x:t′ ∈G, G1, or G2, then D C̀ t′ :?.

2. If D;G C̀ e : t ; c and x:t′ ∈G then D C̀ t′ :?

3. If D;G C̀ e : t ; c then D C̀ t :?

4. If D;G C̀ e : t ; c then D C̀ c : CTL

Proof.

1. By induction on the derivation.

2. By induction on the derivation, using the previous part.

3. By induction on the derivation, using the previous part.

4. By induction on the derivation, considering that “derivations” with

malformed effect sequences are not valid derivations.

LEMMA 8.5 (Translation of kinding, restated from p. 227).

For all D, i, and k, if D C̀ i : k then D∗ ` i∗ : k∗.

Proof. By simple induction on the kinding derivation:

Case
α:k ∈D

D C̀ α : k
.

Then

(1) α:k∗ ∈D∗ by def. D∗ and

(2) α∗ =α,

and thus D∗ `α∗ : k∗ by rule K-VAR.

C.2. PROPERTIES OF λURAL(C) 397

Case D C̀ q : QUAL.

By rule K-QUAL.

Case
D C̀ t :? D C̀ ξ : QUAL

D C̀
ξt :?

.

(1) D∗ ` t∗ :? by IH,

(2) D∗ ` ξ∗ : QUAL by IH,

(3) (ξt)∗ = ξ(t∗) by def. t∗, and

(4) ξ∗ = ξ by def. ξ∗.

Thus, by rule K-TYPE.

Case D C̀ 1 :?.

By rule K-UNIT.

Case
D C̀ t1 :? D C̀ t2 :?

D C̀ t1 ⊗ t2 :?
.

(1) D∗ ` t1
∗ :? by IH and

(2) D∗ ` t2
∗ :? by IH.

Thus by rule K-PROD.

Case
D C̀ t1 :? D C̀ t2 :?

D C̀ t1 ⊕ t2 :?
.

Likewise.

Case
D C̀ t1 :? D C̀ t2 :? D C̀ c : CTL

D C̀ t1
c−−◦ t2 :?

.

(1) D∗,α:?` t1
∗ :? by IH and weak.

(2) D∗,α:?` t2
∗ :? by IH and weak.

398 APPENDIX C. PROOFS: SUBSTRUCTURAL TYPES & CONTROL

(3) D∗,α:?` c∗ : QUAL by IH and weak.

(4) D∗,α:?` L : QUAL by rule K-QUAL

(5) D∗,α:?`α :? by rule K-VAR

(6) D∗,α:?` 〈〈α, c〉〉−C :? by (5), property 8.4.2

(7) D∗,α:?` t2
∗(〈〈α, c〉〉−C :? by (2, 6), rule K-ARR

(8) D∗,α:?` c∗(t2
∗(〈〈α, c〉〉−C) :? by (3, 7), rule K-TYPE

(9) D∗,α:?` 〈〈α, c〉〉+C :? by (5), property 8.4.2

(10) D∗,α:?` c∗(t2
∗(〈〈α, c〉〉−C)(〈〈α, c〉〉+C :? by (8–9), rule K-ARR

(11) D∗,α:?` L(c∗(t2
∗(〈〈α, c〉〉−C)(〈〈α, c〉〉+C) :?

by (4, 10),

rule K-TYPE

(12) D∗,α:?` t1
∗(L(c∗(t2

∗(〈〈α, c〉〉−C)(〈〈α, c〉〉+C) :?

by (1, 11), rule K-ARR

(13) D∗,α:?` L(t1
∗(L(c∗(t2

∗(〈〈α, c〉〉−C)(〈〈α, c〉〉+C)) :?

by (4, 12),

rule K-TYPE

(14) D∗ `∀α:? .L(t1
∗(L(c∗(t2

∗(〈〈α, c〉〉−C)(〈〈α, c〉〉+C)) :?

by (13), rule K-ALL

(15) D∗ ` (t1
c−−◦ t2)∗ :? by (14), def. t∗.

Case
D C̀ t :?

D C̀ ref t :?
.

As in product and sum cases.

Case
D,β:k C̀ t :? D C̀ c : CTL

D C̀ ∀ cβ:k. t :?
.

(1) D,α:?,β:k C̀ c : CTL by prem., weak.

(2) D∗,α:?,β:k∗ `α :? by rule K-VAR

C.2. PROPERTIES OF λURAL(C) 399

(3) D∗,α:?,β:k∗ ` t∗ :? by IH, weak.

(4) D∗,α:?,β:k∗ ` 〈〈α, c〉〉−C :? by (1–2),

property 8.4.2

(5) D∗,α:?,β:k∗ ` t∗(〈〈α, c〉〉−C :? by (3–4), rule K-ARR

(6) D∗,α:?,β:k∗ ` c∗ : QUAL by IH, weak.

(7) D∗,α:?,β:k∗ ` c∗(t∗(〈〈α, c〉〉−C) :? by (5–6), rule K-TYPE

(8) D∗,α:?,β:k∗ ` 〈〈α, c〉〉+C :? by (1–2),

property 8.4.2

(9) D∗,α:?,β:k∗ ` c∗(t∗(〈〈α, c〉〉−C)(〈〈α, c〉〉+C :?

by (7–8), rule K-ARR

(10) D∗,α:?,β:k∗ ` L(c∗(t∗(〈〈α, c〉〉−C)(〈〈α, c〉〉+C) :?

by (9), rule K-TYPE

(11) D∗,α:?`∀β:k∗.L(c∗(t∗(〈〈α, c〉〉−C)(〈〈α, c〉〉+C) :?

by (10), rule K-ALL

(12) D∗,α:?` L∀β:k∗.L(c∗(t∗(〈〈α, c〉〉−C)(〈〈α, c〉〉+C) :?

by (11), rule K-TYPE

(13) D∗ `∀α:? .L∀β:k∗.L(c∗(t∗(〈〈α, c〉〉−C)(〈〈α, c〉〉+C) :?

by (12), rule K-ALL

(14) D∗ ` (∀ cβ:k. t)∗ :? by (13), def. t∗.

LEMMA C.6 (Translation of qualifier judgments).

1. If D C̀ ξ1 ¹ ξ2 then D∗ ` ξ1 ¹ ξ2.

2. If D C̀ t ¹ ξ then D∗ ` t∗ ¹ ξ.

3. If D C̀ G¹ ξ then D∗ `G∗ ¹ ξ.

4. If D C̀ G G1�G2 then D∗ `G∗ G1
∗�G2

∗

Proof. By simple induction on each derivation.

400 APPENDIX C. PROOFS: SUBSTRUCTURAL TYPES & CONTROL

LEMMA 8.6 (Translation of effect bounds, restated from p. 228).

If D C̀ c º ξ then D∗ ` ξ¹ c∗.

Proof. By cases on the derivation:

Case
D C̀ ξ : QUAL

D C̀ ⊥D º ξ
.

Then ⊥C
∗ = L, so by rule QSUB-TOP.

Case
D C̀ c : CTL

D C̀ c ºU
.

By rule QSUB-BOT.

Additional cases must be proved for new rules added by specific control

effect instances.

LEMMA 8.7 (Translation of effect subsumption, restated from p. 228).

If D C̀ c1 ¹ c2 then D∗ ` c2
∗ ¹ c1

∗.

Proof. By induction on the derivation:

Case
D C̀ c : CTL

D C̀ c ¹ c
.

By rule QSUB-REFL.

Case
D C̀ c1 ¹ c′ D C̀ c′ ¹ c2

D C̀ c1 ¹ c2

.

By the induction hypothesis twice and lemma C.1.

Additional cases must be proved for new rules added by specific control

effect instances.

LEMMA 8.8 (Translation of term typing, restated from p. 228).

If D;G C̀ e : t ; c then

D∗;G∗ ` JeK
C

: L(c∗(t∗(〈〈t∗, c〉〉−C)(〈〈t∗, c〉〉+C).

C.2. PROPERTIES OF λURAL(C) 401

Proof. We generalize the lemma to the following induction hypothesis:

If D;G C̀ e : t ; c, then for all τ0 such that D∗ ` τ0 :?, and for all ξ0

such that D∗ ` ξ0 ¹ c∗, it is the case that D∗;G∗ ` JeK
C

: L(ξ0(t∗(
〈〈τ0, c〉〉−C)(〈〈τ0, c〉〉+C)

We use lexical induction on the pair of: 1) the size of e, using size defined

as follows, and 2) the height of the typing derivation for D;G C̀ e : t ; c. The size

of an expression is given by:

x	= 1	λx. e′	= 1+	e′				
Λ. e′	= 1+	e′		inl v	= 1+	v		
inr v	= 1+	v		[v1,v2]	=	v1	+	v2

|〈v1,v2〉| = |v1|+ |v2| |uncurry v| = 3+|v|
|〈〉| = 1 |ignore v| = 1+|v|

e1 e2	=	e1	+	e2		e′	= 1+	e′
newq e′	= 1+	e′		delete e′	= 1+	e′		
read e′	= 1+	e′		swap e1 e2	=	e1	+	e2

|e1 handleψ→ e2| = |e1|+ |e2| |raiseψ| = 1

|reset e| = 1+|e| |shift x in e| = 1+|e|

In particular, this means that we can apply the induction hypothesis to any

expression smaller than e, or to the same expression e provided that we use a

subderivation of the derivation at hand. We proceed by cases on the conclusion

of the typing derivation. We start with the cases that apply to values, since

those have much in common:

Case v.

By inspection, note that in all rules for typing values, the effect is pure,

and thus:

(1) c =⊥C

Note further that by property 8.4.1,

402 APPENDIX C. PROOFS: SUBSTRUCTURAL TYPES & CONTROL

(2) 〈〈τ′, c〉〉−C = 〈〈τ′, c〉〉+C = 〈〈τ′〉〉C.

Furthermore, by the definition of JvKC, we know that

(3) JeKC =λy. yv∗.

Thus, it is sufficient to show that D∗;G∗ ` λy. yv∗ : L(ξ0(t∗(〈〈τ′〉〉C)(

〈〈τ′〉〉C) (where y is fresh for v). Suppose that (4) D∗;G∗ ` v∗ : t∗. Then:

(5) D∗ ` L : QUAL by rule K-QUAL

(6) D C̀ t :? by lemma C.5

(7) D∗ ` t∗ :? by lemma 8.5

(8) D∗ ` ξ0(t∗(〈〈τ′〉〉C) :? by (5, 7),

property 8.4.2

(9) D∗;•, y:ξ0(t∗(〈〈τ′〉〉C)` y : ξ0(t∗(〈〈τ′〉〉C) by (8)

(10) D∗ `G∗ •�G∗ by ind. G∗,

rule S-CONSR
(11) D∗ `G∗, y:ξ0(t∗(〈〈τ′〉〉C) •, y:ξ0(t∗(〈〈τ′〉〉C)�G∗

by (10), rule S-CONSL

(12) D∗;G∗, y:ξ0(t∗(〈〈τ′〉〉C)` yv∗ : 〈〈τ′〉〉C by (4, 9, 11)

(13) D∗;G∗ `λy. yv∗ : L(ξ0(t∗(〈〈τ′〉〉C)(〈〈τ′〉〉C)

by (5, 12).

Therefore, it is sufficient to show (4) D∗;G∗ ` v∗ : t∗. We proceed by a

nested induction on the structure of v, considering the possible typing

derivations:

Case
D C̀ t :?

D;•, x:t C̀ x : t ;⊥C

.

By rule T-VAR.

Case
D C̀ ξ : QUAL D C̀ G¹ ξ D;G, x:t1 C̀ e : t2 ; c′

D;G C̀ λx. e : ξ(t1
c′−−◦ t2) ;⊥C

.

We want to show that D∗;G∗ ` (λx. e)∗ : ξ((t1
c′−−◦ t2)∗). Note that

C.2. PROPERTIES OF λURAL(C) 403

(1) (t1
c′−−◦ t2)∗ =∀α:? .L(t1

∗(L(c′∗(t2
∗(〈〈α, c′〉〉−C)(〈〈α, c′〉〉+C))

by def. t∗ and

(2) (λx. e)∗ =Λ.λx.JeKC by def. v∗.

Then

(3) D,α:?;G, x:t1 C̀ e : t2 ; c′ by weak.

(4) D∗,α:?`α :? by rule K-VAR

(5) D∗,α:?;G∗, x:t1
∗ ` JeKC : L(c′∗(t2

∗(〈〈α, c′〉〉−C)(〈〈α, c′〉〉+C)

by IH, (3–4)

(6) D∗,α:?`G∗ ¹ L by lemma C.4

(7) D∗,α:?;G∗ `λx.JeKC : L(t1
∗(L(c′∗(t2

∗(〈〈α, c′〉〉−C)(

〈〈α, c′〉〉+C)) by (5–6)

(8) D∗ `G∗ ¹ ξ by lemma C.6

(9) D∗;G∗ `Λ.λx.JeKC : ξ∀α:? .L(t1
∗(L(c′∗(t2

∗(〈〈α, c′〉〉−C)(

〈〈α, c′〉〉+C)) by (7–8)

(10) D∗;G∗ ` (λx. e)∗ : ξ((t1
c′−−◦ t2)∗) by (1–2, 9).

Case
D C̀ ξ : QUAL D C̀ G¹ ξ D,β:k;G C̀ e : t ; c′

D;G C̀Λ. e : ξ∀ c′β:k. t ;⊥C

.

We want to show that D∗;G∗ ` (Λ. e)∗ : ξ((∀ c′β:k. t)∗). Note that

(1) (∀ c′β:k. t)∗ =∀α:? .L∀β:k∗.L(c′∗(t∗(〈〈α, c′〉〉−C)(〈〈α, c′〉〉+C)

by def. t∗ and

(2) (Λ. e)∗ =Λ.Λ.JeKC by def. v∗.

Then

(3) D,β:k,α:?;G C̀ e : t ; c′ by weak.

(4) D∗,β:k∗,α:?`α :? by rule K-VAR

(5) D∗,β:k∗,α:?;G∗ ` JeKC : L(c′∗(t∗(〈〈α, c′〉〉−C)(〈〈α, c′〉〉+C)

by IH, (3–4)

(6) D∗,β:k∗,α:?`G∗ ¹ L by lemma C.4

(7) D∗,α:?;G∗ `Λ.JeKC : L∀β:k∗.L(c′∗(t∗(〈〈α, c′〉〉−C)(〈〈α, c′〉〉+C)

by (5–6)

404 APPENDIX C. PROOFS: SUBSTRUCTURAL TYPES & CONTROL

(8) D∗ `G∗ ¹ ξ by lemma C.6

(9) D∗;G∗ `Λ.Λ.JeKC : ξ∀α:? .L∀β:k∗.L(c′∗(t∗(〈〈α, c′〉〉−C)(

〈〈α, c′〉〉+C) by (7–8)

(10) D∗;G∗ ` (Λ. e)∗ : ξ((∀ c′β:k. t)∗) by (1–2, 9).

Case
D C̀ t1 ¹ ξ D C̀ t2 :? D;G C̀ v1 : t1 ;⊥C

D;G C̀ inl v1 : ξ(t1 ⊕ t2) ;⊥C

.

We want to show that D∗;G∗ ` (inl v1)∗ : ξ((t1 ⊕ t2)∗). Note that

(1) (t1 ⊕ t2)∗ = t1
∗⊕ t2

∗ by def. t∗ and

(2) (inl v1)∗ = inl v1
∗ by def. v∗.

Then

(3) D∗ ` t1
∗ ¹ ξ by lemma C.6

(4) D∗ ` t2
∗ :? by lemma 8.5

(5) D∗;G∗ ` v1
∗ : t1

∗ by IH (inner)

(6) D∗;G∗ ` inl v1
∗ : ξ(t1

∗⊕ t2
∗) by (3–5)

(7) D∗;G∗ ` (inl v1)∗ : (ξ(t1 ⊕ t2))∗ by (1–2, 6).

Case
D C̀ t2 ¹ ξ D C̀ t1 :? D;G C̀ v2 : t2 ;⊥C

D;G C̀ inr v2 : ξ(t1 ⊕ t2) ;⊥C

.

By symmetry with the previous case.

Case

D C̀ ξ
′ : QUAL D;G C̀ v1 : ξ1(t1

c′−−◦ t) ;⊥C

D C̀ ξ1 ¹ ξ D;G C̀ v2 : ξ2(t2
c′−−◦ t) ;⊥C D C̀ ξ2 ¹ ξ

D;G C̀ [v1,v2] : ξ(ξ
′
(t1 ⊕ t2) c′−−◦ t) ;⊥C

.

We want to show that D∗;G∗ ` [v1,v2]∗ : ξ((ξ
′
(t1 ⊕ t2) c′−−◦ t)∗). Note

that

(1) (ξ
′
(t1 ⊕ t2) c′−−◦ t)∗ =∀α:? .L(ξ

′
(t1

∗⊕ t2
∗)(L(c′∗(t∗(

〈〈α, c′〉〉−C)(〈〈α, c′〉〉+C)) by def. t∗ and

(2) [v1,v2]∗ =Λ. [λx.v1
∗ x,λx.v2

∗ x] by def. v∗.

Then:

C.2. PROPERTIES OF λURAL(C) 405

(3) D∗,α:?` ξ′ : QUAL by lemma 8.5, weak.

(4) D∗,α:?;•, x:t1
∗ ` x : t1

∗ by rule T-VAR

(5) D∗,α:?;G∗ ` v1
∗ : ξ1((t1

c′−−◦ t)∗) by IH (inner), weak.

(6) D∗,α:?;G∗ ` v2
∗ : ξ2((t2

c′−−◦ t)∗) by IH (inner), weak.

By lemma 8.4, there exist some Γ11 and Γ12 such that

(7) D∗,α:?`G∗ Γ11�Γ12,

(8) D∗,α:?;Γ11 ` v1
∗ : ξ1((t1

c′−−◦ t)∗),

(9) D∗,α:?`Γ12 ¹A,and

(10) D∗,α:?`Γ11 ¹ ξ1,

and likewise, there exist some Γ21 and Γ22 such that

(11) D∗,α:?`G∗ Γ21�Γ22,

(12) D∗,α:?;Γ21 ` v2
∗ : ξ2((t2

c′−−◦ t)∗),

(13) D∗,α:?`Γ22 ¹A,and

(14) D∗,α:?`Γ21 ¹ ξ2.

Let Γ1 =Γ11 ∪Γ21. Then:

(15) D∗,α:?`Γ1 ¹ ξ by (10, 14)

(16) D∗,α:?;Γ1 ` v1
∗ : ξ1((t1

c′−−◦ t)∗) by (5), weak.

(17) D∗,α:?;Γ1 ` v1
∗ : ξ1∀β:? .L(t1

∗(L(c′∗(t∗(〈〈β, c′〉〉−C)(

〈〈β, c′〉〉+C)) by def. t∗, (5)

(18) D∗,α:?;Γ1 ` v1
∗ : L(t1

∗(L(c′∗(t∗(〈〈α, c′〉〉−C)(〈〈α, c′〉〉+C))

by (17)

(19) D∗,α:?`Γ1, x:t1
∗ Γ1�•, x:t1

∗ by rules S-CONSL and

S-CONSR
(20) D∗,α:?;Γ1, x:t1

∗ ` v1
∗ x : L(c′∗(t∗(〈〈α, c′〉〉−C)(〈〈α, c′〉〉+C)

by (4, 18–19)

(21) D∗,α:?;Γ1 `λx.v1
∗ x : L(t1

∗(L(c′∗(t∗(〈〈α, c′〉〉−C)(

〈〈α, c′〉〉+C)) by (20)

(22) D∗,α:?;Γ1 `λx.v2
∗ x : L(t2

∗(L(c′∗(t∗(〈〈α, c′〉〉−C)(

〈〈α, c′〉〉+C)) by symmetry

406 APPENDIX C. PROOFS: SUBSTRUCTURAL TYPES & CONTROL

(23) D∗,α:?;Γ1 ` [λx.v1
∗ x,λx.v2

∗ x] : L(ξ
′
(t1

∗⊕ t2
∗)(

L(c′∗(t∗(〈〈α, c′〉〉−C)(〈〈α, c′〉〉+C)) by (3, 21–22)

(24) D∗;Γ1 `Λ. [λx.v1
∗ x,λx.v2

∗ x] : ξ((ξ
′
(t1 ⊕ t2) c′−−◦ t)∗)

by (1, 15, 23),

rule T-TABS

(25) D∗;Γ1 ` [v1,v2]∗ : (ξ(ξ
′
(t1 ⊕ t2) c′−−◦ t))∗ by (2).

Case

D C̀ G G1�G2

D;G1 C̀ v1 : t1 ;⊥C D C̀ t1 ¹ ξ
D;G2 C̀ v2 : t2 ;⊥C D C̀ t2 ¹ ξ

D;G C̀ 〈v1,v2〉 : ξ(t1 ⊗ t2) ;⊥C

.

We want to show that D∗;G∗ ` 〈v1,v2〉∗ : ξ((t1 ⊗ t2)∗). Note that

(1) (t1 ⊗ t2)∗ = t1
∗⊗ t2

∗ by def. t∗ and

(2) 〈v1,v2〉∗ = 〈v1
∗,v2

∗〉 by def. v∗.

Then

(3) D∗ `G∗ G1
∗�G2

∗ by lemma C.6

(4) D∗;G1
∗ ` v1

∗ : t1
∗ by IH (inner)

(5) D∗ ` t1
∗ ¹ ξ by lemma C.6

(6) D∗;G2
∗ ` v2

∗ : t2
∗ by IH (inner)

(7) D∗ ` t2
∗ ¹ ξ by lemma C.6

(8) D∗;G∗ ` 〈v1
∗,v2

∗〉 : ξ(t1
∗⊗ t2

∗) by (3)–(7)

(9) D∗;G∗ ` 〈v1,v2〉∗ : (ξ(t1 ⊗ t2))∗ by (1–2, 8).

Case

D C̀ ξ
′ : QUAL

D;G C̀ v : ξ(t1
c1−−◦ ξ(t2

c2−−◦ t)) ;⊥C D C̀ c15 c2 : CTL

D;G C̀ uncurry v : ξ(ξ
′
(t1 ⊗ t2) c15c2−−−−−◦ t) ;⊥C

.

We want to show that D∗;G∗ ` (uncurry v)∗ : ξ((ξ
′
(t1 ⊗ t2) c15c2−−−−−◦ t)∗).

Then:

(1) (ξ
′
(t1 ⊗ t2) c15c2−−−−−◦ t)∗ =∀α:? .L(ξ

′
(t1

∗⊗ t2
∗)(L((c15c2)∗(t∗(

〈〈α, c15 c2〉〉−C)(〈〈α, c15 c2〉〉+C)) by def. t∗ and

C.2. PROPERTIES OF λURAL(C) 407

(2) (uncurry v)∗ =Λ. uncurry (λx1.λx2.Jv x1 x2KC)

by def. v∗.

(3) D,α:?;G C̀ v : ξ(t1
c1−−◦ ξ(t2

c2−−◦ t)) ;⊥C by prem., weak.

(4) D,α:?;•, x1:t1 C̀ x1 : t1 ;⊥C by rule C-T-VAR

(5) D,α:?;•, x2:t2 C̀ x2 : t2 ;⊥C by rule C-T-VAR

(6) D,α:?;G, x1:t1 C̀ v x1 : ξ(t2
c2−−◦ t) ; c1 by (3–4), rule C-T-APP

(7) D,α:?;G, x1:t1, x2:t2 C̀ v x1 x2 : t ; c15 c2

by (5–6), rule C-T-APP

(8) |v x1 x2| = 2+|v| by def. |·|
(9) |uncurry v| = 3+|v| by def. |·|

(10) |v x1 x2| < |uncurry v| by (8–9)

(11) D∗ ` (c15 c2)∗ ¹ (c15 c2)∗ by rule QSUB-REFL

(12) D∗,α:?;G∗, x1:t1
∗, x2:t2

∗ ` Jv x1 x2KC : L((c15c2)∗(t∗(
〈〈α, c15 c2〉〉−C)(〈〈α, c15 c2〉〉+C) by IH (outer), (10–11)

(13) D∗,α:?;G∗ `λx1.λx2.Jv x1 x2KC : L(t1
∗(L(t2

∗(
L((c15c2)∗(t∗(〈〈α, c15 c2〉〉−C)(〈〈α, c15 c2〉〉+C)))

by (12), rule T-ABS2

(14) D∗,α:?` ξ′ : QUAL by lemma 8.5, weak.

(15) D∗,α:?;G∗ ` uncurry (λx1.λx2.Jv x1 x2KC) : L(ξ
′
(t1

∗⊗ t2
∗)(

L((c15c2)∗(t∗(〈〈α, c15 c2〉〉−C)(〈〈α, c15 c2〉〉+C))

by (13–14)

By lemma 8.4, there exist some Γ1 and Γ2 such that

(16) D∗,α:?`G∗ Γ1�Γ2,

(17) D∗,α:?;Γ1 ` uncurry (λx1.λx2.Jv x1 x2KC) : L(ξ
′
(t1

∗⊗ t2
∗)(

L((c15c2)∗(t∗(〈〈α, c15 c2〉〉−C)(〈〈α, c15 c2〉〉+C))

(18) D∗,α:?`Γ2 ¹A,and

(19) D∗,α:?`Γ1 ¹ ξ.

Then:

408 APPENDIX C. PROOFS: SUBSTRUCTURAL TYPES & CONTROL

(20) D∗;Γ1 `Λ. uncurry (λx1.λx2.Jv x1 x2KC) : ξ∀α:? .L(ξ
′
(t1

∗⊗
t2

∗)(L((c15c2)∗(t∗(〈〈α, c15 c2〉〉−C)(〈〈α, c15 c2〉〉+C))

by (17, 19)

(21) D∗;Γ1 ` (uncurry v)∗ : (ξ((ξ
′
(t1 ⊗ t2) c15c2−−−−−◦ t)))∗

by (1–2, 20)

(22) D∗;G∗ ` (uncurry v)∗ : (ξ((ξ
′
(t1 ⊗ t2) c15c2−−−−−◦ t)))∗

by weak., (18, 21)

Case
D C̀ ξ : QUAL

D;• C̀ 〈〉 : ξ1 ;⊥C

.

We want to show that D∗;G∗ ` 〈〉∗ : ξ(1∗). Note that

(1) 1∗ = 1 by def. t∗ and

(2) 〈〉∗ = 〈〉 by def. v∗.

Then:

(3) D∗ ` ξ : QUAL by lemma 8.5

(4) D∗;• ` 〈〉∗ : ξ1∗ by rule T-UNIT, (1–2).

Case
D C̀ ξ : QUAL D C̀ t :? D;G C̀ v : ξ

′
1 ;⊥C

D;G C̀ ignore v : ξ(t ⊥C−−−◦ t) ;⊥C

.

We want to show that D∗;G∗ ` (ignore v)∗ : ξ((t ⊥C−−−◦ t)∗). Note that

(1) (t ⊥C−−−◦ t)∗ =∀α:? .L(t∗(L(L(t∗(〈〈α〉〉C)(〈〈α〉〉C))

by def. t∗ and

(2) (ignore v)∗ =Λ.λx. ignore v∗ JxKC by def. v∗.

Then:

(3) D∗ ` ξ : QUAL by lemma 8.5

(4) D∗ ` t∗ :? by lemma 8.5

(5) D∗,α:?;G∗ ` v∗ : ξ
′
1 by IH (inner), def. t∗

(6) D∗,α:?` L(L(t∗(〈〈α〉〉C)(〈〈α〉〉C) :? by (4), rule K-VAR,

property 8.4.2, . . .

C.2. PROPERTIES OF λURAL(C) 409

(7) D∗,α:?;G∗ ` ignore v∗ : ξ(L(L(t∗(〈〈α〉〉C)(〈〈α〉〉C)(
L(L(t∗(〈〈α〉〉C)(〈〈α〉〉C)) by (5) and

rule T-UNITE

By lemma 8.4, there exist some Γ1 and Γ2 such that

(8) D∗,α:?`G∗ Γ1�Γ2,

(9) D∗,α:?;Γ1 ` ignore v∗ : ξ(L(L(t∗(〈〈α〉〉C)(〈〈α〉〉C)(
L(L(t∗(〈〈α〉〉C)(〈〈α〉〉C))

(10) D∗,α:?`Γ2 ¹A,and

(11) D∗,α:?`Γ1 ¹ ξ.

Then:

(12) D,α:?;•, x:t C̀ x : t ;⊥C by rule C-T-VAR

(13) D∗,α:?`α :? by rule K-TYPE

(14) |x| = 1< 1+|v| = |ignore v| by def. |·|
(15) D∗ ` L¹⊥C

∗ by rule QSUB-REFL

(16) D∗,α:?;•, x:t∗ ` JxKC : L(L(t∗(〈〈α〉〉C)(〈〈α〉〉C)

by IH (outer), (12–15)

(17) D∗,α:?`Γ1, x:t∗ Γ1�•, x:t∗ by rules S-CONSR

and S-CONSL, . . .
(18) D∗,α:?;Γ1, x:t∗ ` ignore v∗ JxKC : L(L(t∗(〈〈α〉〉C)(〈〈α〉〉C)

by (7, 16–17)

(19) D∗,α:?;Γ1 `λx. ignore v∗ JxKC : L(t∗(L(L(t∗(〈〈α〉〉C)(

〈〈α〉〉C)) by (18)

(20) D∗;Γ1 `Λ.λx. ignore v∗ JxKC : ξ∀α:? .L(t∗(L(L(t∗(
〈〈α〉〉C)(〈〈α〉〉C)) by (11, 20)

(21) D∗;Γ1 ` (ignore v)∗ : (ξ(t ⊥C−−−◦ t))∗ by (1–2)

(22) D∗;G∗ ` (ignore v)∗ : (ξ(t ⊥C−−−◦ t))∗ by weak. and (10).

That completes the value case. We continue with the non-value expressions,

again considering type derivations:

410 APPENDIX C. PROOFS: SUBSTRUCTURAL TYPES & CONTROL

Case
D C̀ G G1�G2 D;G1 C̀ e : t ; c D C̀ G2 ¹A

D;G C̀ e : t ; c
.

By lemma C.6 and IH.

Case
D;G C̀ e : t ; c′ D C̀ c′ ¹ c

D;G C̀ e : t ; c
.

(1) D∗ ` c∗ ¹ c′∗ by property 8.4.3

(2) D∗ ` ξ¹ c∗ by antecedent

(3) D∗ ` ξ¹ c′∗ by (1–2), lemma C.1

(4) ∃τ′′.〈〈τ′′, c′〉〉−C = 〈〈τ′, c〉〉−C and 〈〈τ′′, c′〉〉+C = 〈〈τ′, c〉〉+C
by (1), property 8.4.4

(5) D∗;G∗ ` JeKC : L(ξ(t∗(〈〈τ′′, c′〉〉−C)(〈〈τ′′, c′〉〉+C)

by IH(τ′′), (3)

(6) D∗;G∗ ` JeKC : L(ξ(t∗(〈〈τ′, c〉〉−C)(〈〈τ′, c〉〉+C)

by (4–5).

Case

D C̀ G G1�G2 D;G1 C̀ e1 : ξ1(t1
c′−−◦ t2) ; c′1 D;G2 C̀ e2 : t1 ; c′2

D C̀ G2 ¹ ξ2 D C̀ c′1 º ξ2 D C̀ c′2 º ξ1 D C̀ c′15 c′25 c′ : CTL

D;G C̀ e1 e2 : t2 ; c′15 c′25 c′
.

We want to show that

D∗;G∗ ` Je1 e2KC : L(ξ0(t2
∗(〈〈τ′, c′15 c′25 c′〉〉−C)(〈〈τ′, c′15 c′25 c′〉〉+C).

Consider whether the term e1 e2 has a control effect:

Case c′15 c′25 c′ 6= ⊥C.

By property 8.4.2, there exist some c1 6= ⊥C, c2 6= ⊥C, and c 6= ⊥C

such that

(1) D C̀ c′1 ¹ c1,

(2) D C̀ c′2 ¹ c2,

C.2. PROPERTIES OF λURAL(C) 411

(3) D C̀ c′ ¹ c,

(4) c15 c25 c = c′15 c′25 c′,and

(5) D C̀ c15 c25 c : CTL .

From the antecedent of the lemma to be proved,

(6) D∗ ` ξ0 ¹ (c′15 c′25 c′)∗.

Then:

(7) Je1 e2KC =λy.Je1KC (λx1.Je2KC (λx2. x1 x2 (λx. y x)))

by def. JeKC

(8) ∃τ′′1.〈〈τ′′1, c′1〉〉−C = 〈〈τ′, c1〉〉−C and 〈〈τ′′1, c′1〉〉+C = 〈〈τ′, c1〉〉+C
by (1), property 8.4.4

(9) ∃τ′′2.〈〈τ′′2, c′2〉〉−C = 〈〈τ′, c2〉〉−C and 〈〈τ′′2, c′2〉〉+C = 〈〈τ′, c2〉〉+C
by (2), property 8.4.4

(10) ∃τ′′.〈〈τ′′, c′〉〉−C = 〈〈τ′, c〉〉−C and 〈〈τ′′, c′〉〉+C = 〈〈τ′, c〉〉+C
by (3), property 8.4.4

(11) D∗;G1
∗ ` Je1KC : L(c′1

∗
(ξ1((t1

c′−−◦ t2)∗)(〈〈τ′, c1〉〉−C)(〈〈τ′, c1〉〉+C)

by IH(τ′′1), (8)

(12) D∗;G2
∗ ` Je2KC : L(c′2

∗
(t1

∗(〈〈τ′, c2〉〉−C)(〈〈τ′, c2〉〉+C)

by IH(τ′′2), (9)

(13) D∗;•, x1:ξ1((t1
c′−−◦ t2)∗)` x1 : ξ1((t1

c′−−◦ t2)∗)

by rule T-VAR

(14) D∗;•, x1:ξ1((t1
c′−−◦ t2)∗)` x1 : ξ1(∀α:? .L(t1

∗(L(c′∗(t2
∗(

〈〈α, c′〉〉−C)(〈〈α, c′〉〉+C))) by (13), def. t∗

(15) D∗;•, x1:ξ1((t1
c′−−◦ t2)∗)` x1 : L(t1

∗(L(c′∗(t2
∗(

〈〈τ′′, c′〉〉−C)(〈〈τ′′, c′〉〉+C)) by (14), rule T-TAPP

(16) D∗;•, x1:ξ1((t1
c′−−◦ t2)∗)` x1 : L(t1

∗(L(c′∗(t2
∗(〈〈τ′, c〉〉−C)(

〈〈τ′, c〉〉+C)) by (10, 15)

(17) D∗;•, x2:t1
∗ ` x2 : t1

∗ by rule T-VAR

(18) D∗;•, x1:ξ1((t1
c′−−◦ t2)∗), x2:t1

∗ ` x1 x2 : L(c′∗(t2
∗(

〈〈τ′, c〉〉−C)(〈〈τ′, c〉〉+C) by (16–17), rule T-APP

412 APPENDIX C. PROOFS: SUBSTRUCTURAL TYPES & CONTROL

(19) D∗;•, y:ξ0(t2
∗(〈〈τ′, c15 c25 c〉〉−C)` y : ξ0(t2

∗(
〈〈τ′, c15 c25 c〉〉−C) by rule T-VAR

(20) D∗ ` (c′15 c′25 c′)∗ ¹ c′∗ by property 3

(21) D∗ ` ξ0 ¹ c′∗ by (6, 20), lemma C.1

(22) D∗;•, y:ξ0(t2
∗(〈〈τ′, c15 c25 c〉〉−C)`λx. y x : c′∗(t2

∗(
〈〈τ′, c15 c25 c〉〉−C) by (19, 21), lemma 8.3

(23) D∗;•, y:ξ0(t2
∗(〈〈τ′, c15 c25 c〉〉−C)`λx. y x : c′∗(t2

∗(
〈〈τ′, c〉〉−C) by (22),

property 8.4.3a
(24) D∗;•, x1:ξ1((t1

c′−−◦ t2)∗), x2:t1
∗, y:ξ0(t2

∗(〈〈τ′, c15 c25 c〉〉−C)`
x1 x2 (λx. y x) : 〈〈τ′, c〉〉+C by (18, 23), rule T-APP

(25) D∗ ` ξ1 ¹ c′2
∗ by property 8.4.2

(26) D∗ ` ξ0 ¹ c′2
∗ by (6), property 3,

lemma C.1
(27) D∗ ` •, x1:ξ1((t1

c′−−◦ t2)∗), y:ξ0(t2
∗(〈〈τ′, c15 c25 c〉〉−C)¹ c′2

∗

by (25–26)

(28) D∗;•, x1:ξ1((t1
c′−−◦ t2)∗), y:ξ0(t2

∗(〈〈τ′, c15 c25 c〉〉−C)`
λx2. x1 x2 (λx. y x) : c′2

∗
(t1

∗(〈〈τ′, c〉〉+C)

by (24, 27), rule T-ABS

(29) D∗;•, x1:ξ1((t1
c′−−◦ t2)∗), y:ξ0(t2

∗(〈〈τ′, c15 c25 c〉〉−C)`
λx2. x1 x2 (λx. y x) : c′2

∗
(t1

∗(〈〈τ′, c2〉〉−C)

by (28),

property 8.4.3c
(30) D∗;G2

∗, x1:ξ1((t1
c′−−◦ t2)∗), y:ξ0(t2

∗(〈〈τ′, c15 c25 c〉〉−C)`
Je2KC (λx2. x1 x2 (λx. y x)) : 〈〈τ′, c2〉〉+C by (12, 29), rule T-APP

(31) D∗ ` ξ2 ¹ c′1
∗ by property 8.4.2

(32) D∗ `G2
∗ ¹ c′1

∗ by (31), lemma C.6

(33) D∗ ` ξ0 ¹ c′1
∗ by property 3,

lemma C.1
(34) D∗ `G2

∗, y:ξ0(t2
∗(〈〈τ′, c15 c25 c〉〉−C)¹ c′1

∗

by (32–33)

C.2. PROPERTIES OF λURAL(C) 413

(35) D∗;G2
∗, y:ξ0(t2

∗(〈〈τ′, c15 c25 c〉〉−C)`
λx1.Je2KC (λx2. x1 x2 (λx. y x)) : c′1

∗
(ξ1((t1

c′−−◦ t2)∗)(

〈〈τ′, c2〉〉+C) by (30, 34), rule T-ABS

(36) D∗;G2
∗, y:ξ0(t2

∗(〈〈τ′, c15 c25 c〉〉−C)`
λx1.Je2KC (λx2. x1 x2 (λx. y x)) : c′1

∗
(ξ1((t1

c′−−◦ t2)∗)(

〈〈τ′, c1〉〉−C) by (35),

property 8.4.3c
(37) D∗ `G∗, y:ξ0(t2

∗(〈〈τ′, c15 c25 c〉〉−C)

G1
∗�G2

∗, y:ξ0(t2
∗(〈〈τ′, c15 c25 c〉〉−C)

by lemma C.6,

rule S-CONSR
(38) D∗;G∗, y:ξ0(t2

∗(〈〈τ′, c15 c25 c〉〉−C)`
Je1KC (λx1.Je2KC (λx2. x1 x2 (λx. y x))) : 〈〈τ′, c1〉〉+C

by (11, 36–37),

rule T-APP
(39) D∗;G∗ `λy.Je1KC (λx1.Je2KC (λx2. x1 x2 (λx. y x))) :

L(ξ0(t2
∗(〈〈τ′, c15 c25 c〉〉−C)(〈〈τ′, c1〉〉+C)

by (38), rule T-ABS

(40) D∗;G∗ ` Je1 e2KC : L(ξ0(t2
∗(〈〈τ′, c15 c25 c〉〉−C)(

〈〈τ′, c15 c25 c〉〉+C) by (39),

property 8.4.3b, (7).
(41) D∗;G∗ ` Je1 e2KC : L(ξ0(t2

∗(〈〈τ′, c′15 c′25 c′〉〉−C)(

〈〈τ′, c′15 c′25 c′〉〉+C) by (4, 40).

Case c′15 c′25 c′ =⊥C.

By property 8.4.1, c1 = c2 = c =⊥C. This is similar to the previous

case, but much of the effect management goes away:

(1) Je1 e2KC =λy.Je1KC (λx1.Je2KC (λx2. x1 x2 (λx. y x)))

by def. JeKC

(2) D∗;G1
∗ ` Je1KC : L(L(ξ1((t1

⊥C−−−◦ t2)∗)(〈〈τ′〉〉C)(〈〈τ′〉〉C)

by IH

(3) D∗;G2
∗ ` Je2KC : L(L(t1

∗(〈〈τ′〉〉C)(〈〈τ′〉〉C)

by IH

414 APPENDIX C. PROOFS: SUBSTRUCTURAL TYPES & CONTROL

(4) D∗;•, x1:ξ1((t1
⊥C−−−◦ t2)∗)` x1 : ξ1((t1

⊥C−−−◦ t2)∗)

by rule T-VAR

(5) D∗;•, x1:ξ1((t1
⊥C−−−◦ t2)∗)` x1 : ξ1(∀α:? .L(t1

∗(L(L(t2
∗(

〈〈α〉〉C)(〈〈α〉〉C))) by (4), def. t∗

(6) D∗;•, x1:ξ1((t1
⊥C−−−◦ t2)∗)` x1 : L(t1

∗(L(L(t2
∗(〈〈τ′〉〉C)(

〈〈τ′〉〉C)) by (5), rule T-TAPP

(7) D∗;•, x2:t1
∗ ` x2 : t1

∗ by rule T-VAR

(8) D∗;•, x1:ξ1((t1
⊥C−−−◦ t2)∗), x2:t1

∗ ` x1 x2 : L(L(t2
∗(〈〈τ′〉〉C)(

〈〈τ′〉〉C) by (6–7), rule T-APP

(9) D∗;•, y:ξ0(t2
∗(〈〈τ′〉〉C)` y : ξ0(t2

∗(〈〈τ′〉〉C)

by rule T-VAR

(10) D∗ ` ξ0 ¹ L by rule QSUB-TOP

(11) D∗;•, y:ξ0(t2
∗(〈〈τ′〉〉C)`λx. y x : L(t2

∗(〈〈τ′〉〉C)

by (9–10), lemma 8.3

(12) D∗;•, x1:ξ1((t1
⊥C−−−◦ t2)∗), x2:t1

∗, y:ξ0(t2
∗(〈〈τ′〉〉C)`

x1 x2 (λx. y x) : 〈〈τ′〉〉C by (8, 11), rule T-APP

(13) D∗;•, x1:ξ1((t1
⊥C−−−◦ t2)∗), y:ξ0(t2

∗(〈〈τ′〉〉C)`
λx2. x1 x2 (λx. y x) : L(t1

∗(〈〈τ′〉〉C) by (12), rule T-ABS

(14) D∗;G2
∗, x1:ξ1((t1

⊥C−−−◦ t2)∗), y:ξ0(t2
∗(〈〈τ′〉〉C)`

Je2KC (λx2. x1 x2 (λx. y x)) : 〈〈τ′〉〉C by (3, 13), rule T-APP

(15) D∗;G2
∗, y:ξ0(t2

∗(〈〈τ′〉〉C)`λx1.Je2KC (λx2. x1 x2 (λx. y x)) :
L(ξ1((t1

⊥C−−−◦ t2)∗)(〈〈τ′〉〉C) by (14), rule T-ABS

(16) D∗ `G∗, y:ξ0(t2
∗(〈〈τ′〉〉C) G1

∗�G2
∗, y:ξ0(t2

∗(〈〈τ′〉〉C)

by lemma C.6,

rule S-CONSR
(17) D∗;G∗, y:ξ0(t2

∗(〈〈τ′〉〉C)`
Je1KC (λx1.Je2KC (λx2. x1 x2 (λx. y x))) : 〈〈τ′〉〉C

by (2, 15–16),

rule T-APP
(18) D∗;G∗ `λy.Je1KC (λx1.Je2KC (λx2. x1 x2 (λx. y x))) :

L(ξ0(t2
∗(〈〈τ′〉〉C)(〈〈τ′〉〉C) by (17), rule T-ABS

C.2. PROPERTIES OF λURAL(C) 415

(19) D∗;G∗ ` Je1 e2KC : L(ξ0(t2
∗(〈〈τ′〉〉C)(〈〈τ′〉〉C)

by (18), (1).

Case
D;G C̀ e : ξ∀ c′2β:k. t ; c′1 D C̀ i : k D C̀ c′15 c′2 : CTL

D;G C̀ e : {i/β}t ; c′15 c′2
.

We want to show that

D∗;G∗ ` Je KC : L(ξ0({i∗/β}t∗(〈〈τ′, c′15 c′2〉〉−C)(〈〈τ′, c′15 c′2〉〉+C).

Consider whether the term e has a control effect:

Case c′15 c′2 6= ⊥C.

By property 8.4.2, there exist some c′1 6= ⊥C and c′2 6= ⊥C such that

(1) D C̀ c′1 ¹ c1,

(2) D C̀ c′2 ¹ c2,

(3) c15 c2 = c′15 c′2,and

(4) D C̀ c15 c2 : CTL .

From the antecedent of the lemma to be proved,

(5) D∗ ` ξ0 ¹ (c′15 c′2)∗.

Then:

(6) Je KC =λy.JeKC (λx1. x1 (λx. y x)) by def. JeKC

(7) ∃τ′′1.〈〈τ′′1, c′1〉〉−C = 〈〈τ′, c1〉〉−C and 〈〈τ′′1, c′1〉〉+C = 〈〈τ′, c1〉〉+C
by (1), property 8.4.4

(8) ∃τ′′2.〈〈τ′′2, c′2〉〉−C = 〈〈τ′, c2〉〉−C and 〈〈τ′′2, c′2〉〉+C = 〈〈τ′, c2〉〉+C
by (2), property 8.4.4

(9) D∗;G∗ ` JeKC : L(c′1
∗
(ξ((∀ c′2β:k. t)∗)(〈〈τ′, c1〉〉−C)(〈〈τ′, c1〉〉+C)

by IH(τ′′1), (7)

(10) D∗;•, x1:ξ((∀ c′2β:k. t)∗)` x1 : ξ((∀ c′2β:k. t)∗)

by rule T-VAR

(11) D∗;•, x1:ξ((∀ c′2β:k. t)∗)` x1 : ξ∀α:? .L∀β:k∗.L(c′2
∗
(t∗(

〈〈α, c′2〉〉−C)(〈〈α, c′2〉〉+C) by def. t∗

416 APPENDIX C. PROOFS: SUBSTRUCTURAL TYPES & CONTROL

(12) D∗;•, x1:ξ((∀ c′2β:k. t)∗)` x1 : L∀β:k∗.L(c′2
∗
(t∗(〈〈τ′′2, c′2〉〉−C)(

〈〈τ′′2, c′2〉〉+C) by (11), rule T-TAPP

(13) D∗;•, x1:ξ((∀ c′2β:k. t)∗)` x1 : L∀β:k∗.L(c′2
∗
(t∗(〈〈τ′, c2〉〉−C)(

〈〈τ′, c2〉〉+C) by (8, 12)

(14) D∗;•, x1:ξ((∀ c′2β:k. t)∗)` x1 : L(c′2
∗
({i∗/β}t∗(〈〈τ′, c2〉〉−C)(

〈〈τ′, c2〉〉+C) by (13), rule T-TAPP

(15) D∗;•, y:ξ0({i∗/β}t∗(〈〈τ′, c15 c2〉〉−C)` y : ξ0({i∗/β}t∗(
〈〈τ′, c15 c2〉〉−C) by rule T-VAR

(16) D∗ ` ξ0 ¹ c′2
∗ by (5), property 3

(17) D∗;•, y:ξ0({i∗/β}t∗(〈〈τ′, c15 c2〉〉−C)`λx. y x : c′2
∗
({i∗/β}t∗(

〈〈τ′, c15 c2〉〉−C) by (15–16), lemma 8.3

(18) D∗;•, y:ξ0({i∗/β}t∗(〈〈τ′, c15 c2〉〉−C)`λx. y x : c′2
∗
({i∗/β}t∗(

〈〈τ′, c2〉〉−C) by (17),

property 8.4.3a

(19) D∗;•, x1:ξ((∀ c′2β:k. t)∗), y:ξ0({i∗/β}t∗(〈〈τ′, c15 c2〉〉−C)`
x1 (λx. y x) : 〈〈τ′, c2〉〉+C by (14, 18), rule T-APP

(20) D∗ ` ξ0 ¹ c′1
∗ by (5), property 3

(21) D∗;•, y:ξ0({i∗/β}t∗(〈〈τ′, c15 c2〉〉−C)`λx1. x1 (λx. y x) :
c′1

∗
(ξ((∀ c′2β:k. t)∗)(〈〈τ′, c2〉〉+C) by (19–20), rule T-ABS

(22) D∗;•, y:ξ0({i∗/β}t∗(〈〈τ′, c15 c2〉〉−C)`λx1. x1 (λx. y x) :
c′1

∗
(ξ((∀ c′2β:k. t)∗)(〈〈τ′, c1〉〉−C) by property 8.4.3c

(23) D∗;G∗, y:ξ0({i∗/β}t∗(〈〈τ′, c15 c2〉〉−C)`
JeKC (λx1. x1 (λx. y x)) : 〈〈τ′, c1〉〉+C by (9, 22), rule T-APP

(24) D∗;G∗ `λy.JeKC (λx1. x1 (λx. y x)) : L(ξ0({i∗/β}t∗(
〈〈τ′, c15 c2〉〉−C)(〈〈τ′, c1〉〉+C) by (23), rule T-ABS

(25) D∗;G∗ ` Je KC : L(ξ0({i∗/β}t∗(〈〈τ′, c15 c2〉〉−C)(

〈〈τ′, c15 c2〉〉+C) by (6, 24),

property 8.4.3b

(26) D∗;G∗ ` Je KC : L(ξ0({i∗/β}t∗(〈〈τ′, c′15 c′2〉〉−C)(

〈〈τ′, c′15 c′2〉〉+C) by (3, 25)

C.2. PROPERTIES OF λURAL(C) 417

Case c′15 c′2 =⊥C.

By property 8.4.1, c′1 = c′2 =⊥C. This is similar to the previous case,

but much of the effect management goes away:

(1) Je KC =λy.JeKC (λx1. x1 (λx. y x)) by def. JeKC

(2) D∗;G∗ ` JeKC : L(L(ξ((∀⊥Cβ:k. t)∗)(〈〈τ′〉〉C)(〈〈τ′〉〉C)

by IH

(3) D∗;•, x1:ξ((∀⊥Cβ:k. t)∗)` x1 : ξ((∀⊥Cβ:k. t)∗)

by rule T-VAR

(4) D∗;•, x1:ξ((∀⊥Cβ:k. t)∗)` x1 : ξ∀α:? .L∀β:k∗.L(L(t∗(
〈〈α〉〉C)(〈〈α〉〉C) by def. t∗

(5) D∗;•, x1:ξ((∀⊥Cβ:k. t)∗)` x1 : L∀β:k∗.L(L(t∗(〈〈τ′〉〉C)(

〈〈τ′〉〉C) by (4), rule T-TAPP

(6) D∗;•, x1:ξ((∀⊥Cβ:k. t)∗)` x1 : L(L({i∗/β}t∗(〈〈τ′〉〉C)(

〈〈τ′〉〉C) by (5), rule T-TAPP

(7) D∗;•, y:ξ0({i∗/β}t∗(〈〈τ′〉〉C)` y : ξ0({i∗/β}t∗(〈〈τ′〉〉C)

by rule T-VAR

(8) D∗ ` ξ0 ¹ L by rule QSUB-TOP

(9) D∗;•, y:ξ0({i∗/β}t∗(〈〈τ′〉〉C)`λx. y x : L({i∗/β}t∗(〈〈τ′〉〉C)

by (7–8), lemma 8.3

(10) D∗;•, x1:ξ((∀⊥Cβ:k. t)∗), y:ξ0({i∗/β}t∗(〈〈τ′〉〉C)`
x1 (λx. y x) : 〈〈τ′〉〉C by (6, 9), rule T-APP

(11) D∗;•, y:ξ0({i∗/β}t∗(〈〈τ′〉〉C)`λx1. x1 (λx. y x) :
L(ξ((∀⊥Cβ:k. t)∗)(〈〈τ′〉〉C) by (8, 10), rule T-ABS

(12) D∗;G∗, y:ξ0({i∗/β}t∗(〈〈τ′〉〉C)` JeKC (λx1. x1 (λx. y x)) :

〈〈τ′〉〉C by (2, 11), rule T-APP

(13) D∗;G∗ `λy.JeKC (λx1. x1 (λx. y x)) : L(ξ0({i∗/β}t∗(
〈〈τ′〉〉C)(〈〈τ′〉〉C) by (12), rule T-ABS

(14) D∗;G∗ ` Je KC : L(ξ0({i∗/β}t∗(〈〈τ′〉〉C)(〈〈τ′〉〉C)

by (1, 13)

418 APPENDIX C. PROOFS: SUBSTRUCTURAL TYPES & CONTROL

Case
q¹A D;G C̀ e : t ; c D C̀ t ¹A

D;G C̀ newq e : qref t ; c
.

We want to show that D∗;G∗ ` Jnewq eKC : L(ξ0(qref t∗ (〈〈τ′, c〉〉−C)(

〈〈τ′, c〉〉+C). Then:

(1) Jnewq eKC =λy.JeKC (λx. y (newq x)) by def. JeKC

(2) D∗;G∗ ` JeKC : L(ξ0(t∗(〈〈τ′, c〉〉−C)(〈〈τ′, c〉〉+C)

by IH

(3) D∗;•, y:ξ0(qref t∗(〈〈τ′, c〉〉−C)` y : ξ0(qref t∗(〈〈τ′, c〉〉−C)

by rule T-VAR

(4) D∗;•, x:t∗ ` x : t∗ by rule T-VAR

(5) D∗ ` t∗ ¹A by lemma C.6

(6) D∗;•, x:t∗ ` newq x : ξref t∗ by (4–5),

rule T-NEWUA
(7) D∗;•, x:t∗, y:ξ0(ξref t∗(〈〈τ′, c〉〉−C)` y (newq x) : 〈〈τ′, c〉〉−C

by (3, 6), rule T-APP

(8) D∗ ` •, y:ξ0(ξref t∗(〈〈τ′, c〉〉−C)¹ ξ0 by rule B-TYPE

(9) D∗;•, y:ξ0(ξref t∗(〈〈τ′, c〉〉−C)`λx. y (newq x) : ξ0(t∗(〈〈τ′, c〉〉−C)

by (7–8), rule T-ABS

(10) D∗;G∗, y:ξ0(ξref t∗(〈〈τ′, c〉〉−C)` JeKC (λx. y (newq x)) : 〈〈τ′, c〉〉+C
by (2, 9), rule T-APP

(11) D∗;G∗ `λy.JeKC (λx. y (newq x)) : L(ξ0(ξref t∗(〈〈τ′, c〉〉−C)(

〈〈τ′, c〉〉+C) by (10), rule T-ABS

(12) D∗;G∗ ` Jnewq eKC : L(ξ0(ξref t∗(〈〈τ′, c〉〉−C)(〈〈τ′, c〉〉+C)

by (1, 11).

Case
R¹ q D;G C̀ e : t ; c

D;G C̀ newq e : qref t ; c
.

As in the previous case.

C.2. PROPERTIES OF λURAL(C) 419

Case
D;G C̀ e : ξref t ; c D C̀ A¹ ξ

D;G C̀ delete e : t ; c
.

We want to show that D∗;G∗ ` Jdelete eKC : L(ξ0(t∗(〈〈τ′, c〉〉−C)(〈〈τ′, c〉〉+C).

Then:

(1) Jdelete eKC =λy.JeKC (λx. y (delete x)) by def. JeKC

(2) D∗;G∗ ` JeKC : L(ξ0(ξref t∗(〈〈τ′, c〉〉−C)(〈〈τ′, c〉〉+C)

by IH

(3) D∗;•, y:ξ0(t∗(〈〈τ′, c〉〉−C)` y : ξ0(t∗(〈〈τ′, c〉〉−C)

by rule T-VAR

(4) D∗;•, x:ξref t∗ ` x : ξref t∗ by rule T-VAR

(5) D∗ `A¹ ξ by lemma C.6

(6) D∗;•, x:ξref t∗ ` delete x : t∗ by (4–5),

rule T-DELETE

(7) D∗;•, x:ξref t∗, y:ξ0(t∗(〈〈τ′, c〉〉−C)` y (delete x) : 〈〈τ′, c〉〉−C
by (3, 6), rule T-APP

(8) D∗ ` •, y:ξ0(t∗(〈〈τ′, c〉〉−C)¹ ξ0 by rule B-TYPE

(9) D∗;•, y:ξ0(t∗(〈〈τ′, c〉〉−C)`λx. y (delete x) : ξ0(ξref t∗(〈〈τ′, c〉〉−C)

by (7–8), rule T-ABS

(10) D∗;G∗, y:ξ0(t∗(〈〈τ′, c〉〉−C)` JeKC (λx. y (delete x)) : 〈〈τ′, c〉〉+C
by (2, 9), rule T-APP

(11) D∗;G∗ `λy.JeKC (λx. y (delete x)) : L(ξ0(t∗(〈〈τ′, c〉〉−C)(〈〈τ′, c〉〉+C)

by (10), rule T-ABS

(12) D∗;G∗ ` Jdelete eKC : L(ξ0(t∗(〈〈τ′, c〉〉−C)(〈〈τ′, c〉〉+C)

by (1, 11).

Case
D;G C̀ e : ξref t ; c D C̀ t ¹R

D;G C̀ read e : t ; c
.

We want to show that D∗;G∗ ` Jread eKC : L(ξ0(t∗(〈〈τ′, c〉〉−C)(〈〈τ′, c〉〉+C).

Then:

420 APPENDIX C. PROOFS: SUBSTRUCTURAL TYPES & CONTROL

(1) Jread eKC =λy.JeKC (λx. y (read x)) by def. JeKC

(2) D∗;G∗ ` JeKC : L(ξ0(ξref t∗(〈〈τ′, c〉〉−C)(〈〈τ′, c〉〉+C)

by IH

(3) D∗;•, y:ξ0(t∗(〈〈τ′, c〉〉−C)` y : ξ0(t∗(〈〈τ′, c〉〉−C)

by rule T-VAR

(4) D∗;•, x:ξref t∗ ` x : ξref t∗ by rule T-VAR

(5) D∗ ` t∗ ¹R by lemma C.6

(6) D∗;•, x:ξref t∗ ` read x : t∗ by (4–5), rule T-READ

(7) D∗;•, x:ξref t∗, y:ξ0(t∗(〈〈τ′, c〉〉−C)` y (read x) : 〈〈τ′, c〉〉−C
by (3, 6), rule T-APP

(8) D∗ ` •, y:ξ0(t∗(〈〈τ′, c〉〉−C)¹ ξ0 by rule B-TYPE

(9) D∗;•, y:ξ0(t∗(〈〈τ′, c〉〉−C)`λx. y (read x) : ξ0(ξref t∗(〈〈τ′, c〉〉−C)

by (7–8), rule T-ABS

(10) D∗;G∗, y:ξ0(t∗(〈〈τ′, c〉〉−C)` JeKC (λx. y (read x)) : 〈〈τ′, c〉〉+C
by (2, 9), rule T-APP

(11) D∗;G∗ `λy.JeKC (λx. y (read x)) : L(ξ0(t∗(〈〈τ′, c〉〉−C)(〈〈τ′, c〉〉+C)

by (10), rule T-ABS

(12) D∗;G∗ ` Jread eKC : L(ξ0(t∗(〈〈τ′, c〉〉−C)(〈〈τ′, c〉〉+C)

by (1, 11).

Case

D C̀ G G1�G2 D;G1 C̀ e1 : ξ1ref t1 ; c′1
D;G2 C̀ e2 : t2 ; c′2 D C̀ G2 ¹ ξ2 D C̀ c′1 º ξ2

D C̀ c′2 º ξ1 D C̀ A¹ ξ1 D C̀ t2 ¹ ξ1 D C̀ c′15 c′2 : CTL

D;G C̀ swap e1 e2 : L(ξref t2 ⊗ t1) ; c′15 c′2
.

We want to show that

D∗;G∗ ` e : L(ξ0(L(ξref t2
∗⊗ t1

∗)(〈〈τ′, c15 c2〉〉−C)(〈〈τ′, c15 c2〉〉+C),

where e = Jswap e1 e2KC. Consider whether the term swap e1 e2 has a

control effect:

C.2. PROPERTIES OF λURAL(C) 421

Case c′15 c′2 6= ⊥C.

By property 8.4.2, there exist some c1 6= ⊥C and c2 6= ⊥C such that

(1) D C̀ c′1 ¹ c1,

(2) D C̀ c′2 ¹ c2,

(3) c15 c2 = c′15 c′2,and

(4) D C̀ c15 c2 : CTL .

From the antecedent of the lemma to be proved,

(5) D∗ ` ξ0 ¹ (c′15 c′2)∗.

Then:

(6) Jswap e1 e2KC =λy.Je1KC (λx1.Je2KC (λx2. y (swap x1 x2)))

by def. JeKC
(7) ∃τ′′1.〈〈τ′′1, c′1〉〉−C = 〈〈τ′, c1〉〉−C and 〈〈τ′′1, c′1〉〉+C = 〈〈τ′, c1〉〉+C

by (1), property 8.4.4

(8) ∃τ′′2.〈〈τ′′2, c′2〉〉−C = 〈〈τ′, c2〉〉−C and 〈〈τ′′2, c′2〉〉+C = 〈〈τ′, c2〉〉+C
by (2), property 8.4.4

(9) D∗;G1
∗ ` Je1KC : L(c′1

∗
(ξ1ref t1

∗(〈〈τ′, c1〉〉−C)(〈〈τ′, c1〉〉+C)

by IH(τ′′1), (7)

(10) D∗;G2
∗ ` Je2KC : L(c′2

∗
(t2

∗(〈〈τ′, c2〉〉−C)(〈〈τ′, c2〉〉+C)

by IH(τ′′1), (8)

(11) D∗;•, x1:ξ1ref t1
∗ ` x1 : ξ1ref t1

∗ by rule T-VAR

(12) D∗;•, x2:t2
∗ ` x2 : t2

∗ by rule T-VAR

(13) D∗ `A¹ ξ1 by lemma C.6

(14) D∗ ` t2
∗ ¹ ξ1 by lemma C.6

(15) D∗;•, x1:ξ1ref t1
∗, x2:t2

∗ ` swap x1 x2 : L(ξref t2
∗⊗ t1

∗)

by (11–13), (14),

rule T-SWAPSTRONG
(16) D∗;•, y:ξ0(L(ξref t2

∗⊗ t1
∗)(〈〈τ′, c15 c2〉〉−C)` y :

ξ0(L(ξref t2
∗⊗ t1

∗)(〈〈τ′, c15 c2〉〉−C) by rule T-VAR

(17) D∗;•, x1:ξ1ref t1
∗, x2:t2

∗, y:ξ0(L(ξref t2
∗⊗ t1

∗)(

〈〈τ′, c15 c2〉〉−C)` y (swap x1 x2) : 〈〈τ′, c15 c2〉〉−C
by (15–16), rule T-APP

422 APPENDIX C. PROOFS: SUBSTRUCTURAL TYPES & CONTROL

(18) D∗ ` ξ1 ¹ c′2
∗ by property 8.4.2

(19) D∗ ` ξ0 ¹ c′2
∗ by (5), property 3

(20) D∗ ` •, x1:ξ1ref t1
∗, y:ξ0(L(ξref t2

∗⊗ t1
∗)(〈〈τ′, c15 c2〉〉−C)¹

c′2
∗ by rule B-CONS,

(18–19)
(21) D∗;•, x1:ξ1ref t1

∗, y:ξ0(L(ξref t2
∗⊗ t1

∗)(〈〈τ′, c15 c2〉〉−C)`
λx2. y (swap x1 x2) : c′2

∗
(t2

∗(〈〈τ′, c15 c2〉〉−C)

by (17, 20), rule T-ABS

(22) D∗;•, x1:ξ1ref t1
∗, y:ξ0(L(ξref t2

∗⊗ t1
∗)(〈〈τ′, c15 c2〉〉−C)`

λx2. y (swap x1 x2) : c′2
∗
(t2

∗(〈〈τ′, c2〉〉−C)

by (21),

property 8.4.3a
(23) D∗;G2

∗, x1:ξ1ref t1
∗, y:ξ0(L(ξref t2

∗⊗ t1
∗)(〈〈τ′, c15 c2〉〉−C)`

Je2KC (λx2. y (swap x1 x2)) : 〈〈τ′, c2〉〉+C by (10, 22), rule T-APP

(24) D∗ ` ξ2 ¹ c′1
∗ by property 8.4.2

(25) D∗ `G2
∗ ¹ ξ2 by lemma C.6

(26) D∗ `G2
∗ ¹ c′1

∗ by (24–25), ind. G2
∗,

. . .
(27) D∗ ` ξ0 ¹ c′1

∗ by (5), property 3

(28) D∗ `G2
∗, y:ξ0(L(ξref t2

∗⊗ t1
∗)(〈〈τ′, c15 c2〉〉−C)¹ c′1

∗

by rule B-CONS, (24,

27), . . .
(29) D∗;G2

∗, y:ξ0(L(ξref t2
∗⊗ t1

∗)(〈〈τ′, c15 c2〉〉−C)`
λx1.Je2KC (λx2. y (swap x1 x2)) : c′1

∗
(ξ1ref t1

∗(〈〈τ′, c2〉〉+C)

by (23, 28), rule T-ABS

(30) D∗;G2
∗, y:ξ0(L(ξref t2

∗⊗ t1
∗)(〈〈τ′, c15 c2〉〉−C)`

λx1.Je2KC (λx2. y (swap x1 x2)) : c′1
∗
(ξ1ref t1

∗(〈〈τ′, c1〉〉−C)

by (29),

property 8.4.3c
(31) D∗;G∗, y:ξ0(L(ξref t2

∗⊗ t1
∗)(〈〈τ′, c15 c2〉〉−C)`

Je1KC (λx1.Je2KC (λx2. y (swap x1 x2))) : 〈〈τ′, c1〉〉+C
by (9, 30), rule T-APP

C.2. PROPERTIES OF λURAL(C) 423

(32) D∗;G∗ `λy.Je1KC (λx1.Je2KC (λx2. y (swap x1 x2))) :
L(ξ0(L(ξref t2

∗⊗ t1
∗)(〈〈τ′, c15 c2〉〉−C)(〈〈τ′, c1〉〉+C)

by (31), rule T-ABS

(33) D∗;G∗ ` Jswap e1 e2KC : L(ξ0(L(ξref t2
∗⊗ t1

∗)(

〈〈τ′, c15 c2〉〉−C)(〈〈τ′, c15 c2〉〉+C) by (32),

property 8.4.3b, (6).

Case c′15 c′2 =⊥C.

As in the previous case, but with all the control effect manipulation

elided, because all the control effects are pure. This follows from

the impure case just as the pure cases for application and type

application from their impure cases.

Case

D C̀ G G1�G2 D;G1 C̀ e1 : ξ1ref t ; c1 D;G2 C̀ e2 : t ; c2

D C̀ G2 ¹ ξ2 D C̀ c1 º ξ2 D C̀ c2 º ξ1 D C̀ c15 c2 : CTL

D;G C̀ swap e1 e2 : L(ξref t⊗ t) ; c15 c2

.

As in the previous case.

COROLLARY 8.9 (Translation of program typing, restated from p. 230).

If D;G C̀ e : t ;⊥C where D C̀ t ¹A, then

D∗;G∗ ` JeKC doneC : 〈〈t∗〉〉C.

Proof. Then:

(1) D∗ ` t∗ ¹A by lemma C.6

(2) D∗ ` t∗ :? by lemma C.5,

lemma 8.5
(3) D C̀ L¹⊥C

∗ by rule QSUB-REFL

(4) D∗;G∗ ` JeKC : L(L(t∗(〈〈t∗〉〉C)(〈〈t∗〉〉C) by prem., (2–3),

lemma 8.8
(5) D∗;• ` doneC : L(t∗(〈〈t∗〉〉C) by (1–2), property 2

(6) D∗ `G∗ G∗�• by ind. G∗,

rule S-CONSL

424 APPENDIX C. PROOFS: SUBSTRUCTURAL TYPES & CONTROL

(7) D∗;G∗ ` JeKC doneC : 〈〈t∗〉〉C by (4–6),

rule T-APP.

C.3 Proofs for Example Control Effects

In this section, I prove that each of the control effects in §8.5 meets the control

effect parameter soundness criteria.

C.3.1 Delimited Continuation Effects

In this section, we consider the delimited continuation effects from §8.5.1.

LEMMA C.7 (Top).

If d∗ =U then (dtd′)∗ =U.

Proof. Assuming d∗ =U, we proceed by cases on dtd′:

Case α.

Then (dtd′)∗ = α. By the quotienting of d, dtd′ = α only if d is α or

⊥D. If d =α then d∗ =α, which contradicts our assumption. If d =⊥D

then d∗ = L, which also contradicts our assumption.

Case ⊥D.

Then (dtd′)∗ = L. By the quotienting of d, dtd′ =⊥D only if d =⊥D,

which means that d∗ = L, which contradicts our assumption.

Case ξ.

Then (dtd′)∗ = ξ. By the quotienting of d, we can have dtd′ = ξ in one

of two ways:

Case d = ξ1 and d′ = ξ2 and ξ1 uξ2 = ξ.
That is, (dtd′)∗ = ξ1 uξ2 and d∗ = ξ1. Then ξ1 = U, which means

that (dtd′)∗ = ξ1 uξ2 =Uuξ2 =U.

C.3. PROOFS FOR EXAMPLE CONTROL EFFECTS 425

Case d = d′ = ξ.
This is subsumed by the previous case.

Otherwise.

Then (dtd′)∗ =U, which is the desired conclusion.

THEOREM 8.13 (Delimited continuation properties, restated from p. 234).

Delimited continuation effects (D,⊥D,t) satisfy properties 1–5.

Proof.
Property 1 (Answer types). All properties here are trivial because 〈〈τ,d〉〉−D =
〈〈τ,d〉〉+D = U1.

Property 2 (Done). Then:

(1) ∆;• ` 〈〉 : U1 by rules T-UNIT and

K-QUAL

(2) ∆` •, x:τ¹A by rules B-NIL and

B-CONS
(3) ∆` •, x:τ •�•, x:τ by rules S-NIL and

S-CONSR
(4) ∆;•, x:τ` 〈〉 : U1 by (1–3), rule T-WEAK

(5) ∆;• `λx.〈〉 : L(τ(U1) by (4), rule T-ABS

(6) 〈〈τ〉〉D = U1 by def. 〈〈τ〉〉D
(7) ∆;• `λx.〈〉 : L(τ(〈〈τ〉〉D) by (5–6).

Property 3 (Effect sequencing). Let D C̀ d1 td2 : CTL. We must show that

D∗ ` (d1 td2)∗ ¹ d1
∗ and D∗ ` (d1 td2)∗ ¹ d2

∗. By symmetry, it suffices to

show the former. Then:

(1) D D̀ d1 ¹ d1 by rule CSUB-TRANS

(2) D D̀ ⊥D ¹ d2 by rule DSUB-BOT

(3) D D̀ d1 t⊥D ¹ d1 td2 by (1–2),

rule DSUB-JOIN
(4) D D̀ d1 ¹ d1 td2 by (3), quotient

426 APPENDIX C. PROOFS: SUBSTRUCTURAL TYPES & CONTROL

(5) D∗ ` (d1 td2)∗ ¹ d1
∗ by lemma 8.7.

Property 4 (Bottom and lifting).

1. To show that d1td2 = ⊥D if and only if d1 = d2 = ⊥D, we consider the

quotienting of D.

2. We must also show that if D D̀ d1 t d2 : CTL and d1 t d2 6= ⊥D, then

there exist some d′
1 6= ⊥D and d′

2 6= ⊥D with particular properties. For

each di
(i∈{1,2}), if di = ⊥D then let d′

i = L; otherwise, let d′
i = di. This

ensures that 1–2) each D D̀ di ¹ d′
i, 3) d1 td2 = d′

1 td′
2, and 4) d′

1 td′
2

is well formed.

Property 5 (New rules).

1. For translation of effect bounds, let D D̀ d º ξ; we need to show that

D∗ ` ξ ¹ d∗. We proceed by induction on the derivation of D D̀ d º ξ,

which has two new cases to consider:

Case
D C̀ ξ¹ ξ′

D D̀ ξ′ º ξ
.

Then ξ′∗ = ξ′, and by lemma C.6, D∗ ` ξ¹ ξ′.

Case
D D̀ d1 º ξ D D̀ d2 º ξ

D D̀ d1 td2 º ξ
.

By the induction hypothesis,

(1) D∗ ` ξ¹ d1
∗ and

(2) D∗ ` ξ¹ d2
∗.

Now we consider several possibilities for d1 t d2 in light of the

quotienting of D:

• If d1 = d2 then d1 td2 = d1, so we have D∗ ` ξ¹ (d1 td2)∗ by

(1).

• If d1 = ⊥D, then d1 td2 = d2, and thus D∗ ` ξ¹ (d1 td2)∗ by

(2).

• By symmetry with the previous case if d2 = ⊥D.

C.3. PROOFS FOR EXAMPLE CONTROL EFFECTS 427

• If d1 = ξ1 and d2 = ξ2 where ξ1 uξ2 is defined, then

(3) d1 td2 = (ξ1 uξ2).

Then:

(4) D∗ ` ξ¹ ξ1 by (1), def. ξ1
∗

(5) D∗ ` ξ¹ ξ2 by (2), def. ξ2
∗

(6) D∗ ` ξ¹ ξ1 uξ2 by (4–5), lemma C.2

(7) D∗ ` ξ¹ (d1 td2)∗ by (3, 6), def. ξ∗

• If d1 = ξ1 and d2 = ξ2 where ξ1 u ξ2 is not defined, then by

lemma C.3 and (1–2), ξ = U. Then by rule QSUB-BOT.

• If d1 = α, then since D D̀ α º ξ, we know by inversion that

ξ = U. Then by rule QSUB-BOT.

• If d2 = α, then by symmetry with the previous case.

2. For translation of effect subsumption, let D D̀ d1 ¹ d2; we must show

that D∗ ` d2
∗ ¹ d1

∗. We proceed by induction on the derivation of

D D̀ d1 ¹ d2, which has several cases to consider:

Case
D D̀ d : CTL

D D̀ ⊥D ¹ d
.

Then D∗ ` d∗ ¹ L by rule QSUB-TOP.

Case
D C̀ ξ : QUAL

D D̀ L¹ ξ
.

Then D∗ ` ξ¹ L by rule QSUB-TOP.

Case
D D̀ d : CTL

D D̀ d ¹U
.

Then D∗ `U¹ d∗ by rule QSUB-BOT.

Case

D D̀ d1 ¹ d′
1 D D̀ d2 ¹ d′

2

D D̀ d1 td2 : CTL D D̀ d′
1 td′

2 : CTL

D D̀ d1 td2 ¹ d′
1 td′

2

.

Without loss of generality, let

(1) D= •,α:QUAL,β:QUAL,α′:CTL,β′:CTL .

428 APPENDIX C. PROOFS: SUBSTRUCTURAL TYPES & CONTROL

(ii)
⊥D ¹ d α′ ¹α′ R¹R A¹A L¹R L¹A L¹L L¹α α¹α β¹β d ¹U

(i)

⊥D ¹ d U¹L U¹α′ U¹R U¹A U¹L U¹L U¹L U¹L U¹α U¹β U¹U
α′ ¹α′ U¹α′ α′ ¹α′ U¹U U¹U U¹U U¹U U¹U U¹U U¹U U¹U U¹U
β′ ¹β′ U¹β′ U¹U U¹U U¹U U¹U U¹U U¹U U¹U U¹U U¹U U¹U

R¹R U¹R U¹U R¹R U¹U R¹R U¹R R¹R U¹R U¹U U¹U U¹U

A¹A U¹A U¹U U¹U A¹A U¹A A¹A A¹A U¹A U¹U U¹U U¹U

L¹R U¹L U¹U R¹R U¹A R¹L U¹L R¹L U¹L U¹α U¹β U¹U

L¹A U¹L U¹U U¹R A¹A U¹L A¹L A¹L U¹L U¹α U¹β U¹U

L¹L U¹L U¹U R¹R A¹A R¹L A¹L L¹L α¹L α¹α β¹β U¹U

L¹α U¹L U¹U U¹R U¹A U¹L U¹L α¹L α¹L α¹α U¹β U¹U

L¹β U¹L U¹U U¹R U¹A U¹L U¹L β¹L U¹L U¹α β¹β U¹U
α¹α U¹α U¹U U¹U U¹U U¹α U¹α α¹α α¹α α¹α U¹U U¹U

β¹β U¹β U¹U U¹U U¹U U¹β U¹β β¹β U¹β U¹U β¹β U¹U

d ¹U U¹U U¹U U¹U U¹U U¹U U¹U U¹U U¹U U¹U U¹U U¹U

Figure C.1: Exhaustive proof for final case in translation subsumption

By cases on the possibilities for d1, d2, d′
1, and d′

2, we construct a

table showing all the cases in figure C.1. We label the rows with

instances of the judgment (i) D D̀ d1 ¹ d′
1 and the columns with

instances of the judgment (ii) D D̀ d2 ¹ d′
2. Using lemma C.7, we

fill the cells with instances of D∗ ` (d′
1 td′

2)∗ ¹ (d1 td2)∗.

3. For translation of kinding, let D C̀ d : CTL. We must show that D∗ ` d∗ :

QUAL. We proceed by induction on the derivation, considering the two

new kinding rules:

Case
D C̀ ξ : QUAL

D D̀ ξ : CTL
.

By the induction hypothesis, D∗ ` ξ : QUAL, noting that (ξ)∗ = ξ and

CTL∗ =QUAL.

Case
D C̀ d1 : CTL D C̀ d2 : CTL

D D̀ d1 td2 : CTL
.

By cases on d1 td2:

Case α.
Then (d1td2)∗ =α. By the quotienting of d, d1td2 =α only if

at least one of d1 or d2 is α. From the premises, we know that

C.3. PROOFS FOR EXAMPLE CONTROL EFFECTS 429

D C̀ α : CTL, which means that α:CTL ∈ D. This means that

α:QUAL ∈D∗, so D∗ `α : QUAL.

Case ⊥D.
Then (d1 td2)∗ = L, so D∗ ` L : QUAL by rule K-QUAL.

Case ξ.
Then (d1 td2)∗ = ξ. By the quotienting of d, d1 td2 = ξ in one

of two ways:

Case d1 = ξ1 and d2 = ξ2 and ξ1 uξ2 = ξ.
That is,

(1) (d1 td2)∗ = ξ1 uξ2,

(2) d1
∗ = ξ1,and

(3) d2
∗ = ξ2.

By the induction hypothesis, twice, we have that

(4) D∗ ` d1
∗ : QUAL and

(5) D∗ ` d2
∗ : QUAL,

and by substitution (2–3).

(6) D∗ ` ξ1 : QUAL and

(7) D∗ ` ξ2 : QUAL,

Since ξ1 uξ2 = ξ, the meet is defined. By the definition of

meet, ξ1 uξ2 is either a constant qualifier q, which has a

kind by rule K-QUAL, or it is a identical to at least one of

ξ1 or ξ2, both of which are well-kinded under D∗.

Case d1 = d2 = ξ.
This is subsumed by the previous case.

Otherwise.
Then (d1 td2)∗ =U, so D∗ `U : QUAL by rule K-QUAL.

4. For translation of typing, let

• D;G D̀ e : t ; d.

• D∗ ` ξ0 ¹ d∗, and

• D∗ ` τ′ :?.

430 APPENDIX C. PROOFS: SUBSTRUCTURAL TYPES & CONTROL

We must show that D∗;G∗ ` JeKD : L(ξ0(t∗(U1)(U1). We proceed by

induction on the typing derivation, with two cases to consider:

Case
D;G D̀ e′ : U1 ; d′

D;G D̀ reset e′ : U1 ;⊥D

.

We must show that D∗;G∗ ` Je′KD : L(ξ0(U1(U1)(U1). Then,

(1) Jreset e′KD =λy. y (Je′KD (λx. x)) by def. JeKD
(2) D∗;G∗ ` Je′KD : L(d′∗

(U1(U1)(U1)

by IH

(3) D∗;•, x:U1` x : U1 by rule T-VAR

(4) D∗;• `λx. x : d′∗
(U1(U1) by (3), rule T-ABS

(5) D∗;G∗ ` Je′KD (λx. x) : U1 by (2, 4), rule T-APP

(6) D∗;•, y:ξ0(U1(U1)` y : ξ0(U1(U1)

by rule T-VAR

(7) D∗;G∗, y:ξ0(U1(U1)` y (Je′KD (λx. x)) : U1

by (5–6), rule T-APP

(8) D∗;G∗ `λy. y (Je′KD (λx. x)) : L(ξ0(U1(U1)(U1)

by (7),rule T-ABS

(9) D∗;G∗ ` Jreset e′KD : L(ξ0(U1(U1)(U1)

by (1, 8).

Case
D;G, y′:ξ(t ⊥D−−−◦ U1) D̀ e′ : U1 ; d′

D;G D̀ shift y′ in e′ : t ; d′tξ
.

We must show that D∗;G∗ ` Jshift y′ in e′KD : L(ξ0(t∗(U1)(U1).

By our premises, we know that

(1) D∗ ` ξ0 ¹ (d′tξ)∗

Now, consider whether d′∗uξ is defined: If so, then D∗ ` ξ0 ¹ d′∗uξ,

which means that D∗ ` ξ0 ¹ ξ by lemma C.2. If the meet is not

defined, then (d′tξ)∗ =U, which means that D∗ ` ξ0 ¹U. In either

case, we have that

(2) D∗ ` ξ0 ¹ ξ.

C.3. PROOFS FOR EXAMPLE CONTROL EFFECTS 431

Then,

(3) Jshift y′ in e′KD =λy. (λy′.Je′KD (λx. x)) (Λ.λx.λy′′. y′′ (y x))

by def. JeKD
(4) D∗;G∗, y′:(ξ(t ⊥D−−−◦ U1))∗ ` Je′KD : L(d′∗

(U1(U1)(U1)

by IH

(5) D∗;• `λx. x : d′∗
(U1(U1) by rules T-VAR and

T-ABS
(6) D∗;G∗, y′:(ξ(t ⊥D−−−◦ U1))∗ ` Je′KD (λx. x) : U1

by (4–5), rule T-APP

(7) D∗;G∗ `λy′.Je′KD (λx. x) : L((ξ(t ⊥D−−−◦ U1))∗(U1)

by (6), rule T-ABS

(8) D∗,α:?;•, y′′:L(U1(U1)` y′′ : L(U1(U1)

by rule T-VAR

(9) D∗,α:?;•, y:ξ0(t∗(U1)` y : ξ0(t∗(U1)

by rule T-VAR

(10) D∗,α:?;•, x:t∗ ` x : t∗ by rule T-VAR

(11) D∗,α:?;•, y:ξ0(t∗(U1), x:t∗ ` y x : U1

by (9–10), rule T-APP

(12) D∗,α:?;•, y:ξ0(t∗(U1), x:t∗, y′′:L(U1(U1)` y′′ (y x) : U1

by (8, 11), rule T-APP

(13) D∗,α:?;•, y:ξ0(t∗(U1), x:t∗ `λy′′. y′′ (y x) : L(L(U1(U1)(
U1) by (12), rule T-ABS

(14) D∗,α:?;•, y:ξ0(t∗(U1)`λx.λy′′. y′′ (y x) : L(t∗(L(L(U1(
U1)(U1)) by (13), rule T-ABS

(15) D∗ ` •, y:ξ0(t∗(U1)¹ ξ by (2)

(16) D∗;•, y:ξ0(t∗(U1)`Λ.λx.λy′′. y′′ (y x) : ξ∀α:? .L(t∗(
L(L(U1(U1)(U1)) by (14–15),

rule T-TABS
(17) D∗;•, y:ξ0(t∗(U1)`Λ.λx.λy′′. y′′ (y x) : (ξ(t ⊥D−−−◦ U1))∗

by (16), def. t∗

(18) D∗;G∗, y:ξ0(t∗(U1)` (λy′.Je′KD (λx. x)) (Λ.λx.λy′′. y′′ (y x)) :
U1 by (7, 17), rule T-APP

432 APPENDIX C. PROOFS: SUBSTRUCTURAL TYPES & CONTROL

(19) D∗;G∗ `λy. (λy′.Je′KD (λx. x)) (Λ.λx.λy′′. y′′ (y x)) : L(ξ0(t∗(
U1)(U1) by (18), rule T-ABS

(20) D∗;G∗ ` Jshift y′ in e′KD : L(ξ0(t∗(U1)(U1)

by (3, 19).

C.3.2 Answer-Type Modification Effects

In this section, we consider the delimited continuations with answer-type

modification effects from §8.5.2.

DEFINITION C.8 (Answer-type effects to simple shift/reset effects).

We define a translation from answer-type modification effects to fixed-answer
type effects:

D(⊥A)=⊥D

D(ξ1,...,ξj(t1� t2))= ξ1 t . . .tξj

LEMMA C.9 (Effect translation).

For all a and a′:

1. a∗ =D(a)∗.

2. D(a5a′)=D(a)tD(a′) when a5a′ is defined.

3. If D À a : CTL then D D̀ D(a) : CTL.

4. If D À a1 ¹ a2 then D D̀ D(a1)¹D(a2).

Proof.

1. By cases on a:

Case ⊥A.

Then ⊥A
∗ = L=⊥D

∗ =D(⊥A)∗.

Case Ξ(t1� t2).

By cases on Ξ:

C.3. PROOFS FOR EXAMPLE CONTROL EFFECTS 433

Case ξ.
Then ξ(t1� t2)∗ = ξ= ξ∗ =D(ξ(t1� t2))∗.

Case ξ1, . . . ,ξj.
Then (ξ1,...,ξj(t1� t2))∗ =U= (ξ1t. . .tξj)∗ =D(ξ1,...,ξj(t1� t2))∗.

2. By cases on a:

Case ⊥A.

Then D(⊥A5a′)=D(a2)=⊥DtD(a′)=D(⊥A)tD(a′).

Case Ξ(t1� t2).

By cases on a′:

Case ⊥A.
By symmetry with the a =⊥A case above.

Case Ξ′
(t′1� t′2).

Then Ξ(t1� t2)5Ξ′
(t′1� t′2) is well formed only if t1 = t′2. Let

ξ1, . . . ,ξj =Ξ and ξ′1, . . . ,ξ′k =Ξ′. Then,

(1) D(ξ1,...,ξj(t1� t2)5 ξ′1,...,ξ′k(t′1� t′2))

(2) =D(ξ1,...,ξj,ξ′1,...,ξ′k(t′1� t2))

(3) = ξ1 t . . .tξj tξ′1 t . . .tξ′k
(4) =D(ξ1,...,ξj(t1� t2))tD(ξ

′
1,...,ξ′k(t′1� t′2)).

3. By induction on the derivation of D À a : CTL:

Case
D À ⊥A : CTL

.

Then by rule C-K-BOT, D D̀ ⊥D : CTL.

Case
D À ξ : QUAL D À t1 :? D À t2 :?

D À
ξ(t1� t2) : CTL

.

Then by rule D-K-QUAL, D D̀ ξ : CTL.

Case
D À

ξ1,...,ξj(t1� t2) : CTL D À
ξ′1,...,ξ′k(t1� t2) : CTL

D À
ξ1,...,ξj,ξ′1,...,ξ′k(t1� t2) : CTL

.

By the induction hypothesis, twice,

(1) D D̀ ξ1 t . . .tξj : CTL and

434 APPENDIX C. PROOFS: SUBSTRUCTURAL TYPES & CONTROL

(2) D D̀ ξ′1 t . . .tξ′k : CTL .

Then by rule D-K-JOIN,

(3) D D̀ ξ1 t . . .tξj tξ′1 t . . .tξ′k : CTL,

or equivalently,

(4) D D̀ D(ξ1,...,ξj(t1� t2))5D(ξ
′
1,...,ξ′k(t1� t2)) : CTL .

Otherwise.

No other cases assign kind CTL to a type.

4. By induction on the derivation of D À a1 ¹ a2:

Case
D À a : CTL

D À a ¹ a
.

Then D D̀ D(a)¹D(a) by rule CSUB-REFL.

Case
D À a1 ¹ a′ D À a′ ¹ a2

D À a1 ¹ a2

.

By the induction hypothesis twice and rule CSUB-TRANS.

Case
D À

Ξ(t� t) : CTL

D À ⊥A ¹ Ξ(t� t)
.

Then D D̀ ⊥D ¹D(Ξ(t� t)) by rule DSUB-BOT.

Case
D À

ξ1,...,ξj(t1� t2) : CTL

D À
L(t1� t2)¹ ξ1,...,ξj(t1� t2)

.

For each ξk in ξ1, . . . ,ξj, by rule DSUB-LIN, we have that D D̀ L¹ ξk.

By induction on the length of ξ1 t . . .tξj and repeated application

of rule DSUB-JOIN, we have that D D̀ L ¹ ξ1 t . . .tξj. Then note

that L(t1� t2)= L(t1� t2) by the quotienting of Ξ.

Case
D À

ξ1,...,ξj(t1� t2) : CTL

D À
ξ1,...,ξj(t1� t2)¹ U(t1� t2)

.

As in the previous case, but using rule DSUB-TOP for each D D̀ ξj ¹
U.

C.3. PROOFS FOR EXAMPLE CONTROL EFFECTS 435

Case

D À
ξ1,...,ξj(t1� t2)¹ ξ′′1,...,ξ′′k (t1� t2)

D À
ξ′1,...,ξ′m(t1� t2)¹ ξ′′′1 ,...,ξ′′′n (t1� t2)

D À
ξ1,...,ξj,ξ′′1,...,ξ′′k (t1� t2)¹ ξ′1,...,ξ′m,ξ′′′1 ,...,ξ′′′n (t1� t2)

.

By the induction hypothesis,

(1) D D̀ ξ1 t . . .tξj ¹ ξ′′1 t . . .tξ′′k and

(2) D D̀ ξ′1 t . . .tξ′m ¹ ξ′′′1 t . . .tξ′′′n .

Then by rule DSUB-JOIN,

(3) D D̀ ξ1t . . .tξjtξ′1t . . .tξ′m ¹ ξ′′1 t . . .tξ′′k tξ′′′1 t . . .tξ′′′n .

LEMMA C.10 (No information).

If a∗ =U then (a5a′)∗ =U.

Proof. Then:

(1) a∗ =U by antecedent

(2) D(a)∗ =U by (1), lemma C.2.1

(3) (a5a′)∗ =D(a5a′)∗ by lemma C.2.1

(4) = (D(a)tD(a′))∗ by lemma C.2.2

(5) =U by (2), lemma C.7.

THEOREM 8.14 (Answer-type effect properties, restated from p. 239).

Answer-type modification effects (A,⊥A,◦) satisfy properties 1–5.

Proof.

Property 1 (Answer types).

1. By the definition, 〈〈τ,⊥A〉〉−A = τ= 〈〈τ,⊥A〉〉+A. Thus, 〈〈τ〉〉A = τ.

2. Let D∗ ` τ : ? and D À a : CTL. We need to show that D∗ ` 〈〈τ,a〉〉−A : ?

and D∗ ` 〈〈τ,a〉〉+A :?. By induction on the latter derivation:

436 APPENDIX C. PROOFS: SUBSTRUCTURAL TYPES & CONTROL

Case
D À ⊥A : CTL

.

Then 〈〈τ,a〉〉−A = 〈〈τ,a〉〉+A = 〈〈τ〉〉A = τ, and D∗ ` τ :? by our assumption.

Case
D À ξ : QUAL D À t1 :? D À t2 :?

D À
ξ(t1� t2) : CTL

.

Then 〈〈τ,a〉〉−A = t1
∗ and 〈〈τ,a〉〉+A = t2

∗. By lemma 8.5, D∗ ` t1
∗ :? and

D∗ ` t1
∗ :?.

Case
D À

Ξ1(t1� t2) : CTL D À
Ξ2(t1� t2) : CTL

D À
Ξ1,Ξ2(t1� t2) : CTL

.

Then we have that 〈〈τ,a〉〉−A = t1
∗ = 〈〈τ,Ξ1(t1� t2)〉〉−A and 〈〈τ,a〉〉+A =

t2
∗ = 〈〈τ,Ξ1(t1� t2)〉〉+A. Then by the induction hypothesis.

Otherwise.

No other cases assign kind CTL to a type.

3. Let c1 6= ⊥A, c2 6= ⊥A, and D À a15a2 : CTL. By the definition of effect

sequencing, a15a2 is defined only if one of the effects is ⊥A, which is

rules out by the assumption, or if the sequenced effect is of the form

a15a2 = Ξ(t′� t2)5Ξ′
(t1� t′)= Ξ,Ξ′

(t1� t2).

Then:

a) 〈〈τ,a15a2〉〉−A = 〈〈τ,Ξ,Ξ′
(t1� t2)〉〉−A = t1

∗ = 〈〈τ,Ξ
′
(t1� t′)〉〉−A = 〈〈τ,a2〉〉−A.

b) 〈〈τ,a15a2〉〉+A = 〈〈τ,Ξ,Ξ′
(t1� t2)〉〉+A = t2

∗ = 〈〈τ,Ξ(t′� t2)〉〉+A = 〈〈τ,a1〉〉+A.

c) 〈〈τ,a1〉〉−A = 〈〈τ,Ξ(t′� t2)〉〉−A = t′∗ = 〈〈τ,Ξ
′
(t1� t′)〉〉+A = 〈〈τ,a2〉〉+A.

4. Let D À a1 ¹ a2. Given an arbitrary type τ, we must find a type τ′ such

that 〈〈τ′,a1〉〉−A = 〈〈τ,a2〉〉−A and 〈〈τ′,a1〉〉+A = 〈〈τ,a2〉〉+A. By induction on the

effect subsumption derivation:

Case
D À a : CTL

D À a ¹ a
.

Then a1 = a2, so by substitution of one for the other.

C.3. PROOFS FOR EXAMPLE CONTROL EFFECTS 437

Case
D À a1 ¹ a′ D À a′ ¹ a2

D À a1 ¹ a2

.

By the induction hypothesis, twice, and transitivity of equality.

Case
D À

Ξ(t� t) : CTL

D À ⊥A ¹ Ξ(t� t)
.

Let τ′ = t∗. Then 〈〈t∗,a1〉〉−A = 〈〈t∗〉〉A = t∗ = 〈〈τ,Ξ(t� t)〉〉−A, and like-

wise 〈〈t∗,a1〉〉+A = 〈〈t∗〉〉A = t∗ = 〈〈τ,Ξ(t� t)〉〉+A.

Case
D À

Ξ(t1� t2) : CTL

D À
L(t1� t2)¹ Ξ(t1� t2)

.

It does not matter what τ′ we choose, so let τ′ = τ. Then 〈〈τ,a1〉〉−A =
t1

∗ = 〈〈τ,a2〉〉−A and 〈〈τ,a1〉〉+A = t2
∗ = 〈〈τ,a2〉〉+A.

Case
D À

Ξ(t1� t2) : CTL

D À
Ξ(t1� t2)¹ U(t1� t2)

.

As in the previous case, let τ′ = τ.

Case
D À

Ξ1(t1� t2)¹ Ξ′
1(t1� t2) D À

Ξ2(t1� t2)¹ Ξ′
2(t1� t2)

D À
Ξ1,Ξ2(t1� t2)¹ Ξ′

1,Ξ′
2(t1� t2)

.

As in the previous case, let τ′ = τ.

Property 2 (Done).

(1) ∆;•, x:τ` x : τ by rule T-VAR

(2) ∆;• `λx. x : L(τ(τ) by (1), rule T-ABS

(3) 〈〈τ〉〉A = τ by def. 〈〈τ〉〉A
(4) ∆;• `λx. x : L(τ(〈〈τ〉〉A) by (2–3).

Property 3 (Effect sequencing). Let D À a15a2 : CTL. By lemma C.9,

(1) (a15a2)∗ =D(a15a2)∗ =D(a1)∗tD(a2)∗,

(2) a1
∗ =D(a1)∗,

(3) a2
∗ =D(a2)∗,

(4) D D̀ D(a1)tD(a2) : CTL .

438 APPENDIX C. PROOFS: SUBSTRUCTURAL TYPES & CONTROL

By this same property for d effects, we have that

(5) D∗ `D(a1)∗tD(a2)∗ ¹D(a1)∗ and

(6) D∗ `D(a1)∗tD(a2)∗ ¹D(a2)∗.

Property 4 (Bottom and lifting).

1. By the definition of a15a2.

2. By cases on a1 and a2:

Case ⊥A and ⊥A.

Contradicts the assumption that a15a2 6= ⊥A.

Case ⊥A and Ξ2(t1� t′).

Let c′1 = L(t′� t′) and c′2 = c2.

Case Ξ1(t′� t2) and ⊥A.

Let c′1 = c1 and c′2 = L(t′� t′).

Case Ξ1(t′� t2) and Ξ2(t1� t′).

Let c′1 = c1 and c′2 = c2.

Property 5 (New rules).

1. For translation of effect bounds, let D À a º ξ; we need to show that

D∗ ` ξ ¹ a∗. We proceed by induction on the derivation of D À a º ξ,

which has but one new case to consider:

Case

D À ξ¹ ξ1 · · · D À ξ¹ ξj

D À t1 :? D À t2 :?

D À
ξ1,...,ξj(t1� t2)º ξ

.

If ξ1, . . . ,ξj is equivalent to a single qualifier ξ′, then ξ′(t1� t2)∗ = ξ′.
By the premises, D À ξ¹ ξ′, and by lemma C.6, D∗ ` ξ¹ ξ′.
Otherwise, ξ1, . . . ,ξj is not equivalent to a single qualifier. Based on

the quotienting of A, means that there are some qualifiers ξi and

ξ′i in the collection of qualifiers such that ξi uξ′i is undefined. By

lemma C.3, we know that ξ = U. Then by rule QSUB-BOT.

C.3. PROOFS FOR EXAMPLE CONTROL EFFECTS 439

2. For translation of effect subsumption, let D À a1 ¹ a2; we must show

that D∗ ` a2
∗ ¹ a1

∗.

(1) D D̀ D(a1)¹D(a2) by lemma C.2.4

(2) D∗ `D(a2)∗ ¹D(a1)∗ by property 5 for d

(3) D∗ ` a2
∗ ¹ a1

∗ by lemma C.2.1.

3. For translation of kinding, let D À a : CTL. By lemma C.2.3, D D̀ D(a) :

CTL. Then by lemma 8.5, D∗ `D(a)∗ : QUAL. Note, finally, that D(a)∗ =
a∗ by lemma C.2.1.

4. For translation of typing, let

• D;G À e : t ; a.

• D∗ ` ξ0 ¹ a∗, and

• D∗ ` τ′ :?.

We must show that D∗;G∗ ` JeKA : L(ξ0(t∗(〈〈τ′,a〉〉−A)(〈〈τ′,a〉〉−A). We

proceed by induction on the typing derivation, with two cases to consider:

Case
D;G À e′ : t0 ;Ξ(t0� t)

D;G À reset e′ : t ;⊥A

.

We must show that D∗;G∗ ` Je′KA : L(ξ0(t∗(τ′)(τ′). Let a′ =
Ξ(t0� t). Then,

(1) Jreset e′KA =λy. y (Je′KD (λx. x)) by def. JeKA
(2) D∗;G∗ ` Je′KA : L(a′∗

(t0
∗(t0

∗)(t∗)

by IH

(3) D∗;•, x:t0
∗ ` x : t0

∗ by rule T-VAR

(4) D∗;• `λx. x : a′∗
(t0

∗(t0
∗) by (3), rule T-ABS

(5) D∗;G∗ ` Je′KA (λx. x) : t∗ by (2, 4), rule T-APP

(6) D∗;•, y:ξ0(t∗(τ′)` y : ξ0(t∗(τ′) by rule T-VAR

(7) D∗;G∗, y:ξ0(t∗(τ′)` y (Je′KA (λx. x)) : τ′

by (5–6), rule T-APP

440 APPENDIX C. PROOFS: SUBSTRUCTURAL TYPES & CONTROL

(8) D∗;G∗ `λy. y (Je′KA (λx. x)) : L(ξ0(t∗(τ′)(τ′)
by (7), rule T-ABS

(9) D∗;G∗ ` Jreset e′KA : L(ξ0(t∗(τ′)(τ′)
by (1, 8).

Case
D;G, y′:ξ(t1

⊥A−−−◦ t2) À e′ : t0 ;Ξ(t0� t)

D;G À shift y′ in e′ : t1 ;Ξ,ξ(t2� t)
.

We must show that D∗;G∗ ` Jshift y′ in e′KA : L(ξ0(t1
∗(t2

∗)(t∗).

Let a′ = Ξ(t0� t).
(1) Jshift y′ in e′KA =λy. (λy′.Je′KA (λx. x)) (Λ.λx.λy′′. y′′ (y x))

by def. JeKA
(2) D∗ ` ξ0 ¹ (Ξ,ξ(t2� t))∗ by lem. assumption

(3) D∗ ` (Ξ(t0� t)5 ξ(t2� t0))∗ ¹ ξ(t2� t0)∗

by property 3

(4) D∗ ` (Ξ,ξ(t2� t))∗ ¹ ξ by (3), def a∗

(5) D∗ ` ξ0 ¹ ξ by (2, 4), trans.

(6) D∗ ` •, y:ξ0(t1
∗(t2

∗)¹ ξ by (5)

(7) D∗;G∗, y′:(ξ(t1
⊥A−−−◦ t2))∗ ` Je′KA : L(a′∗

(t0
∗(t0

∗)(t∗)

by IH

(8) D∗;• `λx. x : a′∗
(t0

∗(t0
∗) by rules T-VAR and

T-ABS
(9) D∗;G∗, y′:(ξ(t1

⊥A−−−◦ t2))∗ ` Je′KA (λx. x) : t∗

by (7–8), rule T-APP

(10) D∗;G∗ `λy′.Je′KA (λx. x) : L((ξ(t1
⊥A−−−◦ t2))∗(t∗)

by (9), rule T-ABS

(11) D∗,α:?;•, y′′:L(t2
∗(α)` y′′ : L(t2

∗(α)

by rule T-VAR

(12) D∗,α:?;•, y:ξ0(t1
∗(t2

∗)` y : ξ0(t1
∗(t2

∗)

by rule T-VAR

(13) D∗,α:?;•, x:t1
∗ ` x : t1

∗ by rule T-VAR

(14) D∗,α:?;•, y:ξ0(t1
∗(t2

∗), x:t1
∗ ` y x : t2

∗

by (12–13), rule T-APP

C.3. PROOFS FOR EXAMPLE CONTROL EFFECTS 441

(15) D∗,α:?;•, y:ξ0(t1
∗(t2

∗), x:t1
∗, y′′:L(t2

∗(α)` y′′ (y x) :α

by (11, 14), rule T-APP

(16) D∗,α:?;•, y:ξ0(t1
∗(t2

∗), x:t1
∗ `λy′′. y′′ (y x) : L(L(t2

∗(
α)(α) by (15), rule T-ABS

(17) D∗,α:?;•, y:ξ0(t1
∗(t2

∗)`λx.λy′′. y′′ (y x) : L(t1
∗(

L(L(t2
∗(α)(α)) by (16), rule T-ABS

(18) D∗;•, y:ξ0(t1
∗(t2

∗)`Λ.λx.λy′′. y′′ (y x) : ξ∀α:? .L(t1
∗(

L(L(t2
∗(α)(α)) by (6, 17),

rule T-TABS
(19) D∗;•, y:ξ0(t1

∗(t2
∗)`Λ.λx.λy′′. y′′ (y x) : (ξ(t1

⊥A−−−◦ t2))∗

by (18), def. t∗

(20) D∗;G∗, y:ξ0(t1
∗(t2

∗)`
(λy′.Je′KA (λx. x)) (Λ.λx.λy′′. y′′ (y x)) : t∗

by (10, 19), rule T-APP

(21) D∗;G∗ `λy. (λy′.Je′KA (λx. x)) (Λ.λx.λy′′. y′′ (y x)) :
L(ξ0(t1

∗(t2
∗)(t∗) by (20), rule T-ABS

(22) D∗;G∗ ` Jshift y′ in e′KA : L(ξ0(t1
∗(t2

∗)(t∗)

by (1, 21).

C.3.3 Exception Effects

In this section, we consider the exception effects from §8.5.3.

THEOREM 8.15 (Exception effect properties, restated from p. 242).

Exception effects (X,∅,∪) satisfy properties 1–5.

Proof.

Property 1 (Answer types).

1. Trivial, because 〈〈τ,Ψ〉〉−X = L(U exn⊕τ)= 〈〈τ,Ψ〉〉+X for all τ and Ψ.

2. Then,

(1) D∗ ` τ :? by lemma assumption

442 APPENDIX C. PROOFS: SUBSTRUCTURAL TYPES & CONTROL

(2) D∗ ` U exn :? by def. exn,

rule K-TYPE

(3) D∗ ` U exn⊕τ :? by (1–2), rule K-SUM

(4) D∗ ` L(U exn⊕τ) :? by (3), rule K-TYPE

(5) D∗ ` 〈〈τ,Ψ〉〉−X :? and D∗ ` 〈〈τ,Ψ〉〉+X :? by (4), defs.

3. Trivial, as in the first case.

4. Let τ′ = τ.

Property 2 (Done).

(1) ∆` τ¹ L by rule B-VAR or

rules B-TYPE and

QSUB-TOP

(2) ∆` U exn :? by rule K-TYPE

(3) ∆;•, x:τ` x : τ by rule T-VAR

(4) ∆;•, x:τ` inr x : L(U exn⊕τ) by (1–3), rule T-INR

(5) ∆;• `λx. inr x : L(τ(L(U exn⊕τ)) by (4), rule T-ABS

(6) ∆;• ` doneX : L(τ(〈〈τ〉〉X) by (5), def. doneX, def.

〈〈τ〉〉X.

Property 3 (Effect sequencing). Let D À Ψ1 ∪Ψ2 : CTL. We need that

D∗ ` (Ψ1 ∪Ψ2)∗ ¹Ψ1
∗ and D∗ ` (Ψ1 ∪Ψ2)∗ ¹Ψ2

∗. By cases on Ψ1 and Ψ2:

Case Ψ1 = ∅ andΨ2 = ∅.

Then (Ψ1 ∪Ψ2)∗ = L, Ψ1
∗ = L, and Ψ2

∗ = L, so by rule QSUB-TOP.

Case Ψ1 = ∅ andΨ2 6= ∅.

Then (Ψ1 ∪Ψ2)∗ = A, Ψ1
∗ = L, and Ψ2

∗ = A, so by rules QSUB-TOP and

QSUB-REFL.

Case Ψ1 6= ∅ andΨ2 = ∅.

By symmetry with the previous case.

C.3. PROOFS FOR EXAMPLE CONTROL EFFECTS 443

Case Ψ1 6= ∅ andΨ2 6= ∅.

Then (Ψ1 ∪Ψ2)∗ = A, Ψ1
∗ = A, and Ψ2

∗ = A, so by rule QSUB-REFL.

Property 4 (Bottom and lifting).

1. By the definition of set union.

2. Let c′1 = c1 and c′2 = c2.

Property 5 (New rules).

1. For translation of effect bounds, let D X̀ Ψ º ξ; we need to show that

D∗ ` ξ ¹Ψ∗. We proceed by induction on the derivation of D X̀ Ψ º ξ,

which has but one new case to consider:

Case
D X̀Ψ : CTL

D X̀ΨºA
.

By cases on Ψ:

Case ∅.
Then Ψ∗ = L, so by rule QSUB-TOP.

Otherwise.
Then Ψ∗ = A, so by rule QSUB-REFL.

2. For translation of effect subsumption, let D X̀ Ψ1 ¹Ψ2; we must show

that D∗ `Ψ2
∗ ¹Ψ1

∗. By cases on Ψ1 and Ψ2:

Case Ψ1 = ∅ andΨ2 = ∅.

Then Ψ1
∗ = L and Ψ2

∗ = L, so by rule QSUB-TOP.

Case Ψ1 = ∅ andΨ2 6= ∅.

Then Ψ1
∗ = L and Ψ2

∗ = A, so by rule QSUB-TOP.

Case Ψ1 6= ∅ andΨ2 = ∅.

Vacuous, because Ψ1 6⊆ Ψ2.

Case Ψ1 6= ∅ andΨ2 6= ∅.

Then Ψ1
∗ = A and Ψ2

∗ = A, so by rule QSUB-REFL.

3. By definition Ψ∗ = L or Ψ∗ = A, so D∗ `Ψ∗ : QUAL by rule K-QUAL.

444 APPENDIX C. PROOFS: SUBSTRUCTURAL TYPES & CONTROL

4. For translation of typing, let

• D;G X̀ e : t ;Ψ.

• D∗ ` ξ0 ¹Ψ∗, and

• D∗ ` τ′ :?.

We must show that

D∗;G∗ ` JeKΨX : L(ξ0(t∗(L(U exn⊕τ′))(L(U exn⊕τ′)).

We proceed by induction on the typing derivation, with two cases to

consider:

Case
D C̀ t :?

D;• X̀ raiseψ : t ; {ψ}
.

(1) JraiseψK{ψ}
X

= λx. inlψ∗ by def. JeKΨX
(2) D∗ ` U exn¹ L by rules B-TYPE and

QSUB-TOP

(3) D∗ ` •, x:ξ0(t∗(L(U exn⊕τ′)) •�•, x:ξ0(t∗(L(U exn⊕τ′))
by rules S-NIL and

S-CONSR
(4) D∗;• `ψ∗ : U exn by def. exn

(5) Ψ∗ = A by def. {ψ}∗

(6) D∗ ` ξ0 ¹A by lemma assumption,

(5)
(7) D∗ ` •, x:ξ0(t∗(L(U exn⊕τ′))¹A by (6), rules B-TYPE

and B-CONS
(8) D∗;•, x:ξ0(t∗(L(U exn⊕τ′))`ψ∗ : U exn

by (3–4, 7),

rule T-WEAK
(9) D∗;•, x:ξ0(t∗(L(U exn⊕τ′))` inlψ∗ : L(U exn⊕τ′)

by (2, 8), rule T-INL

(10) D∗;• `λx. inlψ∗ : L(ξ0(t∗(L(U exn⊕τ′))(L(U exn⊕τ′))
(11) D∗;• ` JraiseψK{ψ}

X
: L(ξ0(t∗(L(U exn⊕τ′))(L(U exn⊕τ′))

by (1, 10).

C.3. PROOFS FOR EXAMPLE CONTROL EFFECTS 445

Case

D C̀ G G1�G2

D;G1 X̀ e1 : t ; {ψ}∪Ψ′ D;G2 X̀ e2 : t ;Ψ′ D C̀ G2 ¹A

D;G X̀ e1 handleψ→ e2 : t ;Ψ′ .

By cases on Ψ′:

Case Ψ′ = ∅.

(1) Je1 handleψ→ e2K∅X =
λy. [λ .Je2K∅X y, y] (Je1K

{ψ}
X

(λx. inr x))

by def. JeKΨX
(2) D∗;G2

∗ ` Je2K∅X : L(ξ0(t∗(L(U exn⊕τ′))(L(U exn⊕τ′))
by IH, ξ0 ¹∅∗

(3) D∗;•, y:ξ0(t∗(L(U exn⊕τ′))` y : ξ0(t∗(L(U exn⊕τ′))
by rule T-VAR

(4) D∗;G2
∗, y:ξ0(t∗(L(U exn⊕τ′))` Je2K∅X y : L(U exn⊕τ′)

by (2–3), rule T-APP

(5) D∗;G2
∗, y:ξ0(t∗(L(U exn⊕τ′)), x′:U exn` Je2K∅X y :

L(U exn⊕τ′) by (4), rule T-WEAK

(6) D∗;G2
∗, y:ξ0(t∗(L(U exn⊕τ′))`λ .Je2K∅X y : L(U exn(

L(U exn⊕τ′)) by (5), rule T-ABS

(7) D∗;G∗, y:ξ0(t∗(L(U exn⊕τ′))` y : ξ0(t∗(L(U exn⊕τ′))
by (3), rule T-WEAK

(8) D∗;G∗, y:ξ0(t∗(L(U exn⊕τ′))` [λ .Je2K∅X y, y] :
L(L(U exn⊕t∗)(L(U exn⊕τ′)) by (6–7), rule T-SUME

(9) D∗;G1
∗ ` Je1K

{ψ}
X

: L(A(t∗(L(U exn⊕t∗))(L(U exn⊕t∗))

by IH, A¹ {ψ}∗

(10) D∗;•, x:t∗ ` x : t∗ by rule T-VAR

(11) D∗;•, x:t∗ ` inr x : L(U exn⊕t∗) by (10), rule T-INR

(12) D∗;• `λx. inr x : A(t∗(L(U exn⊕t∗))

by (11), rule T-ABS

(13) D∗;G1
∗ ` Je1K

{ψ}
X

(λx. inr x) : L(U exn⊕t∗)

by (9, 12), rule T-APP

446 APPENDIX C. PROOFS: SUBSTRUCTURAL TYPES & CONTROL

(14) D∗;G∗, y:ξ0(t∗(L(U exn⊕τ′))`
[λ .Je2K∅X y, y] (Je1K

{ψ}
X

(λx. inr x)) : L(U exn⊕τ′)
by (8, 13), rule T-APP

(15) D∗;G∗ `λy. [λ .Je2K∅X y, y] (Je1K
{ψ}
X

(λx. inr x)) : L(ξ0(t∗(
L(U exn⊕τ′))(L(U exn⊕τ′)) by (14), rule T-ABS

(16) D∗;G∗ ` Je1 handleψ→ e2K∅X : L(ξ0(t∗(L(U exn⊕τ′))(
L(U exn⊕τ′)) by (1, 15).

Case Ψ′ 6= ∅.
This means that Ψ′∗ = A, so we know that

(1) D∗ ` ξ0 ¹A.

Then:

(2) Je1 handleψ→ e2KΨ
′

X =
λy. [[λ .Je2KΨ

′
X y,λx. inl x]ψ, y] (Je1K

{ψ}∪Ψ′
X

(λx. inr x))

by def. Je1KΨX
(3) D∗;G2

∗ ` Je2KΨ
′

X : L(ξ0(t∗(L(U exn⊕τ′))(L(U exn⊕τ′))
by IH, ξ0 ¹∅∗

(4) D∗;•, y:ξ0(t∗(L(U exn⊕τ′))` y : ξ0(t∗(L(U exn⊕τ′))
by rule T-VAR

(5) D∗;G2
∗, y:ξ0(t∗(L(U exn⊕τ′))` Je2KΨ

′
X y : L(U exn⊕τ′)

by (3–4), rule T-APP

(6) D∗;G2
∗, y:ξ0(t∗(L(U exn⊕τ′)), x′:U exn` Je2KΨ

′
X y :

L(U exn⊕τ′) by (5), rule T-WEAK

(7) D∗;G2
∗, y:ξ0(t∗(L(U exn⊕τ′))`λ .Je2KΨ

′
X y : L(U exn(

L(U exn⊕τ′)) by (6), rule T-ABS

(8) D∗;• `λx. inl x : L(U exn(L(U exn⊕τ′))
by rules T-VAR, T-INL,

and T-ABS
(9) D∗ `G2

∗ ¹A by assumption,

lemma C.6
(10) D∗ `G2

∗, y:ξ0(t∗(L(U exn⊕τ′))¹A

by (1, 9)

C.3. PROOFS FOR EXAMPLE CONTROL EFFECTS 447

(11) D∗;G2
∗, y:ξ0(t∗(L(U exn⊕τ′))`λx. inl x : L(U exn(

L(U exn⊕τ′)) by (8, 10),

rule T-WEAK

(12) D∗;G2
∗, y:ξ0(t∗(L(U exn⊕τ′))` [λ .Je2KΨ

′
X y,λx. inl x]ψ :

L(U exn(L(U exn⊕τ′)) by (7, 11), def. [v1,v2]ψ

(13) D∗;G2
∗, y:ξ0(t∗(L(U exn⊕τ′))` y : ξ0(t∗(L(U exn⊕τ′))

by (4), rule T-WEAK

(14) D∗;G2
∗, y:ξ0(t∗(L(U exn⊕τ′))`

[[λ .Je2KΨ
′

X y,λx. inl x]ψ, y] : L(L(U exn⊕t∗)(L(U exn⊕τ′))
by (12–13),

rule T-SUME
(15) D∗;G1

∗ ` Je1K
{ψ}∪Ψ′
X

: L(A(t∗(L(U exn⊕t∗))(
L(U exn⊕t∗)) by IH, A¹ ({ψ}∪Ψ′)∗

(16) D∗;• `λx. inr x : A(t∗(L(U exn⊕t∗))

by rules T-VAR, T-INR,

and T-ABS

(17) D∗;G1
∗ ` Je1K

{ψ}∪Ψ′
X

(λx. inr x) : L(U exn⊕t∗)

by (15–16), rule T-APP

(18) D∗;G∗, y:ξ0(t∗(L(U exn⊕τ′))`
[[λ .Je2KΨ

′
X y,λx. inl x]ψ, y] (Je1K

{ψ}∪Ψ′
X

(λx. inr x)) :
L(U exn⊕τ′) by (14, 17), rule T-APP

(19) D∗;G∗ `
λy. [[λ .Je2KΨ

′
X y,λx. inl x]ψ, y] (Je1K

{ψ}∪Ψ′
X

(λx. inr x)) :
L(ξ0(t∗(L(U exn⊕τ′))(L(U exn⊕τ′))

by (18), rule T-ABS

(20) D∗;G∗ ` Je1 handleψ→ e2KΨ
′

X : L(ξ0(t∗(L(U exn⊕τ′))(
L(U exn⊕τ′)) by (2, 19).

List of Definitions and Propositions

5.1 Definition (Consistent valuations) 105

5.2 Definition (Qualifier subsumption) 105

5.3 Theorem (Principal qualifiers) 118

5.4 Lemma (Monotonicity of kinding) 119

5.5 Lemma (Kinding finds locations) 120

5.6 Lemma (Substitution) . 120

5.7 Lemma (Progress) . 121

5.8 Lemma (Preservation) . 121

5.9 Theorem (Type soundness) . 121

6.1 Theorem (Existential elimination (i)) 141

6.2 Theorem (Existential elimination (ii)) 141

6.3 Lemma (Intermediate value) . 142

6.4 Corollary (Intermediate value) 143

6.5 Theorem (Existential elimination (iii)) 143

7.1 Lemma (Equivalence of expression typing) 181

7.2 Corollary (Programs to configurations) 181

7.3 Definition (Type substitutions and respecting qualifiers) . . . 182

7.4 Lemma (Type substitution on expressions preserves types) . 182

7.5 Definition (Worthy of promotion) 182

7.6 Lemma (No hidden locations) 183

7.7 Lemma (Substitution) . 183

7.8 Lemma (Preservation) . 184

7.9 Definition (Faulty expressions and configurations) 184

7.10 Lemma (Uniform evaluation) 185

7.11 Lemma (Faulty expressions are ill-typed) 185

449

450 LIST OF DEFINITIONS AND PROPOSITIONS

7.12 Corollary (Progress) . 185

7.13 Theorem (Strong soundness) 186

8.1 Definition (Control effect) . 211

8.2 Definition (Translation parameter) 220

8.3 Lemma (Dereliction) . 223

8.4 Lemma (Value strengthening) 223

1 Parameter Property (Answer types) 225

2 Parameter Property (Done) . 226

3 Parameter Property (Effect sequencing) 226

4 Parameter Property (Bottom and lifting) 226

5 Parameter Property (New rules) 227

8.5 Lemma (Translation of kinding) 227

8.6 Lemma (Translation of effect bounds) 228

8.7 Lemma (Translation of effect subsumption) 228

8.8 Lemma (Translation of term typing) 228

8.9 Corollary (Translation of program typing) 230

8.10 Lemma (λURAL soundness) . 230

8.11 Theorem (λURAL(C) soundness) 231

8.12 Definition (Qualifier meets and joins) 231

8.13 Theorem (Delimited continuation properties) 234

8.14 Theorem (Answer-type effect properties) 239

8.15 Theorem (Exception effect properties) 242

A.1 Observation (Strengthening) . 263

A.2 Lemma (Qualifier substitution on kind well-formedness) . . . 264

A.3 Lemma (Context splitting well-formedness) 265

A.4 Lemma (Regularity) . 265

A.5 Definition (Kind semilattices) 268

A.6 Lemma (Well-formed kind semilattice) 268

A.7 Lemma (Unique kinds and unique variances) 269

A.8 Lemma (Unique context bounds) 272

A.9 Lemma (Context bounding) . 272

A.10 Definition (Type substitution) 272

A.11 Lemma (Type substitution on kind well-formedness) 273

LIST OF DEFINITIONS AND PROPOSITIONS 451

A.12 Lemma (Qualifier substitution on qualifier subsumption) . . 274

A.13 Corollary (Type substitution on subkinding) 274

A.14 Lemma (Non-free type variables do not vary) 275

A.15 Lemma (Type substitution on kinding and variance) 275

A.16 Lemma (Type substitution on type equivalence) 276

A.17 Lemma (Type substitution on subtyping) 276

A.18 Lemma (Type substitution on context bounding) 277

A.19 Lemma (Type substitution on context well-formedness) 277

A.20 Lemma (Type substitution on context extension) 277

A.21 Lemma (Type substitution on typing) 277

A.22 Lemma (Contexts close terms) 283

A.23 Lemma (Coalescing of context extension) 284

A.24 Lemma (Variance coherence) . 285

A.25 Lemma (Valuations and substitution) 286

A.26 Definition (Coarse subkinding) 287

A.27 Lemma (Coarse subkinding substitution) 287

A.28 Lemma (Location coverage) . 291

A.29 Lemma (Replacement) . 302

A.30 Definition (Parallel type reduction) 311

A.31 Lemma (Parallel type reduction contains type equivalence) . 311

A.32 Lemma (Parallel type reduction contains subtyping) 313

A.33 Lemma (Parallel substitution and reduction) 313

A.34 Lemma (Type substitution on parallel reduction) 313

A.35 Lemma (Single-step diamond property of parallel reduction) 314

A.36 Lemma (Parallel reduction confluence) 317

A.37 Lemma (Parallel reduction closure confluence) 318

A.38 Corollary (Subtyping confluence) 318

A.39 Definition (Faulty expressions) 319

A.40 Lemma (Uniform evaluation) 319

A.41 Definition (Concrete types) . 323

A.42 Lemma (Concrete closure) . 323

A.43 Corollary (Partition of types) . 324

A.44 Corollary (Subtyping preserves form) 325

452 LIST OF DEFINITIONS AND PROPOSITIONS

A.45 Lemma (Canonical forms) . 325

A.46 Lemma (Faulty expressions) . 327

B.1 Lemma (Type substitution on types preserves qualifiers) . . . 331

B.2 Lemma (Type conversion is well-behaved) 331

B.3 Definition (Unlimited and affine restriction) 332

B.4 Lemma (Context splitting properties) 333

B.5 Definition (Context notation) . 333

B.6 Observation (Context recombination) 334

B.7 Lemma (Protection is free) . 334

B.8 Lemma (Contexts close typed terms) 334

B.9 Observation (Subsumption and proof by inversion) 335

B.10 Notation (The type of an evaluation context) 336

B.11 Lemma (Terms in holes are typeable and replaceable) 336

B.12 Lemma (Type substitution on typing contexts preserves quali-

fiers) . 340

B.13 Lemma (Type substitution preserves context splitting) 340

B.14 Lemma (Substitution and worthiness) 349

B.15 Lemma (Going defunct) . 357

B.16 Lemma (Canonical Forms) . 359

B.17 Definition (Closed configurations and module contexts) 375

B.18 Definition (Redexes) . 375

B.19 Lemma (Redexes and evaluation contexts) 375

B.20 Definition (FA reduction) . 376

B.21 Lemma (FA reduction) . 376

C.1 Lemma (Qualifier subsumption transitivity) 385

C.2 Lemma (Meet and join properties) 386

C.3 Lemma (Lower bound of undefined meets) 390

C.4 Lemma (Properties of bounds) 390

C.5 Lemma (λURAL(C) Regularity) 396

C.6 Lemma (Translation of qualifier judgments) 399

C.7 Lemma (Top) . 424

C.8 Definition (Answer-type effects to simple shift/reset effects) . 432

C.9 Lemma (Effect translation) . 432

LIST OF DEFINITIONS AND PROPOSITIONS 453

C.10 Lemma (No information) . 435

Bibliography

Samson Abramsky. Computational interpretations of linear logic. Theoretical
Computer Science, 111(1–2):3–57, 1993.

Amal Ahmed, Matthew Fluet, and Greg Morrisett. A step-indexed model of

substructural state. In Proc. 10th ACM SIGPLAN International Conference
on Functional Programming (ICFP’05), pages 78–91, Tallinn, Estonia,

September 2005.

Andrew W. Appel and David B. MacQueen. Standard ML of New Jersey. In

Proc. 3rd International Symposium on Programming Language Implemen-
tation and Logic Programming, volume 528 of Lecture Notes in Computer
Science, pages 1–13. Springer, 1991.

Kenichi Asai and Yukiyoshi Kameyama. Polymorphic delimited continuations.

In Programming Languages and Systems, volume 4807 of Lecture Notes in
Computer Science, pages 239–254. Springer, 2007.

Andrew Barber. Dual intuitionistic linear logic. Technical Report ECS-LFCS-

960347, Laboratory for Foundations of Computer Science, University of

Edinburgh, September 1996.

Paul S. Barth, Rishiyur S. Nikhil, and Arvind. M-structures: Extending

a parallel, non-strict, functional language with state. In Proc. 5th
ACM Conference on Functional Programming Languages and Computer
Architecture (FPCA’91), pages 538–568, Cambridge, Mass., August 1991.

455

http://dx.doi.org/10.1016/0304-3975(93)90181-R
http://dx.doi.org/10.1145/1086365.1086376
http://dx.doi.org/10.1145/1086365.1086376
http://dx.doi.org/10.1007/3-540-54444-5_83
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.106.9907
http://www.lfcs.inf.ed.ac.uk/reports/96/ECS-LFCS-96-347/
http://dx.doi.org/10.1007/3540543961_26
http://dx.doi.org/10.1007/3540543961_26

456 BIBLIOGRAPHY

P. N[ick] Benton. A mixed linear and non-linear logic: Proofs, terms and models.

In Computer Science Logic, volume 933 of Lecture Notes in Computer Science,

pages 121–135. Springer, 1995.

G[avin] M. Bierman. On Intuitionistic Linear Logic. PhD thesis, University of

Cambridge, August 1993.

Lars Birkedal, Nick Rothwell, Mads Tofte, and David N. Turner. The ML Kit

(version 1). DIKU-report 93/14, Department of Computer Science, University

of Copenhagen, March 1993.

John Boyland. Checking interference with fractional permissions. In Proc. 10th
International Symposium on Static Analysis (SAS’03), pages 55–72, San

Diego, Calif., June 2003.

T[om] Brus, M[arko] C. J. D. van Eekelen, M[aarten] van Leer, M[arinus] J.

Plasmeijer, and H[enk] P. Barendregt. Clean: A language for functional

graph rewriting. In Proc. Conference on Functional Programming Languages
and Computer Architecture (FPCA’87), Portland, Ore., September 1987.

Luís Caires and Frank Pfenning. Session types as intuitionistic linear

propositions. In Proc. 21th International Conference on Concurrency Theory
(CONCUR’10), pages 222–236, Paris, France, August 2010.

Arthur Charguéraud and François Pottier. Functional translation of a calculus

of capabilities. In Proc. 13th ACM SIGPLAN International Conference on
Functional Programming (ICFP’08), pages 213–224, Victoria, B.C., Canada,

September 2008.

William Clinger, ed. The revised revised report on Scheme or an UnCommon

Lisp. AI Memo No. 848, MIT AI Lab, Cambridge, Mass., August 1985.

Luis Damas and Robin Milner. Principal type-schemes for functional programs.

In Proc. 9th Annual ACM Symposium on Principles of Programming
Languages (POPL’82), pages 207–212, Albuquerque, N.M., January 1982.

http://dx.doi.org/10.1007/BFb0022251
http://research.microsoft.com/en-us/um/people/gmb/papers/thesis.pdf
http://www.it-c.dk/research/mlkit/index.php/Main_Page
http://www.it-c.dk/research/mlkit/index.php/Main_Page
http://dx.doi.org/10.1007/3-540-44898-5_4
http://dx.doi.org/10.1007/3-540-18317-5_20
http://dx.doi.org/10.1007/3-540-18317-5_20
http://dx.doi.org/10.1007/978-3-642-15375-4_16
http://dx.doi.org/10.1007/978-3-642-15375-4_16
http://dx.doi.org/10.1145/1411204.1411235
http://dx.doi.org/10.1145/1411204.1411235
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.18.1891
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.18.1891
http://dx.doi.org/10.1145/582153.582176

BIBLIOGRAPHY 457

Olivier Danvy and Andrzej Filinski. A functional abstraction of typed contexts.

Technical Report DIKU Rapport 89/12, Computer Science Department,

University of Copenhagen, Denmark, 1989.

Robert DeLine and Manuel Fähndrich. Enforcing high-level protocols in low-

level software. In Proc. 2001 ACM SIGPLAN Conference on Programming
Language Design and Implementation (PLDI’01), pages 59–69, Snowbird,

Utah, May 2001.

Manuel Fähndrich and Robert DeLine. Adoption and focus: Practical linear

types for imperative programming. In Proc. 2002 ACM SIGPLAN Conference
on Programming Language Design and Implementation (PLDI’02), pages

13–24, Berlin, Germany, June 2002.

Manuel Fähndrich, Mark Aiken, Chris Hawblitzel, Orion Hodson, Galen

Hunt, James R. Larus, and Steven Levi. Language support for fast and

reliable message-based communication in Singularity OS. In Proc. 1st ACM
SIGOPS/EuroSys European Conference on Computer Systems (EuroSys’06),
pages 177–190, Leuven, Belgium, April 2006.

Matthias Felleisen. The theory and practice of first-class prompts. In

Proc. 15th Annual ACM Symposium on Principles of Programming Lan-
guages (POPL’88), pages 180–190, San Diego, Calif., January 1988.

Robert Bruce Findler and Matthias Felleisen. Contracts for higher-order func-

tions. In Proc. 7th ACM SIGPLAN International Conference on Functional
Programming (ICFP’02), pages 48–59, Pittsburgh, Pa., September 2002.

Matthew Fluet, Greg Morrisett, and Amal Ahmed. Linear regions are all

you need. In Proc. 15th European Symposium on Programming (ESOP’06),
pages 7–21, Vienna, Austria, March 2006.

Matthew Thomas Fluet. Monadic and Substructural Type Systems for Region-
Based Memory Management. PhD thesis, Cornell University, January 2007.

http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.43.4822
http://dx.doi.org/10.1145/378795.378811
http://dx.doi.org/10.1145/378795.378811
http://dx.doi.org/10.1145/512529.512532
http://dx.doi.org/10.1145/512529.512532
http://dx.doi.org/10.1145/1217935.1217953
http://dx.doi.org/10.1145/1217935.1217953
http://dx.doi.org/10.1145/73560.73576
http://dx.doi.org/10.1145/581478.581484
http://dx.doi.org/10.1145/581478.581484
http://dx.doi.org/10.1007/11693024_2
http://dx.doi.org/10.1007/11693024_2
http://www.cs.rit.edu/~mtf/research/thesis/
http://www.cs.rit.edu/~mtf/research/thesis/

458 BIBLIOGRAPHY

Jean-Yves Girard. Interprétation Fonctionelle et Élimination des Coupures
dans l’Arithmétique d’Ordre Supérieur. Thèse de doctorat d’état, Université

Paris VII, 1972.

Jean-Yves Girard. Linear logic. Theoretical Computer Science, 50(1):1–102,

1987.

John B. Goodenough. Structured exception handling. In Proc. 2th Annual
ACM Symposium on Principles of Programming Languages (POPL’75), pages

204–224, Palo Alto, Calif., January 1975.

James Gosling, Bill Joy, and Guy Steele. The Java Language Specification.

Addison Wesley, 1996.

Dan Grossman, Greg Morrisett, Trevor Jim, Michael Hicks, Yanling Wang,

and James Cheney. Region-based memory management in Cyclone. In

Proc. 2002 ACM SIGPLAN Conference on Programming Language Design
and Implementation (PLDI’02), pages 282–293, Berlin, Germany, June 2002.

Kohei Honda, Vasco T. Vasconcelos, and Makoto Kubo. Language primitives

and type discipline for structured communication-based programming. In

Proc. 7th European Symposium on Programming (ESOP’98), pages 122–138,

Lisbon, Portugal, March 1998.

Mark P. Jones. First-class polymorphism with type inference. In Proc. 24th An-
nual ACM Symposium on Principles of Programming Languages (POPL’97),
pages 483–496, Paris, France, January 1997.

Oleg Kiselyov and Chung-chieh Shan. A substructural type system for

delimited continuations. In Proc. 8th International Conference on Typed
Lambda Calculi and Applications (TLCA’07), pages 223–239, Paris, France,

June 2007.

Peter J. Landin. A generalization of jumps and labels. Technical report,

UNIVAC Systems Programming Research, 1965.

http://dx.doi.org/10.1016/0304-3975(87)90045-4
http://dx.doi.org/10.1145/512976.512997
http://java.sun.com/docs/books/jls/
http://dx.doi.org/10.1145/512529.512563
http://dx.doi.org/10.1007/BFb0053567
http://dx.doi.org/10.1007/BFb0053567
http://dx.doi.org/10.1145/263699.263765
http://okmij.org/ftp/continuations/index.html#delimcc-type
http://okmij.org/ftp/continuations/index.html#delimcc-type
http://dx.doi.org/10.1023/A:1010068630801

BIBLIOGRAPHY 459

Didier Le Botlan and Didier Rémy. MLF: Raising ML to the power of System F.

In Proc. 8th ACM SIGPLAN International Conference on Functional
Programming (ICFP’03), pages 27–38, Uppsala, Sweden, September 2003.

Daan Leijen. First-class polymorphism with existential types. Unpublished

manuscript, August 2006.

Daan Leijen. HMF: Simple type inference for first-class polymorphism.

In Proc. 13th ACM SIGPLAN International Conference on Functional
Programming (ICFP’08), pages 283–294, Victoria, B.C., Canada, September

2008.

Xavier Leroy, Damien Doligez, Alain Frisch, Jacques Garrigue, Didier Rémy,

and Jérôme Vouillon. The OCaml system, release 3.12. Institut National de

Recherche en Informatique et en Automatique, July 2011.

John M. Lucassen and David K. Gifford. Polymorphic effect systems.

In Proc. 15th Annual ACM Symposium on Principles of Programming
Languages (POPL’88), pages 47–57, San Diego, Calif., January 1988.

Jacob Matthews and Amal Ahmed. Parametric polymorphism through run-

time sealing or, theorems for low, low prices! In Proc. 17th European
Symposium on Programming (ESOP’08), pages 16–31, Budapest, Hungary,

March 2008.

Jacob Matthews and Robert Bruce Findler. Operational semantics for multi-

language programs. In Proc. 34th Annual ACM Symposium on Principles
of Programming Languages (POPL’07), pages 3–10, Nice, France, January

2007.

Karl Mazurak and Steve Zdancewic. Lolliproc: To concurrency from classical

linear logic via Curry-Howard and control. In Proc. 15th ACM SIGPLAN
International Conference on Functional Programming (ICFP’10), pages 39–

50, Baltimore, Md., September 2010.

Karl Mazurak, Jianzhou Zhao, and Steve Zdancewic. Lightweight linear types

in System F◦. In Proc. 5th ACM SIGPLAN Workshop on Types in Language

http://dx.doi.org/10.1145/944705.944709
http://research.microsoft.com/en-us/um/people/daan/download/papers/existentials.pdf
http://dx.doi.org/10.1145/1411204.1411245
http://caml.inria.fr/pub/docs/manual-ocaml/
http://dx.doi.org/10.1145/73560.73564
http://dx.doi.org/10.1007/978-3-540-78739-6_2
http://dx.doi.org/10.1007/978-3-540-78739-6_2
http://dx.doi.org/10.1145/1190216.1190220
http://dx.doi.org/10.1145/1190216.1190220
http://dx.doi.org/10.1145/1863543.1863551
http://dx.doi.org/10.1145/1863543.1863551
http://dx.doi.org/10.1145/1708016.1708027
http://dx.doi.org/10.1145/1708016.1708027

460 BIBLIOGRAPHY

Design and Implementation (TLDI’10), pages 77–88, Madrid, Spain, January

2010.

Robin Milner, Mads Tofte, Robert Harper, and David MacQueen. The Definition
of Standard ML. MIT Press, Cambridge, Mass., revised edition, 1997.

Greg Morrisett, Amal Ahmed, and Matthew Fluet. L3: A linear language with

locations. In Proc. 7th International Conference on Typed Lambda Calculi
and Applications (TLCA’05), pages 293–307, Nara, Japan, April 2005.

Martin Odersky, Martin Sulzmann, and Martin Wehr. Type inference with

constrained types. In Proc. 6th Workshop on Foundations of Object-Oriented
Languages (FOOL’99), pages 35–55, San Antonio, Texas, January 1999.

Simon Peyton Jones, ed. Haskell 98 Language and Libraries: The Revised
Report. Cambridge University Press, Cambridge, 2003.

Benjamin C. Pierce. Types and Programming Languages. MIT Press,

Cambridge, Mass., 2002.

François Pottier. Wandering through linear types, capabilities, and regions.

Survey talk given at INRIA, Rocquencourt, France, May 2007.

François Pottier and Didier Rémy. The essence of ML type inference. In

Benjamin C. Pierce, editor, Advanced Topics in Types and Programming
Languages, pages 387–490. MIT Press, Cambridge, 2005.

Riccardo Pucella and Alec Heller. Capability-based calculi for session types.

Unpublished manuscript, 2008.

Riccardo Pucella and Jesse A. Tov. Haskell session types with (almost) no

class. In Proc. 1st ACM SIGPLAN Symposium on Haskell (Haskell’08), pages

25–36, Victoria, B.C., Canada, September 2008.

John H. Reppy. Concurrent Programming in ML. Cambridge University Press,

1999.

http://mitpress.mit.edu/catalog/item/default.asp?ttype=2&tid=3874
http://mitpress.mit.edu/catalog/item/default.asp?ttype=2&tid=3874
http://dx.doi.org/10.1007/11417170_22
http://dx.doi.org/10.1007/11417170_22
http://dx.doi.org/10.1002/(SICI)1096-9942(199901/03)5:1<35::AID-TAPO4>3.0.CO;2-4
http://dx.doi.org/10.1002/(SICI)1096-9942(199901/03)5:1<35::AID-TAPO4>3.0.CO;2-4
http://www.haskell.org/onlinereport/
http://www.haskell.org/onlinereport/
http://www.cis.upenn.edu/~bcpierce/tapl/
http://gallium.inria.fr/~fpottier/slides/fpottier-2007-05-linear-bestiary.pdf
http://cristal.inria.fr/attapl/
http://dx.doi.org/10.1145/1411286.1411290
http://dx.doi.org/10.1145/1411286.1411290
http://portal.acm.org/citation.cfm?id=317040

BIBLIOGRAPHY 461

John C. Reynolds. Definitional interpreters for higher-order programming

languages. In Proc. ACM Annual Conference, volume 2, pages 717–470,

Boston, Mass., August 1972.

Andreas Rossberg, Claudio V. Russo, and Derek Dreyer. F-ing modules. In

Proc. 5th ACM SIGPLAN Workshop on Types in Language Design and
Implementation (TLDI’10), pages 89–102, Madrid, Spain, January 2010.

Claudio V. Russo and Dimitrios Vytiniotis. QML: Explicit first-class polymor-

phism for ML. In Proc. 2009 ACM SIGPLAN workshop on ML (ML’09), pages

3–14, Edinburgh, UK, August 2009.

Vincent Simonet. Type inference with structural subtyping: A faithful

formalization of an efficient constraint solver. In Proc. Asian Symposium on
Programming Languages and Systems (APLAS’03), pages 283–302, Beijing,

China, November 2003.

Guy Lewis Steele Jr. and Gerald Jay Sussman. Scheme: An interpreter for

extended lambda calculus. AI Memo 349, MIT, 1975.

Martin Steffen. Polarized Higher-Order Subtyping. Dissertation zur Erlangung

des Grades Doktor-Ingenieur, Technische Fakultät, Friedrich-Alexander-

Universität Erlangen-Nürnberg, 1997.

W. Richard Stevens. UNIX Network Programming. Prentice-Hall, New Jersey,

1990.

Robert E. Strom and Shaula Yemini. Typestate: A programming language

concept for enhancing software reliability. IEEE Transactions on Software
Engineering, 12(1):157–171, January 1986.

Ivan E. Sutherland and Gary W. Hodgman. Reentrant polygon clipping.

Communications of the ACM, 17(1):32–42, January 1974.

Nikhil Swamy, Juan Chen, and Ravi Chugh. Enforcing stateful authorization

and information flow policies in Fine. In Proc. 19th European Symposium
on Programming (ESOP’10), pages 529–549, Paphos, Cyprus, March 2010.

http://dx.doi.org/10.1023/A:1010027404223
http://dx.doi.org/10.1023/A:1010027404223
http://dx.doi.org/10.1145/1708016.1708028
http://dx.doi.org/10.1145/1596627.1596630
http://dx.doi.org/10.1145/1596627.1596630
http://dx.doi.org/10.1007/978-3-540-40018-9_19
http://dx.doi.org/10.1007/978-3-540-40018-9_19
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.128.80
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.128.80
http://heim.ifi.uio.no/msteffen/
http://www.kohala.com/start/unp.html
http://dx.doi.org/10.1145/360767.360802
http://dx.doi.org/10.1007/978-3-642-11957-6_28
http://dx.doi.org/10.1007/978-3-642-11957-6_28

462 BIBLIOGRAPHY

Hayo Thielecke. From control effects to typed continuation passing. In

Proc. 30th Annual ACM Symposium on Principles of Programming Lan-
guages (POPL’03), pages 139–149, New Orleans, La., January 2003.

Sam Tobin-Hochstadt and Matthias Felleisen. Interlanguage migration: From

scripts to programs. In Proc 21th ACM Conference on Object-Oriented
Programming, Systems, Languages, and Applications (OOPSLA’06), pages

964–974, Portland, Ore., October 2006.

Sam Tobin-Hochstadt and Matthias Felleisen. The design and implementation

of Typed Scheme. In Proc. 35th Annual ACM Symposium on Principles of
Programming Languages (POPL’08), pages 395–406, San Francisco, Calif.,

January 2008.

Mads Tofte and Jean-Pierre Talpin. Region-based memory management.

Information and Computation, 132(2):109–176, February 1997.

Bernardo Toninho, Luís Caires, and Frank Pfenning. Dependent session

types via intuitionistic linear type theory. In Proc. 13th International
ACM SIGPLAN Symposium on Principles and Practice of Declarative
Programming (PPDP’11), pages 161–172, Odense, Denmark, July 2011.

Jesse A. Tov and Riccardo Pucella. Stateful contracts for affine types. In

Proc. 19th European Symposium on Programming (ESOP’10), pages 550–

569, Paphos, Cyprus, March 2010.

Jesse A. Tov and Riccardo Pucella. A theory of substructural types and control.

In Proc 26th ACM Conference on Object-Oriented Programming, Systems,
Languages, and Applications (OOPSLA’11), pages 625–642, Portland, Ore.,

October 2011a.

Jesse A. Tov and Riccardo Pucella. Practical affine types. In Proc. 38th Annual
ACM Symposium on Principles of Programming Languages (POPL’11), pages

447–458, Austin, Texas, January 2011b.

Vasco Vasconcelos, Simon Gay, and António Ravara. Session types for

functional multithreading. In Proc. 15th International Conference on

http://dx.doi.org/10.1145/604131.604144
http://dx.doi.org/10.1145/1176617.1176755
http://dx.doi.org/10.1145/1176617.1176755
http://dx.doi.org/10.1145/1328438.1328486
http://dx.doi.org/10.1145/1328438.1328486
http://dx.doi.org/10.1006/inco.1996.2613
http://dx.doi.org/10.1145/2003476.2003499
http://dx.doi.org/10.1145/2003476.2003499
http://www.ccs.neu.edu/home/tov/pubs/affine-contracts/
http://www.ccs.neu.edu/home/tov/pubs/substructural-control/
http://www.ccs.neu.edu/home/tov/pubs/alms/
http://dx.doi.org/10.1007/978-3-540-28644-8_32
http://dx.doi.org/10.1007/978-3-540-28644-8_32

BIBLIOGRAPHY 463

Concurrency Theory (CONCUR’04), pages 497–511, London, UK, August

2004.

Edsko de Vries, Rinus Plasmeijer, and David M Abrahamson. Uniqueness

typing simplified. In Proc. 19th Annual Workshop on Implementation and
Application of Functional Languages (IFL’07), pages 201–218, Freiberg,

Germany, September 2007.

Philip Wadler. Is there a use for linear logic? In Proc. Symposium on Partial
Evaluation and Semantics-Based Program Manipulation (PEPM’91), pages

255–273, New Haven, CT, USA, June 1991.

Philip Wadler. There’s no substitute for linear logic. In Proc. 8th International
Workshop on the Mathematical Foundations of Programming Semantics
(MFPS’92), Oxford, UK, April 1992.

Philip Wadler and Stephen Blott. How to make ad-hoc polymorphism less ad
hoc. In Proc. 16th Annual ACM Symposium on Principles of Programming
Languages (POPL’89), pages 60–76, Austin, Texas, January 1989.

David Walker, Karl Crary, and Greg Morrisett. Typed memory management

via static capabilities. ACM Transactions on Programming Languages and
Systems, 22(4):701–771, July 2000.

Andrew K. Wright and Matthias Felleisen. A syntactic approach to type

soundness. Information and Computation, 115(1):38–94, 1994.

Dengping Zhu and Hongwei Xi. Safe programming with pointers through

stateful views. In Proc. 8th International Symposium on Practical Aspects of
Declarative Languages (PADL’05), pages 83–97, Long Beach, Calif., January

2005.

http://dx.doi.org/10.1007/978-3-540-85373-2_12
http://dx.doi.org/10.1007/978-3-540-85373-2_12
http://dx.doi.org/10.1145/115865.115894
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.24.7472
http://dx.doi.org/10.1145/75277.75283
http://dx.doi.org/10.1145/75277.75283
http://dx.doi.org/10.1145/363911.363923
http://dx.doi.org/10.1145/363911.363923
http://dx.doi.org/10.1006/inco.1994.1093
http://dx.doi.org/10.1006/inco.1994.1093
http://dx.doi.org/10.1007/978-3-540-30557-6_8
http://dx.doi.org/10.1007/978-3-540-30557-6_8

	Abstract
	Acknowledgments
	List of Figures
	1 Practical Substructural Types
	1.1 The Structure of This Dissertation

	2 Background: Stateful Type Systems
	2.1 Substructural Logics and Lambda Calculi
	2.2 Typestate
	2.3 Region-Based Memory Management
	2.4 Session Types

	3 Programming in Alms
	3.1 Alms by Example
	3.2 Syntax Matters

	4 Expressiveness of Alms
	4.1 Typestate
	4.2 Regions
	4.3 Session Types
	4.4 Discussion

	5 A Model of Alms
	5.1 Syntax and Semantics of aλms
	5.2 Theoretical Results

	6 Implementation of Alms
	6.1 Core Alms
	6.2 A Type Inference Algorithm
	6.3 Solving Subtype Constraints
	6.4 Solving Subqualifier Constraints

	7 Mixing Affine and Conventional Types
	7.1 Related Work
	7.2 A Model of Affine Contracts
	7.3 Type Soundness for F-AC
	7.4 Implementing Affine Contracts

	8 Substructural Types and Control
	8.1 Related Work
	8.2 Syntax and Semantics of λURAL
	8.3 Generic Control Effects in λURAL(C)
	8.4 The Generic Theory
	8.5 Example Control Effects
	8.6 Discussion

	9 Related Work and Design Rationale
	9.1 Substructural Type Systems
	9.2 The Spirit of ML
	9.3 From ILL to Alms

	10 Conclusion
	10.1 Contributions
	10.2 Future Work

	A Proofs: A Model of Alms
	A.1 Preliminaries
	A.2 Principal Qualifiers
	A.3 Type Soundness

	B Proofs: Mixing Affine and Conventional Types
	B.1 Properties of Types and Stores
	B.2 Evaluation Contexts and Substitution
	B.3 Preservation
	B.4 Progress

	C Proofs: Substructural Types and Control
	C.1 Properties of λURAL
	C.2 Properties of λURAL(C)
	C.3 Proofs for Example Control Effects

	Bibliography

