Random Binary Search Trees

EECS 214, Fall 2018

The necessity of balance

The necessity of balance

n | [lgn]

10 4

100 7
1,000 10
10,000 14
100,000 17

1,000,000 20
10,000,000 24
100,000,000 27
1,000,000,000 30

DSSL2 data definition

An rndbst? (randomized BST of numbers) is either:
— False

— node(key?, nat?, rndbst?, rndbst?)

let rndbst? = 0rC(node?, False)

struct node:
let key: key?
let size: nat?
let left: rndbst?
let right: rndbst?

Size maintenance

def empty?(t: rndbst?) —> bool?:
t is False

def size(t: rndbst?) —> nat?:
t.size if node?(t) else @

def _fix_size(n: node?) —> VoidC:
n.size = 1 + size(n.left) + size(n.right)

def _new_node(k: key?) —> rndbst?:
node(k, 1, False, False)

Leaf insertion in DSSL2

The easy way to add elements to a tree—at the leaves:

def leaf_insert(t: rndbst?, k: key?) —> rndbst?:

if empty?(t): _new_node(k)

elif k < t.key:
t.left = leaf_insert(t.left, k)
_fix_size(t)
t

elif k > t.key:
t.right = leaf_insert(t.right, k)
_fix_size(t)
t

else: t

Leaf insertion

Leaf insertion

Leaf insertion

Leaf insertion

Leaf insertion

Leaf insertion

Leaf insertion

Leaf insertion

Leaf insertion

Leaf insertion

Leaf insertion

Leaf insertion

Leaf insertion

Leaf insertion

The permutation distribution

Can we characterize how sequences of insertions produce
(un)balanced trees?

The permutation distribution

Can we characterize how sequences of insertions produce
(un)balanced trees?

e 0,1,2,3,4,5,6,7,8,9,10, 11,12, 13, 14 — severely
unbalanced (degenerate)

The permutation distribution

Can we characterize how sequences of insertions produce
(un)balanced trees?

e 0,1,2,3,4,5,6,7,8,9,10, 11,12, 13, 14 — severely
unbalanced (degenerate)

e 7,3,1,0,2,5,4,6,11,9, 8,10, 13, 12, 14 — balanced

The permutation distribution

Can we characterize how sequences of insertions produce
(un)balanced trees?

e 0,1,2,3,4,5,6,7,8,9,10, 11,12, 13, 14 — severely
unbalanced (degenerate)

e 7,3,1,0,2,5,4,6,11,9, 8,10, 13, 12, 14 — balanced
e 7,11,3,13,9, 5,1, 14,12, 10, 8, 6, 4, 2, 0 — balanced

The permutation distribution

Can we characterize how sequences of insertions produce
(un)balanced trees?

e 0,1,23,4,5,6,7,8,9,10, 11, 12, 13, 14 — severely
unbalanced (degenerate)

e 7,3,1,0,2,5,4,6,11,9,8,10, 13, 12, 14 — balanced

e 7,11,3,13,9,5,1, 14,12, 10, 8, 6, 4, 2, 0 — balanced

In fact, the only sequence to produce the right-branching
degenerate tree is O, ..., 14

There are 21,964,800 sequences that produce the same
perfectly balanced tree

A random BST tends to be balanced

If you generate a tree by leaf-inserting a random permutation of
its elements, it will probably be balanced

In particular, the expected length of a search path is

2Inn + O(1)

A random BST tends to be balanced

If you generate a tree by leaf-inserting a random permutation of
its elements, it will probably be balanced

In particular, the expected length of a search path is

2Inn + O(1)

Unfortunately, we usually can’t do that, but we can simulate it

A tool: tree rotations

8 e
AYA S JAVA

Note that order is preserved

10

In DSSL2

AYA

def _rotate_right(d):
let b = d.left
d.left = b.right
b.right = d
_fix_size(d)
_fix_size(b)
b

AN

AVA

def _rotate_left(b):

11

let d = b.right
b.right = d.left
d.left = b
_fix_size(b)
_fix_size(d)

d

Root insertion

Using rotations, we can insert at the root:

¢ To insert into an empty tree, create a new node

e To insert into a non-empty tree, if the new key is greater
than the root, then root-insert (recursively) into the right
subtree, then rotate left

e By symmetry, if the key belongs to the left of the old root,
root insert into the left subtree and then rotate right

12

Root insertion in DSSL2

def _root_insert(t: rndbst?, k: key?) —> rndbst?:

if empty?(t): _new_node(k)

elif k < t.key:
t.left = _root_insert(t.left, k)
_rotate_right(t)

elif k > t.key:
t.right = _root_insert(t.right, k)
_rotate_left(t)

else: t

13

Randomized insertion

We can now build a randomized insertion function that
maintains the random shape of the tree:

e Suppose we insert into a subtree of size k, so the result will
have size k + 1

o [f the tree were random, the new element would be the root
with probability =

e So we root insert with that probability, and otherwise
recursively insert into a subsubtree

14

Randomized insertion in DSSL2

def insert(t: rndbst?, k: key?) —> rndbst?:

if empty?(t): _new_node(k)

elif random(size(t) + 1) ==
_root_insert(t, k)

elif k < t.key:
t.left = insert(t.left, k)
_fix_size(t)
t

elif k > t.key:
t.right = insert(t.right, k)
_fix_size(t)
t

else: t

15

Deletion idea

To delete a node, we join its subtrees recursively, randomly
selecting which contributes the root (based on size):

£ 56N

16

Join in DSSL2

def _join(tl: rndbst?, t2: rndbst?) -> rndbst?:
if empty?(tl): t2
elif empty?(t2): t1
elif random(size(tl) + size(t2)) < size(tl):

tl.right = _join(tl.right, t2)
_fix_size(t1)
t1

else:
t2.left = _join(tl, t2.left)

_fix_size(t2)
t2

17

Delete in DSSL2

def delete(t: rndbst?, k: key?) —> rndbst?:
if empty?(t): t
elif k < t.key:
t.left = delete(t.left, k)
_fix_size(t)
t
elif k > t.key:
t.right = delete(t.right, k)
_fix_size(t)
t
else:
_join(t.left, t.right)

18

Next time: guaranteed balance

	Next time: guaranteed balance

