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DSSL2 data definition

# An rndbst? (randomized BST of numbers) is either:
# — False

# — node(key?, nat?, rndbst?, rndbst?)

let rndbst? = 0rC(node?, False)

struct node:
let key: key?
let size: nat?
let left: rndbst?
let right: rndbst?



Size maintenance

def empty?(t: rndbst?) —> bool?:
t is False

def size(t: rndbst?) —> nat?:
t.size if node?(t) else @

def _fix_size(n: node?) —> VoidC:
n.size = 1 + size(n.left) + size(n.right)

def _new_node(k: key?) —> rndbst?:
node(k, 1, False, False)



Leaf insertion in DSSL2

The easy way to add elements to a tree—at the leaves:

def leaf_insert(t: rndbst?, k: key?) —> rndbst?:

if empty?(t): _new_node(k)

elif k < t.key:
t.left = leaf_insert(t.left, k)
_fix_size(t)
t

elif k > t.key:
t.right = leaf_insert(t.right, k)
_fix_size(t)
t

else: t
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The permutation distribution

Can we characterize how sequences of insertions produce
(un)balanced trees?

e 0,1,23,4,5,6,7,8,9,10, 11, 12, 13, 14 — severely
unbalanced (degenerate)

e 7,3,1,0,2,5,4,6,11,9,8,10, 13, 12, 14 — balanced

e 7,11,3,13,9,5,1, 14,12, 10, 8, 6, 4, 2, 0 — balanced

In fact, the only sequence to produce the right-branching
degenerate tree is O, ..., 14

There are 21,964,800 sequences that produce the same
perfectly balanced tree
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A random BST tends to be balanced

If you generate a tree by leaf-inserting a random permutation of
its elements, it will probably be balanced

In particular, the expected length of a search path is

2Inn + O(1)

Unfortunately, we usually can’t do that, but we can simulate it



A tool: tree rotations

8 e
AYA S JAVA

Note that order is preserved
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In DSSL2

AYA

def _rotate_right(d):
let b = d.left
d.left = b.right
b.right = d
_fix_size(d)
_fix_size(b)
b

AN

AVA

def _rotate_left(b):
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let d = b.right
b.right = d.left
d.left = b
_fix_size(b)
_fix_size(d)

d



Root insertion

Using rotations, we can insert at the root:

¢ To insert into an empty tree, create a new node

e To insert into a non-empty tree, if the new key is greater
than the root, then root-insert (recursively) into the right
subtree, then rotate left

e By symmetry, if the key belongs to the left of the old root,
root insert into the left subtree and then rotate right

12



Root insertion in DSSL2

def _root_insert(t: rndbst?, k: key?) —> rndbst?:

if empty?(t): _new_node(k)

elif k < t.key:
t.left = _root_insert(t.left, k)
_rotate_right(t)

elif k > t.key:
t.right = _root_insert(t.right, k)
_rotate_left(t)

else: t
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Randomized insertion

We can now build a randomized insertion function that
maintains the random shape of the tree:

e Suppose we insert into a subtree of size k, so the result will
have size k + 1

o [f the tree were random, the new element would be the root
with probability =

e So we root insert with that probability, and otherwise
recursively insert into a subsubtree
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Randomized insertion in DSSL2

def insert(t: rndbst?, k: key?) —> rndbst?:

if empty?(t): _new_node(k)

elif random(size(t) + 1) ==
_root_insert(t, k)

elif k < t.key:
t.left = insert(t.left, k)
_fix_size(t)
t

elif k > t.key:
t.right = insert(t.right, k)
_fix_size(t)
t

else: t
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Deletion idea

To delete a node, we join its subtrees recursively, randomly
selecting which contributes the root (based on size):

£ 56N
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Join in DSSL2

def _join(tl: rndbst?, t2: rndbst?) -> rndbst?:
if empty?(tl): t2
elif empty?(t2): t1
elif random(size(tl) + size(t2)) < size(tl):

tl.right = _join(tl.right, t2)
_fix_size(t1)
t1

else:
t2.left = _join(tl, t2.left)

_fix_size(t2)
t2
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Delete in DSSL2

def delete(t: rndbst?, k: key?) —> rndbst?:
if empty?(t): t
elif k < t.key:
t.left = delete(t.left, k)
_fix_size(t)
t
elif k > t.key:
t.right = delete(t.right, k)
_fix_size(t)
t
else:
_join(t.left, t.right)
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Next time: guaranteed balance
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