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The problem

Find the shortest path from A to D:
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Typically generalized as single-source shortest paths (SSSP):
find the shortest path to everywhere from A.
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Relaxation idea

Keep a table with two values for each node:

• the best known distance to it from the start, and
• the predecessor node along that best path

To “relax” an edge, we consider whether our knowledge thus
far, combined that that edge, can improve our knowledge by
finding a shorter path
For example, suppose that

• the best known distance to node C is 15,
• the best known distance to node D is 4, and
• there’s an edge of weight 5 from D to C.

Then we update the best known distance to C to be 9, via D.
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Relaxation demonstration
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Bellman–Ford algorithm summary

Solves: SSSP for graphs with no negative cycles
Main idea: Relax every edge |V | − 1 times
Time complexity: O(VE)

5



The Bellman–Ford algorithm
Input: A graph graph and a starting vertex start
Output: Tables of vertex distances dist and predecessors pred
for every vertex v in graph do

dist[v]←∞;
pred[v]← −1

end
dist[start]← 0;
for |Vertices(graph)| − 1 iterations do

for every edge (v,u) with weight w in graph do
if dist[v] + w < dist[u] then

dist[u]← dist[v] + w;
pred[u]← v

end
end

end

continued...
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Bellman–Ford, continued

At this point we have the answer provided there are no
negative-weight cycles. We do one more pass to ensure this is
the case:
for every edge (v,u) with weight w in graph do

if dist[v] + w < dist[u] then
graph contains a negative cycle!

end
end
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Dijkstra’s algorithm summary

Solves: SSSP for graphs with no negative edges
Main idea: Relax the edges in a clever order
Time complexity: depends

What’s the clever order? Relax the edges coming out of the
nearest vertex, then repeat
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Dijkstra’s algorithm (original)
Input: A graph graph and a starting vertex start
Output: Tables of vertex distances dist and predecessors pred
for every vertex v in graph do

dist[v]←∞; pred[v]← −1;
end
dist[start]← 0;
todo← the set of vertices in graph;
while todo is not empty do

v ← remove the element of todo with minimal dist[v];
for every outgoing edge (v,u) with weight w do

if dist[v] + w < dist[u] then
dist[u]← dist[v] + w;
pred[u]← v

end
end

end
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Priority Queue ADT
Looks like: 〈 2:g 5:i 5:b 17:c 89:g 〈 (note sorting)

struct key_value:

let key

let value

interface PRIORITY_QUEUE:

def is_empty(self) -> bool?

def insert(self, key: num?, value: AnyC) -> VoidC

def peek_min(self) -> key_value?

def remove_min(self) -> key_value?

Behavior:

• Keeps key-value pairs sorted by key, so that
• remove_min can find and remove the pair with the

smallest key
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Dijkstra’s algorithm with priority queue (1/2)

Input: A graph graph and a starting vertex start
Output: Tables of vertex distances dist and predecessors pred
for every vertex v in graph do

dist[v]←∞; pred[v]← −1;
end
dist[start]← 0;
done← empty vertex set;
todo← empty priority queue;
Insert(todo, 0, start);
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Dijkstra’s algorithm with priority queue (2/2)

while todo is not empty do
(_, v)← RemoveMin(todo);
if v 6∈ done then

done← done ∪ {v};
for every outgoing edge (v,u) with weight w do

if dist[v] + w < dist[u] then
dist[u]← dist[v] + w;
pred[u]← v;
Insert(todo, dist[u], u)

end
end

end
end
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Complexity of Dijkstra’s algorithm

• Relax every edge once, for O(E)

• For every edge, we (might) do an insert, which takes
how long?

Call it Tin.
• For every edge, we (might) do an remove_min, which

takes how long? Call it Trm.

• Then Dijkstra’s algorithm is O(E(Tin + Trm)).
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Next: making remove_min and insert fast
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