Single-Source Shortest Paths
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Typically generalized as single-source shortest paths (SSSP):
find the shortest path to everywhere from A.
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Relaxation idea

Keep a table with two values for each node:

e the best known distance to it from the start, and
e the predecessor node along that best path
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Relaxation idea

Keep a table with two values for each node:

e the best known distance to it from the start, and
e the predecessor node along that best path

To “relax” an edge, we consider whether our knowledge thus
far, combined that that edge, can improve our knowledge by
finding a shorter path

For example, suppose that

e the best known distance to node C is 15,
e the best known distance to node D is 4, and
e there’s an edge of weight 5 from D to C.

Then we update the best known distance to C to be 9, via D.
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Bellman—Ford algorithm summary

Solves: SSSP for graphs with no negative cycles
Main idea: Relax every edge |V| — 1 times
Time complexity: O(VE)



The Bellman—Ford algorithm

Input: A graph graph and a starting vertex start
Output: Tables of vertex distances dist and predecessors pred

for every vertex v in graph do
dist[v] + oo;
pred[v] «+ —1

end
dist[start] < 0;

for |Vertices(graph)| — 1 iterations do
for every edge (v,u) with weight w in graph do
if dist[v] + w < dist[u] then
dist[u] < dist[v] + w;
pred[u] < v
end
end

end

continued...



Bellman-Ford, continued

At this point we have the answer provided there are no
negative-weight cycles. We do one more pass to ensure this is
the case:
for every edge (v,u) with weight w in graph do

if dist[v] + w < dist[u] then

| graph contains a negative cycle!

end

end



Dijkstra’s algorithm summary

Solves: SSSP for graphs with no negative edges
Main idea: Relax the edges in a clever order
Time complexity: depends



Dijkstra’s algorithm summary

Solves: SSSP for graphs with no negative edges
Main idea: Relax the edges in a clever order
Time complexity: depends

What'’s the clever order? Relax the edges coming out of the
nearest vertex, then repeat
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Dijkstra’s algorithm (original)

Input: A graph graph and a starting vertex start
Output: Tables of vertex distances dist and predecessors pred

for every vertex v in graph do

| dist[v] < oo; pred|[v] « —1;
end
dist[start] < 0;

todo «+ the set of vertices in graph;
while todo is not empty do
v < remove the element of todo with minimal dist[v];
for every outgoing edge (v,u) with weight w do
if dist[v] + w < dist[u] then
distu] < dist[v] + w;
predu] < v
end
end

end
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Priority Queue ADT

Looks like: ( 2:g 5:i 5:b 17:c 89:g ( (note sorting)

struct key_value:
let key
let value

interface PRIORITY_QUEUE:
def is_empty(self) —> bool?
def insert(self, key: num?, value: AnyC) —> VoidC
def peek_min(self) —> key_value?
def remove_min(self) -> key_value?

Behavior:

o Keeps key-value pairs sorted by key, so that
e remove_min can find and remove the pair with the
smallest key
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Dijkstra’s algorithm with priority queue (1/2)

Input: A graph graph and a starting vertex start
Output: Tables of vertex distances dist and predecessors pred

for every vertex v in graph do

| dist[v] + oo; pred|v] « —1;
end
dist[start] < 0;
done + empty vertex set;
todo < empty priority queue;
Insert(todo, 0, start);
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Dijkstra’s algorithm with priority queue (2/2)

while todo is not empty do
(_,v) < RemoveMin (todo);

end

if v

end

¢ done then
done <+ done U {v};
for every outgoing edge (v,u) with weight w do
if dist[v] + w < dist[u] then
distu] < dist[v] + w;
pred[u] + v;
Insert(todo, dist[u], u)
end
end

13



Complexity of Dijkstra’s algorithm

¢ Relax every edge once, for O(E)

e For every edge, we (might) do an insert, which takes
how long?
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Complexity of Dijkstra’s algorithm

Relax every edge once, for O(E)

For every edge, we (might) do an insert, which takes
how long? Call it Tj,.

For every edge, we (might) do an remove_min, which
takes how long? Call it T,p,.

Then Dijkstra’s algorithm is O(E(Tin + Trm)).
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Next: making remove_min and insert fast



	Next: making remove_min and insert fast

