Graph Search

EECS 214, Fall 2018

Questions we might ask about graphs

e |s there a path from v to u?
e What's the shortest path from v to u?
e Are there any cycles?

Graph search: basic idea

To answer whether there’s a path (among other things), we can
use:

e Depth-first search (DFS): go as far as you can along a
path, then go back and try anything you haven't tried yet

e Breadth-first search (BFS): explore all the successors of a
vertex before exploring their successors in turn

DFS example

DFS example

DFS example

DFS example

DFS example

DFS example

DFS example

DFS example

DFS example

DFS example

DFS example

DFS example

DFS example

DFS example

DFS example

DFS example

Recursive DFS algorithm (one source)

Procedure DFS(graph, start)is
seen <+ new array (same size as graph, filled with false);

Procedure Visit(v)is
if not seen|v| then
seen|v] « true;
for uin Successors(graph, v) do
| Visit(u)
end
end

end

Visit(start);
return seen

end

Recursive DFS algorithm (one source, lifted)

Procedure Visit(graph, seen, v)is
if not seen|v| then
seen|v] «+ true;
for uin Successors(graph, v) do
| Visit(graph, seen, u)
end
end

end

Procedure DFS(graph, start)is

seen <+ new array (same size as graph, filled with false);
Visit(graph, seen, start);

return seen

end

Recursive DFS algorithm (1 src., builds tree)

Procedure DFS(graph, start)is

end

preds <+ new array (same size as graph, filled with false);

Procedure Visit(pred, v)is
if not preds|v] then
preds|v] < pred;
for uin Successors(graph, v) do
| Visit(v, u)
end
end

end

Visit(true, start);
return preds

Recursive DFS algorithm (full)

Procedure DFS (graph)is
preds < new array (same size as graph, filled with false);

Procedure Visit(pred, v)is
if not preds|v| then
preds|v] < pred;
for uin Successors(graph, v) do
| Visit(v, u)
end
end

end

for vin Vertices(graph) do
| Visit(true, v)

end

return preds

end

lterative DFS algorithm

Procedure DFS (graph, start)is
preds < new array (same size as graph, filled with false);
fodo < new stack;

preds(start] «+ true;
Push (todo, start);

while fodo is not empty do
v « Pop(todo);
for uin Successors(graph, v) do
if not preds[u] then
preds[u] + v;
Push (todo, u)
end
end

end
return preds

end

Running DFS on a digraph

tree

—
back h/fx
____+]\

T/ a
g +— f

f‘_’["l’?';d \, g
c &

A

d

Cross
S

Running DFS on a digraph

tree

—
back h/fx
____+]\

T/ a
g +— f

f‘_’["l’?';d \, %
c &

N/

d

Cross
S

Running DFS on a digraph

tree

—
back h/fx
____}]\

T/ a
g +— f

f‘.’["l’?';d \, %
c &~

N/

d

Cross
S

Running DFS on a digraph

tree

—
back h/fx
____}]\

T/ a
g +— f

f‘_’["l’?';d \, %
c

A

d

Cross
S

Running DFS on a digraph

Running DFS on a digraph

Running DFS on a digraph

Running DFS on a digraph

Running DFS on a digraph

Running DFS on a digraph

Running DFS on a digraph

10

Running DFS on a digraph

10

Running DFS on a digraph

10

Running DFS on a digraph

10

Running DFS on a digraph

10

Running DFS on a digraph

10

Running DFS on a digraph

10

Running DFS on a digraph

.

Cross T
____} g { f

\

10

A DFS tree

11

DFS for cycle detection

Procedure FindCycle(graph)is
started < new array (same size as graph, filled with false);
finished < new array (same size as graph, filled with false);

Procedure Visit(v)is

if not finished|v] then

if started|v] then
| we found a cycle!

end

started|v] < true;

for uin Successors(graph, v) do
| Visit(u)

end

finished|v] + true;

end
end

for vin Vertices(graph) do
| Visit(v)
end
end 12

Breadth-first search

Procedure BFS (graph, start)is
preds < new array (same size as graph, filled with false);
fodo + new queue;

preds|start] «+ true;
Enqueue (todo, start);

while fodo is not empty do
v « Dequeue(todo);
for uin Successors(graph, v) do
if not preds[u] then
preds[u] < v;
Enqueue(todo, u)
end
end

end

return preds
end

13

Running BFS on a digraph

Running BFS on a digraph

beh

Running BFS on a digraph

ehc

Running BFS on a digraph

hcf

Running BFS on a digraph

cf

Running BFS on a digraph

fd

Running BFS on a digraph

dg

Running BFS on a digraph

Running BFS on a digraph

Running BFS on a digraph

Generic graph search
If todo is a stack we get DFS; if todo is a queue we get BFS:

Procedure Search(graph, start)is
preds < new array (same size as graph, filled with false);
todo < new collection;

preds(start] « true;
Add (todo, start);

while todo is not empty do
v < Remove (todo);
for uin Successors(graph, v) do
if not preds|u] then
preds[u] + v;
Add (todo, u)
end
end

end

return preds
end
15

Next time: shortest paths

	Next time: shortest paths

