EECS 214 Fall 2018

HW3: Hash Table
Due: Thursday, October 25, at 11:59 PM, via GSC

You may work on your own or with one (1) partner.

The hash table is a data structure that implements the dictionary abstract data
type, with expected O(1) time for lookup and insert operations. There are two
main ways to organize a hash table: open addressing and separate chaining. In
this homework assignment, you will implement a separate chaining hash table.

In hashtable .rktE] I’ve supplied headers for the methods that you’ll need to
write.

Orientation

The starter code provides an interface, DICT, which your hash table will imple-
ment:

interface DICT[K, V]:
def len(self) -> nat?
def mem?(self, key: K) -> bool?
def get(self, key: K) -> V
def put(self, key: K, value: V) -> VoidC
def del(self, key: K) -> VoidC

That is, a DICT, for some key type K, and some value type V, provides five
methods:

e len returns the number of mappings in the dictionary.
e mem? returns whether a particular key is present in the dictionary.

e get returns the value associated with a key, if found, or calls error
otherwise.

e put associates a key with a value in the dictionary, replacing the key’s
value if already present.

e del removes a key and its value, if present.

The starter code also defines the representation (fields) and constructor for the
HashTable class:

class HashTable[K, V] (DICT):

let _hash
let _size
let _data

Thttp://goo.gl/GBtIgN

http://goo.gl/GBt9qN
http://goo.gl/GBt9qN

EECS 214 Fall 2018

def __init__(self, nbuckets: nat?, hash: HashFunctionC(K)):
self._hash = hash
self._size 0
self._data [ni1(); nbuckets 1]

Field _hash contains the hash function, which hashes keys into numbers; field
_size stores the number of associations in the hash table; and field _data
is a vector of buckets, where each bucket is a singly-linked list of key—value
associations. The constructor for HashTable initializes _hash to the supplied
hash function, _size to 0, and _data to a vector of size nbuckets, filled with
empty linked lists.

The linked list in each bucket is made out of nil and cons structs, defined as
follows:

struct nil: pass

struct cons:
let car
let cdr

(These structs are not defined in the starter code directly, but rather imported
from the standard library with the line import cons.)

The elements of each list are pairs associating each key with its value:

struct assoc:
let key
let value

Here is an example of a bucket containing two associations:

let EX_BUCKET = cons(assoc('hello', 5),
cons (assoc('goodbye', 7),

nil()))

Your task

Your job is to complete the definition of the HashTable class by writing the five
methods of the DICT interface:

1. HashTable.len returns the number of mappings in the hash table, which
is just self._size.

2. HashTable.mem? searches the table for a key as follows. First, it hashes the
key using self._hash; the resulting hash code modulo self._data.len()
(the number of buckets) tells you which bucket to look in. Then, it searches

EECS 214 Fall 2018

the list in that bucket and returns whether any of the associations contains
the given key.

3. HashTable.get, like HashTable.mem?, hashes the key and searches the
indicated bucket for an association with that key. If found, it returns the
value of the association; if not, it calls error.

4. HashTable.put also hashes the key to find out which bucket to look in. If
the key is already in the appropriate bucket, then it updates the associated
value to the given value; otherwise, it conses a new association onto the list
in the appropriate bucket. In the latter case, it also increments the size.

5. HashTable.del also hashes the key to find out which bucket to look in.
Then it searches the list in the bucket, and if an association with the given
key is present, it removes the association and decrements the size.

Testing

I've provided two different hash functions for testing your hash table:

e first_char_hasher is a hash function for strings that hashes each string
to the code of its first character.

e make_sbox_hash is a function of no arguments, that, when applied, gener-
ates a new hash function for strings.

The former is a bad hash function, but it can be useful for debugging because
it’s predictable. For example, the ASCII code for lowercase letter ‘a’ is 97,
so first_char_hasher('apple') returns 97. You can use this, modulo the
number of buckets, to predict which bucket a key should hash to.

The latter generates a good hash function, suitable for storing a large number of
associations. You should use an sbox hash function for testing. To create a hash
table that uses an sbox hasher, you need to invoke the HashTable constructor
as follows:

let h = HashTable(100, make_sbox_hash())

One test is included in the starter code, but it’s not nearly comprehensive, and
you should write more.

Deliverables

The provided file hashtable.rkt, containing
o definitions of the five methods described above, and

o sufficient tests to be confident of your code’s correctness.

http://goo.gl/GBt9qN

