
Hash Tables and Hashing

EECS 214, Fall 2017



Dictionary data structures we have seen, with
lookup times and a special case

• Binary search tree — O(log n)
• Sorted array — O(log n)
• List of associations — O(n)

• An array using keys (0, 1, …, k − 1) as indices — O(1)

The last of these is sometimes called “direct addressing”

2



Dictionary data structures we have seen, with
lookup times and a special case

• Binary search tree — O(log n)
• Sorted array — O(log n)
• List of associations — O(n)
• An array using keys (0, 1, …, k − 1) as indices — O(1)

The last of these is sometimes called “direct addressing”

2



We’ve used direct addressing before

Union-find objects and graph vertices are numbered so that we
can use direct addressing to store information about them
Could we use a similar strategy for keys that aren’t the first k
naturals?

3



Example: phone book

A phone book is a dictionary where the keys are names and the
values are phone numbers
How can we use names (strings) as keys?

Let’s map strings to small integer keys by using the value of the
first character

4



Example: phone book

A phone book is a dictionary where the keys are names and the
values are phone numbers
How can we use names (strings) as keys?
Let’s map strings to small integer keys by using the value of the
first character

4



The first-character hash

(bucket) name phone
(0) "Alice" 555–1212
(1)
(2) "Carol" 555–1214
(3)

...
(24) "Yves" 555–1215
(25)

What happens when we want to add Charles to the phonebook?

5



The first-character hash

(bucket) name phone
(0) "Alice" 555–1212
(1)
(2) "Carol" 555–1214
(3)

...
(24) "Yves" 555–1215
(25)

What happens when we want to add Charles to the phonebook?

5



Hash collision!
The function that maps names to numbers is called a hash
function:

h("Alice") = 0

h("Carol") = 2

When the hash function gives the same value for two keys,
that’s called a hash collision:

h("Charles") = 2

How do we resolve it?

6



Hash collision!
The function that maps names to numbers is called a hash
function:

h("Alice") = 0

h("Carol") = 2

When the hash function gives the same value for two keys,
that’s called a hash collision:

h("Charles") = 2

How do we resolve it?

6



Hash collision!
The function that maps names to numbers is called a hash
function:

h("Alice") = 0

h("Carol") = 2

When the hash function gives the same value for two keys,
that’s called a hash collision:

h("Charles") = 2

How do we resolve it?
6



Two solutions to hash collision

1. Store a linked list in each bucket (separate chaining)
2. Use the next free bucket instead (open addressing)

7



Separate chaining hash table

key Alice
val 555–1212

next

key Charles
val 555–1217

next

key Carol
val 555–1213

next

key Yves
val 555–1215

next

(bucket) chain
(0)
(1)
(2)

...
(24)
(25)

8



Open addressing hash table

(bucket) name phone
(0) "Alice" 555–1212
(1)
(2) "Carol" 555–1214
(3) "Charles" 555–1217
(4)

...
(24) "Yves" 555–1215
(25)

9



What happens as the table fills up

• Separate chaining: the length of the chains is O(n)
• Open addressing: the length of the scan is O(n)

Thus, it’s important to have enough buckets

10



Our hash function sucks

Using the first letter limits us to 26 buckets, but for a big
phonebook we need more buckets

Here’s a better hash function:
Input: A string str and number of buckets buckets
Output: A hash code between 0 and buckets− 1

hash← 1;
for each character c in str do

hash← 31× hash + c
end
return hash % buckets

11



Our hash function sucks

Using the first letter limits us to 26 buckets, but for a big
phonebook we need more buckets
Here’s a better hash function:
Input: A string str and number of buckets buckets
Output: A hash code between 0 and buckets− 1

hash← 1;
for each character c in str do

hash← 31× hash + c
end
return hash % buckets

11



What makes a good hash function?

Hash functions are big topic—what you need to know:

• deterministic (not random)
• uniform (not clustery)

12



Load

For good performance, we can’t let the table get too full
One way to think of this is the load factor:

load factor = n
k

• n: number of entries
• k: number of buckets

For separate chaining, we should keep the load factor < 2
For open addressing, we should keep the load factor < 0.75

13



Load

For good performance, we can’t let the table get too full
One way to think of this is the load factor:

load factor = n
k

• n: number of entries
• k: number of buckets

For separate chaining, we should keep the load factor < 2
For open addressing, we should keep the load factor < 0.75

13



Resizing

When the load factor gets too high, we need to grow the table

• Requires rehashing everything!
• Grow geometrically (like dynamic array), so amortized time

remains O(1)

14



Next time: random BSTs


	Next time: random BSTs

