Graphs and their representations

EECS 214, Fall 2017

Kinds of graphs

A graph (undirected)

/<

/\
™~
/I

m

TN
/\ S

(0]

/

n

G=(V,E)

V={a,b,c,d, e f,ghijk,l}

E = {{a,b},{a,c}.{a,d},{a,f},{b.d},{c.f},
{c.h}.{c.j}.{d.g}.{e.g} . {e.i}. {e.m},
{(£.9Y. 16,0}, 49,7} (@, k3, {h, iy, {hjY, (i)

A directed graph

G=(V,E)
V ={a,b,c,d,e,f}
E ={(a,b), (b,c),(c,d),(c,f),(d,d),(d,e), (e,f),(f,e)}

A directed graph

G=(V,E)
V ={a,b,c,d,e,f}
E ={(a,b), (b,c),(c,d),(c,f),(d,d),(d,e), (e,f),(f,e)}

A directed graph with cycles
[@ AN

e
vV

G=(V,E)
V ={a,b,c,d,e,f}
E ={(a,b), (b,c),(c,d),(c,f),(d,d),(d,e), (e,f),(f,e)}

—)

A directed graph with cycles
[@ AN

e
vV

G=(V,E)
V ={a,b,c,d,e,f}
E ={(a,b), (b,c),(c,d),(c,f),(d,d),(d,e), (e,f),(f,e)}

—)

A DAG (directed acyclic graph)

A weighted, directed graph
1/0\
A/

G=(V,E,w)

V={a,b,c,d,e,f}

E ={(a,b),(b,c),(c,d),(c,f),(d,d),(d,e),(ef),(f e)}
w={(a,b) — 1,(b,c) — 2,(c,d) — 1,(c,f) — 12,...}

6

A little graph theory

Some graph definitions

2N
a\g/\

d

b\\/

C

Some graph definitions

™
~

b\\/

C

d

If {v,u} € E then v and u are adjacent

Some graph definitions

SN
a\g/\ h

d i

If {v,u} € E then v and u are adjacent

If {vo,vi},{v1,va},...,{vk_1,Vk} € E then there is a path from
vy 1o vi, and we say v, and v, are connected

8

Components

A subgraph of nodes all connected to each other is a connected
component; here we have two

Degree

The degree of a vertex is the number of adjacent vertices:

degree(v,G) = |{u € V : {u,v} € E}| where G = (V,E)

10

Degree

The degree of a vertex is the number of adjacent vertices:

degree(v,G) = |{u € V : {u,v} € E}| where G = (V,E)
The degree of a graph is the maximum degree of any vertex:

degree(G) = max degree(v, G) where G = (V,E)
ve

10

Degree

The degree of a vertex is the number of adjacent vertices:

degree(v,G) = |{u € V : {u,v} € E}| where G = (V,E)
The degree of a graph is the maximum degree of any vertex:

degree(G) = max degree(v, G) where G = (V,E)
ve

Sometimes we will refer to the degree as d, such as when we
say that a particular operation is O(d).

10

Some digraph definitions

Some digraph definitions

N

/f—>d
<\

If (v,u) € E, v is the direct predecessor of u and u is the direct
successor of v

11

Some digraph definitions

NN

/f—>d
4V

If (v,u) € E, v is the direct predecessor of u and u is the direct
successor of v

If (vo,v1), (v1,Va),...,(Vk_1,Vk) € E then there is a path from v,
to vi; we say that vi is reachable from v

11

Some digraph definitions

NN

/f—>d
4V

If (v,u) € E, v is the direct predecessor of u and u is the direct
successor of v

If (vo,v1), (v1,Va),...,(Vk_1,Vk) € E then there is a path from v,
to vi; we say that vi is reachable from v

11

Some digraph definitions

N

/f—>d
4V

If (v,u) € E, v is the direct predecessor of u and u is the direct
successor of v

If (vo,v1), (v1,Va),...,(Vk_1,Vk) € E then there is a path from v,
to vi; we say that vi is reachable from v

If v and vy are mutually reachable from each other, they are

strongly connected
11

Strongly connected components

/\/‘D

\
g <——
In a digraph, a subgraph of vertices all strongly connected to

each other is a strongly connected component; here we have a
connected graph with two SCCs

Dense versus sparse

13

Programming with graphs

A graph ADT

Looks like (V, E) (as above)
Operations:

newVertex(Graph): Integer
addEdge(Graph, Integer, Integer): Void
hasEdge(Graph, Integer, Integer): Bool
getVertices(Graph): IntegerSet

e getNeighbors(Graph, Integer): IntegerSet

15

A graph ADT

Looks like (V, E) (as above)
Operations:

newVertex(Graph): Integer
addEdge(Graph, Integer, Integer): Void
hasEdge(Graph, Integer, Integer): Bool
getVertices(Graph): IntegerSet

e getNeighbors(Graph, Integer): IntegerSet

Invariants:

o V={0,1,...,|V| -1}
o | JECV

15

Graph ADT laws

o o kW

. {g = (V,E)} newVertex(g) =n{g = (VU {n},E)} where

n=max(V)+1

{g=(V,E) An,m € V} addEdge(g,n,m) {g =
(V,EU {{n,m}})}

{9=(V,E)An{n,m} € E} hasEdge(g, n,
{9=(V,E)n{n,m} ¢ E} hasEdge(g, n,
{g = (V,E)} getVertices(g) = V

{g = (V,E)} getNeighbors(g,n) = {m e V : {m,n} € E}

)
)

m T
m 1

16

A digraph ADT

Looks like (V, E) (as above, E contains ordered pairs of
vertices)

Operations:

newVertex(Graph): Integer

addEdge(Graph, Integer, Integer): Void
hasEdge(Graph, Integer, Integer): Bool
getVertices(Graph): IntegerSet

e getSuccessors(Graph, Integer): IntegerSet
e getPredecessors(Graph, Integer): IntegerSet

Invariants:

e V={0,1,...,|V| -1}
e V(viuye E.veVAaueV

17

Digraph ADT laws

N o o koW

. {9 = (V,E)} newVertex(g) =n {g = (VU {n}, E)} where

n=max(V)+1

{g=(V,E) An,m e V} addEdge(g,n,m) {g =
(V,EU{(n,m})}

{9 =(V,E)A(n,m) € E} hasEdge(g,n,m) =T
{g=(V,E)A(n,m) & E} hasEdge(g,n,m) = L

{g = (V,E)} getVertices(g) = V

{g = (V,E)} getSuccessors(g,n) ={me V :(n,m) € E}
{g = (V,E)} getPredecessors(g,n) = {m e V : (m,n) €

E}

18

A weighted digraph ADT
Looks like (V, E,w) (as above)

Operations:

o new\Vertex(Graph): Integer

e setEdge(Graph, Integer, Weight.., Integer): Void
e getEdge(Graph, Integer, Integer): Weight.,

e getVertices(Graph): IntegerSet

e getSuccessors(Graph, Integer): IntegerSet

e getPredecessors(Graph, Integer): IntegerSet

where Weight., is either a numeric weight or infinity

19

A weighted digraph ADT
Looks like (V, E,w) (as above)

Operations:

o new\Vertex(Graph): Integer

e setEdge(Graph, Integer, Weight.., Integer): Void
e getEdge(Graph, Integer, Integer): Weight.,

e getVertices(Graph): IntegerSet

e getSuccessors(Graph, Integer): IntegerSet

e getPredecessors(Graph, Integer): IntegerSet

where Weight., is either a numeric weight or infinity

Additional invariant:

e Vv,ueV:

» If (v,u) € E then w(v,u) <
» If (v,u) € Ethen w(v,u) =

19

0
0

Weighted digraph ADT laws

o ok~ W

{9 =

(V,E,w)} newVertex(g) =n{g=(VUu{n},E,w)}

where n = max(V) + 1

{g9=

(V.E,w)An,m € V} setEdge(g,n,a,m) {g =

(V,EU{(n,m)},w{(n,m) — a})}

{g=
{g=
{g=
{g=

E}

{g=

E}

(V,E,w) A (n,m) € E} getEdge(g,n,m) = w(n,m)
(V,E,w) A (n,m) & E} getEdge(g,n,m) =
(V,E,w)} getVertices(g) = V

(V,E,w)} getSuccessors(g,n) ={me V :(n,m) €

(V,E,w)} getPredecessors(g,n) = {me V :(m,n)

20

Graph representation

Two graph representations

There are two common ways that graphs are represented on a
computer:

e adjacency list
e adjacency matrix

22

Adjacency list

In an array, store a list of neighbors (or successors) for each
vertex:

23

Oo|O|O|O

Adjacency matrix

Store a |V|-by-|V| matrix of Booleans indicating where edges
are present:

0|1(1]0
[1]0]1]0]
[1]1]o[1]
o[o]1]o]

0|O|O|O

_y
—

24

A directed adjacency matrix example

1

0

0/0]|0
1
1

21345
0/0|0]|0

1

.1
1

0/0]|0]|0

0
0

0|0

1

210100
3/0/0|0

4

25

With weights

1

5 | ©

oo | OO | OO

—4 | oo

10

4

7

o0 |oo| oo |0l 0

3 |

oo | OO

2

Ojloo| 2 |0 00 | 00| 0

2 00| 0| 0
3|00 | 0| 0

5

26

Space comparison

Adjacency list—has a list for each vertex, and the total length of
all the lists is the number of edges: OV +E)

Adjacency matrix—is |V| by |V| regardless of the number of
edges: o(V?)

27

Space comparison

Adjacency list—has a list for each vertex, and the total length of
all the lists is the number of edges: OV +E)

Adjacency matrix—is |V| by |V| regardless of the number of
edges: o(V?)

When might we want to use one or the other?

27

Time comparison

| adj. list adj. matrix

addEdge/setEdge |

28

Time comparison

| adj. list adj. matrix

addEdge/setEdge | O(setlnsert(d)) O(1)

28

Time comparison

| adj. list adj. matrix

addEdge/setEdge | O(setlnsert(d)) O(1)
getEdge/hasEdge

28

Time comparison

| adj. list adj. matrix

addEdge/setEdge | O(setlnsert(d)) O(1)
getEdge/hasEdge | O(setLookup(d)) O(1)

28

Time comparison

| adj. list adj. matrix

addEdge/setEdge | O(setlnsert(d)) O(1)
getEdge/hasEdge | O(setLookup(d)) O(1)
getSuccessors

28

Time comparison

| adj. list adj. matrix

addEdge/setEdge | O(setlnsert(d)) O(1)
getEdge/hasEdge | O(setLookup(d)) O(1)
getSuccessors O(|Result|) o)

28

Time comparison

| adj. list adj. matrix

addEdgel/setEdge | O(setinsert(d)) o(1)
getEdgel/hasEdge | O(setLookup(d)) o(1)

getSuccessors O(|Result|) o)
getPredecessors

28

Time comparison

| adj. list adj. matrix
addEdgel/setEdge | O(setinsert(d)) o(1)
getEdgel/hasEdge | O(setLookup(d)) O(1)
getSuccessors O(|Result|) o)
getPredecessors O(V+E) o(V)

28

Next time: graph search

	Kinds of graphs
	A little graph theory
	Programming with graphs
	Graph representation
	Next time: graph search

