EECS 214 Fall 2016

HW5: Union-Find and MST
Due: Thursday, November 17, at 11:59 PM, via GSC

You may work on your own or with one (1) partner.

For this assignment you will implement the union-find data structure with
path compression and weighted union (WQUPC) as we saw in class. Unlike
in HW3, the representation itself is not defined for you, so you’ll have to
define it. Then you will use your union-find data structure to implement
Kruskal’s minimum spanning tree (MST) algorithm.

This assignment depends on your graph implementation from HW2, which
you will have to copy over.

In unionf ind.rktﬂ I've supplied headers for the functions that you’ll need
to write, along with suggested helpers and some code to help with testing.

Background

In this assignment you will use a union-find structure to solve a particular
problem: finding the MST of a graph. In this section we offer background on
what an MST is and one algorithm for computing it.

Definitions

A graph is connected if there is a path from every vertex to every other;
otherwise it comprises two or more connected components, each of which
is a maximal connected subgraph. (A connected component is maximal in
the sense that no additional vertices could be added and still have it be
connected.)

A spanning tree of a connected graph G is a subgraph that includes all of G’s
vertices, but only enough edges for it to be connected and no more. Cycles
would introduce redundant connectivity, so it’s a tree. Note that the number
of edges in a spanning tree is always one fewer than the number of vertices in
the original graph.

"http://goo.gl/NF5ZKK


http://goo.gl/NF5ZKK
http://goo.gl/NF5ZKK

EECS 214 Fall 2016

A minimum spanning tree for a connected graph is a spanning tree with
minimum total weight. (There may be a tie.) We can interpret an MST as
follows: If vertices represent sites of some kind, edges potential connections
between them, and weights the costs of those edges, then an MST gives the
lowest cost way to connect all the sites.

A graph that isn’t connected has a minimum spanning tree for each of its
connected components. This collection of MSTs is a minimum spanning
forest.

Kruskal’s algorithm

The result of Kruskal’s algorithm is a graph with the same vertices as the
input graph, but whose edges form a minimum spanning tree (or forest). The
result graph starts with all of the vertices from the input graph and no edges.
In other words, initially each vertex forms its own (degenerate) connected
component.

The algorithm works by maintaining the set of connected components in the
result (using a union-find data structure); it repeatedly adds an edge that
connects two components, thus unifying them into one. In particular, to
achieve minimality, it considers the edges in order from lightest weight to
heaviest. For each edge, if its two vertices are already in the same connected
component of the result graph, the edge is ignored; but if the edge would
connect vertices that are in two different connected components then the edge
is added to the resulting graph, thus joining the two components into one.
When all edges have been considered then the result is a minimum spanning
tree (or forest, as appropriate).

Your task
Part I: Union-Find
First you will need to define your representation, the UnionFind data type.

Each UnionFind represents a “universe” with a fixed number of objects
identified by natural numbers.



EECS 214 Fall 2016

Then you will have to implement five functions:

create : N -> UnionFind ; O(n)
size : UnionFind -> N ; O(1)
union! : UnionFind N N -> Void ; amortized O(log" n)
find : UnionFind N -> N ; amortized O(log" n)
same_set? : UnionFind N N -> Boolean ; amortized O(log" n)

(Note: N is the natural numbers and log" is the |iterated logarithm.)

Calling create(n) returns a new UnionFind universe (defined by you) initial-
ized to have n objects in disjoint singleton sets numbered 0 to n — 1. Given
a universe uf, size(uf) returns the number of objects (not sets!) in the
universe—that is, size will always return the number that was passed to
create when that universe was initialized.

Functions union! and find implement the standard union-find operations:
The function call union! (uf, n, m) unions the set containing n with the set
containing m, if they are not already one and the same. find (uf, n) returns
the representative (root) object name for the set containing n. The find
function must perform path compression, and because the union! function
calls find, it (indirectly) performs path compression as well. The union
function must set the parent of the root of the smaller set to be the root
of the larger set. For convenience, same_set?(uf, n, m) returns whether
objects n and m are in the same set according to union-find universe uf.

Part II: Kruskal’s MST algorithm

Once you have a working union-find, you should implement Kruskal’s al-
gorithm as a function kruskal mst : WUGraph -> WUGraph. Given any
weighted, undirected graph g, kruskal mst(g) returns a graph with the
same vertices as g and edges forming a minimum spanning forest, using the
algorithm as described above.

In order to represent the graph whose MST your are computing, you should
use your graph implementation from HW2. Place graph.rkt in the same
directory as unionfind.rkt and then import it:

import 'graph.rkt'


https://en.wikipedia.org/wiki/Iterated_logarithm

EECS 214 Fall 2016

(If you're working with a different partner now than you did for HW2 then
you may use either your own WUGraph or theirs.)

In order to consider the edges in order by increasing weight, Kruskal’s algo-
rithm requires sorting the edges by weight. I used my HW3 solution to write
a heap sort (which works by adding all the things to sort to a heap and then
removing them), but you may use any sorting algorithm you wish.

I've listed some helpers that you may find useful at the bottom of unionfind.rkt.

Deliverables

The provided file unionfind.rkt, containing
« a definition of your UnionFind data type,

« complete, working definitions of the five union-find operations specified
above, and

« a working implementation of Kruskal’s algorithm.

Thorough testing is strongly recommended but will not be graded.


http://goo.gl/NF5ZKK
http://goo.gl/NF5ZKK

