EECS 214 Fall 2016

HW4: Binary Heaps
Due: Thursday, November 2, at 11:59 PM, on GSC

You may work on your own or with one (1) partner.

In this assignment, you will implement a fixed-size binary heap. The struc-
ture of the heap is already defined for you in binheap.rktﬂ The heap is
represented using a DSSL vector to contain the elements. Each heap also
contains a comparison function for ordering the elements of the heap, so that
your implementation can support heaps of integers, heaps of strings, heaps of
whatits, heaps of sporkles, etc.

Representation overview

A binary heap is a complete binary tree satisfying the heap property. Com-
pleteness means that each level is full except the last one, and the heap
property means that each node’s value is less than its children’s values. Here
is an example of a binary heap drawn as a tree:

In practice, binary trees are rarely represented as actual tree mades of links
and nodes. Instead, the completeness property means that the elements can
be stored in level order in an array, which is more space- and cache-efficient.
In particular, in this assignment we will represent a heap as a struct of three
fields. Here is the same heap as above in our actual heap representation:

size E

17 [A 2|3|6|7|5|8

data E

The third field, data, stores a reference to the vector holding the elements.
In order to allow the heap to grow, we do not necessarily use the full capacity

"http://goo.gl/5v3p4R

http://goo.gl/5v3p4R
http://goo.gl/5v3p4R

EECS 214 Fall 2016

of the vector; instead we store the actual number of elements in size, the
first field.

The second field, 1t?, stores the heap ordering predicate. This is necessary
because your heap must work with any element type whatsoever, not just
with numbers or strings. If elements were only numbers or strings, you
could compare them with x, y: x < y, but that won’t work for, say, bank
account structs, employees, or weighted graph edges. So each HeapOf [X]
has a field 1t? containing the correct function for comparing its elements.
Supposing that h is a HeapOf [X], and a and b are two elements (i.e., Xs),
we can compare them with h.1t?(a, b), which answers True when a is less
than b and False otherwise.

Your task

In binheap.rkt, I've supplied a definition of a function create_heap that
returns a new, empty heap given a capacity and an ordering function. Imple-
menting the remaining operations is up to you:

heap_insert! : HeapOf[X] X -> Void ; O(logn)
find_min : HeapOf[X] -> X ; O(1)
remove_min! : HeapOf[X] -> Void ; O(logn)

For details, see the function headers provided in binheap.rkt, which include
purpose statements as well. Each operation must have the worst-case shown
above, where n is the number of elements in the heap.

In order to help you factor your program effectively, I've included at the
bottom of binheap.rkt a list of helper functions with names, signatures
(types), and purpose statements (brief functional descriptions). You are free
to use as much or as little of my design as you like.

Brownie points (not real points)

Make your heap expand as necessary to accomodate any number of insertions.
To achieve this, instead of failing when the heap is full, heap_insert! should
allocate a new vector that doubles the capacity and copy the existing elements
over from the old vector.

http://goo.gl/5v3p4R
http://goo.gl/5v3p4R
http://goo.gl/5v3p4R

EECS 214 Fall 2016

Deliverables

e The provided file binheap.rkt, containing:

— the heap_insert!, find min, and remove_min! functions fully

defined, and

— sufficient tests to convince yourself your code’s correctness.

http://goo.gl/5v3p4R

