
EECS 214 Fall 2016

HW3: Graphs
Due: Thursday, October 26, at 11:59 PM, via GSC

You may work on your own or with one (1) partner.

For this assignment you will implement an API for weighted, undirected
graphs; then you will use this API to implement a simple depth-first search.

In graph.rkt1 I’ve supplied headers for the functions that you’ll need to
write, along with a few suggested helpers and some code to help with testing.

Your task

Representation

First you will need to define your representation, the WUGraph data type. A
WUGraph represents a weighted, unordered graph, where vertices are identified
by consecutive natural numbers from 0, and weights are arbitrary numbers:

# A Vertex is a Natural
# A Weight is a Number

The API also uses a data type for weights that includes False to indicate
the absence of an edge:

# A MaybeWeight is one of:
# - Weight
# - False

Your graph representation is up to you—you may use either adjacency lists
or an adjacency matrix.

Graph examples

To ensure your representation is adequate and to facilitate testing, you must
define two example graphs. Define GRAPH1 to be the four-vertex graph on the
left, and define GRAPH2 to be the six-vertex graph on the right:

1http://goo.gl/Yhy1G2

1

http://goo.gl/Yhy1G2
http://goo.gl/Yhy1G2


EECS 214 Fall 2016

0 1

23

2

3

4

5

0

1

2 3

4 5

5

1 3

2
74

6

Graph operations

Once you’ve defined your graph representation, you will have to implement
five functions for working with graphs:

make_graph : Natural -> WUGraph
set_edge! : WUGraph Vertex Vertex MaybeWeight -> Void
graph_size : WUGraph -> Natural
get_edge : WUGraph Vertex Vertex -> MaybeWeight
get_adjacent : WUGraph Vertex -> ListOf[Vertex]

To construct a graph, we would start with make_graph(n), which returns
a new graph having n vertices and no edges. Then we add edges using
set_edge!(g, u, v, w), which connects vertices u and v by an edge having
weight w. The weight w may be an actual numeric weight or it may be False,
which effectively removes the edge.

graph_size(g) returns the number of vertices in g, which is the same as the
number originally passed to make_graph to create the graph. get_edge(g, u, v)
returns the weight of the edge from u to v, which will be False if there is
no such edge. Note that because the graph is undirected, get_edge(g, u, v)
should always be the same as get_edge(g, v, u).2 Finally get_adjacent(g, v)

2This probably means that set_edge! needs to maintain an invariant.

2



EECS 214 Fall 2016

returns a list of all the vertices adjacent to v in graph g—note that an undi-
rected graph does not distinguish predecessors from successors.

Depth-first search

Once you have your graph implementation working, you must implement a
depth-first search function:

dfs: WUGraph Vertex [Vertex -> Void] -> Void

This function takes a graph g, a vertex v, and a visitor function visit. It
performs a depth-first search starting at v. As it encounters each vertex u
for the first time, it calls visit(u). The visitor function is called on each
reachable vertex exactly once, in a valid depth-first order.

In order to help you test dfs, we have provided a function dfs_to_list that
uses it to construct a list of vertices in DFS-order. It should be relatively
easy to write assert_eq tests for dfs_to_list once you know in what order
your dfs function visits vertices.

Deliverables

The provided file graph.rkt, containing

• working definitions of your WUGraph data type and its operations,

• definitions of the example graphs GRAPH1 and GRAPH2,

• a working definition of the dfs function, and

• sufficient tests to be confident of your code’s correctness.

3

http://goo.gl/Yhy1G2

