The Edit-Compile-Run Cycle

EECS 211
Winter 2019

So you've written a C program:

#include <stdio.h>

int main()

{
printf('Hello, EECS,211!'\n");
}

What now?

Compilation

We need to translate our program from
e source code (e.g., C, human readable)
to

e machine code (machine executable).

[source code] compller)[machine code]

What does machine code look like?

55

48 89 e5

48 83 ec 10

48 8d 3d 37 00 00 00
b0 00

€8 0e 00 00 00
31c9

89 45 fc

89 c8

48 83 c4 10

5d

c3

What does machine code look like?

55

48 89 e5

48 83 ec 10
48 8d 3d 37 00 00 00
b0 00

€8 0e 00 00 00
31c9

89 45 fc

89 c8

48 83 c4 10
5d

c3

pushq S%rbp

movqg %rsp, %rbp
subq $16, S%rsp

leaq 55(%rip), %rdi
movb $0, %al

callg 14

xorl %ecx, %ecx
movl %eax, —-4(S%rbp)
movl %ecx, %eax
addq $16, S%rsp
popg %rbp

retq

Using Unix

For the first few weeks of class, we are going to develop and
test our programs under Unix.

Using Unix

For the first few weeks of class, we are going to develop and
test our programs under Unix.

Unix A style of multi-user operating system invented 50
years ago. (Modern variants include Linux and
Mac OS X.)

Using Unix

For the first few weeks of class, we are going to develop and
test our programs under Unix.

Unix A style of multi-user operating system invented 50
years ago. (Modern variants include Linux and
Mac OS X.)

shell The main program for controlling a Unix computer,
using textual commands.

Using Unix

For the first few weeks of class, we are going to develop and
test our programs under Unix.

Unix A style of multi-user operating system invented 50
years ago. (Modern variants include Linux and
Mac OS X.)

shell The main program for controlling a Unix computer,
using textual commands.

terminal A program (or historically, device) for displaying

textual interactions, often remote, with a Unix
computer.

Advantages of the Unix shell (1/2)

Compared to point-and-click, you can say more with less:

$ mkdir backup
$ cp *.docx backup

Advantages of the Unix shell (1/2)

Compared to point-and-click, you can say more with less:

$ mkdir backup
$ cp *.docx backup

$ mkdir thumbs
$ foreach i (*.png)
convert —geometry 128x128 "$i" "thumbs/$i"
end

Advantages of the Unix shell (2/2)

You can automate repeated tasks by putting common
sequences of commands in shell scripts:

#!/bin/sh

for dir in "$x"; do
(
cd "$dir"
mkdir —p thumbs
for file in *.png; do
convert —geometry 128x128 "$file" \
"thumbs/$file"
done
)

done

Compilation in the Unix shell

Compilation in the Unix shell

$ exec scl enable devtoolset-6 tcsh

Compilation in the Unix shell

$ exec scl enable devtoolset-6 tcsh

$

Compilation in the Unix shell

$ exec scl enable devtoolset-6 tcsh
$ mkdir eecs211

Compilation in the Unix shell

$ exec scl enable devtoolset-6 tcsh
$ mkdir eecs211
$

Compilation in the Unix shell

$ exec scl enable devtoolset-6 tcsh
$ mkdir eecs211
$ cd eecs211

Compilation in the Unix shell

$ exec scl enable devtoolset-6 tcsh
$ mkdir eecs211

$ cd eecs211

$

Compilation in the Unix shell

exec scl enable devtoolset-6 tcsh
mkdir eecs211

cd eecs211

emacs —nw hello.c

“+H A A A

Compilation in the Unix shell

exec scl enable devtoolset-6 tcsh
mkdir eecs211

cd eecs211

emacs —nw hello.c

A A A A A

Compilation in the Unix shell

exec scl enable devtoolset-6 tcsh
mkdir eecs211

cd eecs211

emacs —nw hello.c

1s

A A A A A

Compilation in the Unix shell

$ exec scl enable devtoolset-6 tcsh
$ mkdir eecs211

$ cd eecs211

$ emacs —nw hello.c

$ 1s

hello.c

$

Compilation in the Unix shell

exec scl enable devtoolset-6 tcsh
mkdir eecs211

cd eecs211

emacs —nw hello.c

1s

hello.c

$ cc hello.c -o hello

A A A A A

Compilation in the Unix shell

exec scl enable devtoolset-6 tcsh
mkdir eecs211

cd eecs211

emacs —nw hello.c

1s

hello.c

$ cc hello.c -o hello

$

A A A A A

Compilation in the Unix shell

exec scl enable devtoolset-6 tcsh
mkdir eecs211

cd eecs211

emacs —nw hello.c

1s

hello.c

$ cc hello.c -o hello

$ 1s

A A A A A

Compilation in the Unix shell

exec scl enable devtoolset-6 tcsh
mkdir eecs211

cd eecs211

emacs —nw hello.c

1s

hello.c

$ cc hello.c -o hello

$ 1s

hello hello.c

$

A A A A A

Compilation in the Unix shell

exec scl enable devtoolset-6 tcsh
mkdir eecs211

cd eecs211

emacs —nw hello.c

1s

hello.c

$ cc hello.c -o hello

$ 1s

hello hello.c

$./hello

A A A A A

Compilation in the Unix shell

exec scl enable devtoolset-6 tcsh
mkdir eecs211

cd eecs211

emacs —nw hello.c
1s

hello.c

$ cc hello.c -o hello
$ 1s

hello hello.c

$./hello

Hello, EECS 211!

$

A A A A A

Build management

As programs get larger, builds get more complicated:

e More files to compile, in complex combinations
e Want to just recompile the changed files

o Different compilers/machines want different options and
work differently

Build management

As programs get larger, builds get more complicated:

e More files to compile, in complex combinations
e Want to just recompile the changed files

o Different compilers/machines want different options and
work differently

We'll use a software building system called Make to automate
builds for us.

Introduction to Make

Make is configured using a file called Makefile, which is a set
of rules that say what you can build, what it’s built from, and

how.

10

Introduction to Make

Make is configured using a file called Makefile, which is a set
of rules that say what you can build, what it’s built from, and
how.

The simplest possible Makefile:

hello: hello.c
cc —o hello hello.c

10

Introduction to Make

Make is configured using a file called Makefile, which is a set
of rules that say what you can build, what it’s built from, and
how.

The simplest possible Makefile:

hello: hello.c
cc —o hello hello.c

(Meaning: To build hello from hello.c, run the command cc
-0 hello hello.c.)

10

Introduction to Make

Make is configured using a file called Makefile, which is a set
of rules that say what you can build, what it’s built from, and
how.

The simplest possible Makefile:

hello: hello.c
cc —o hello hello.c

(Meaning: To build hello from hello.c, run the command cc
-0 hello hello.c.)

Using Make:
$

10

Introduction to Make

Make is configured using a file called Makefile, which is a set
of rules that say what you can build, what it’s built from, and
how.

The simplest possible Makefile:

hello: hello.c
cc —o hello hello.c

(Meaning: To build hello from hello.c, run the command cc
-0 hello hello.c.)

Using Make:
$ make hello

10

Introduction to Make

Make is configured using a file called Makefile, which is a set
of rules that say what you can build, what it’s built from, and
how.

The simplest possible Makefile:

hello: hello.c
cc —o hello hello.c

(Meaning: To build hello from hello.c, run the command cc
-0 hello hello.c.)

Using Make:

$ make hello
cc -0 hello helloc

$

10

Introduction to Make

Make is configured using a file called Makefile, which is a set
of rules that say what you can build, what it’s built from, and
how.

The simplest possible Makefile:

hello: hello.c
cc —o hello hello.c

(Meaning: To build hello from hello.c, run the command cc
-0 hello hello.c.)

Using Make:

$ make hello
cc -0 hello helloc
$ make hello

10

Introduction to Make

Make is configured using a file called Makefile, which is a set
of rules that say what you can build, what it’s built from, and
how.

The simplest possible Makefile:

hello: hello.c
cc —o hello hello.c

(Meaning: To build hello from hello.c, run the command cc
-0 hello hello.c.)

Using Make:

$ make hello

cc —-o hello helloc

$ make hello

make: “build/hello' is up to date.
$

10

Cleaning up

11

Cleaning up

$ cd

11

Cleaning up

11

Cleaning up

$ cd
$ rm —Rf eecs211

11

Cleaning up

$ cd
$ rm —Rf eecs211
$

11

Cleaning up

$ cd
$ rm —Rf eecs211
$ mkdir eecs211

11

Cleaning up

$ cd
$ rm —Rf eecs211
$ mkdir eecs211

$

11

Getting a Make project onto EECS

You can download an example Make project from the course
website:

$

12

Getting a Make project onto EECS

You can download an example Make project from the course
website:

$ cd eecs211

12

Getting a Make project onto EECS

You can download an example Make project from the course
website:

$ cd eecs211
$

12

Getting a Make project onto EECS

You can download an example Make project from the course
website:

$ cd eecs211
$ wget $URL211/lec/@lcompile.tgz

12

Getting a Make project onto EECS

You can download an example Make project from the course
website:

$ cd eecs211
$ wget $URL211/lec/@lcompile.tgz

;

12

Getting a Make project onto EECS

You can download an example Make project from the course
website:

$ cd eecs211
$ wget $URL211/lec/@lcompile.tgz

$ tar zxf @lcompile.tgz

12

Getting a Make project onto EECS

You can download an example Make project from the course
website:

$ cd eecs211
$ wget $URL211/lec/@lcompile.tgz

$ tar zxf @lcompile.tgz
$

12

Getting a Make project onto EECS

You can download an example Make project from the course
website:

$ cd eecs211
$ wget $URL211/lec/@lcompile.tgz

$ tar zxf @lcompile.tgz
$ cd @lcompile

12

Getting a Make project onto EECS

You can download an example Make project from the course
website:

$ cd eecs211
$ wget $URL211/lec/@lcompile.tgz

$ tar zxf @lcompile.tgz

$ cd @lcompile
$

12

Getting a Make project onto EECS

You can download an example Make project from the course
website:

$ cd eecs211
$ wget $URL211/lec/@lcompile.tgz

$ tar zxf @lcompile.tgz

$ cd @lcompile
$ 1s

12

Getting a Make project onto EECS

You can download an example Make project from the course
website:

$ cd eecs211
$ wget $URL211/lec/@lcompile.tgz

$ tar zxf @lcompile.tgz
$ cd @lcompile

$ 1s

Makefile src

$

12

Getting a Make project onto EECS

You can download an example Make project from the course
website:

$ cd eecs211
$ wget $URL211/lec/@lcompile.tgz

$ tar zxf @lcompile.tgz
$ cd @lcompile

$ 1s

Makefile src

$ Us src

12

Getting a Make project onto EECS

You can download an example Make project from the course
website:

$ cd eecs211
$ wget $URL211/lec/@lcompile.tgz

$ tar zxf @lcompile.tgz
$ cd @lcompile

$ 1s

Makefile src

$ Us src

hello.c

$

12

Another Makefile

13

Another Makefile

$ cat Makefile

13

Another Makefile

$ cat Makefile
CFLAGS = -std=cll -pedantic -Wall

all: build/hello

build/hello: src/hello.c
mkdir —-p build
cc -0 $@ $< $(CFLAGS)

clean:
rm —Rf build

.PHONY: all clean
$

13

Building the project using Make
$

14

Building the project using Make

$ make

14

Building the project using Make

$ make

mkdir —p build

cc -0 build/hello src/hello.c —-std=cll -pedantic -
Wall

$

14

Building the project using Make

$ make

mkdir —p build

cc -0 build/hello src/hello.c —-std=cll -pedantic -
Wall

$ build/hello

14

Building the project using Make

$ make

mkdir —p build

cc -0 build/hello src/hello.c —-std=cll -pedantic -
Wall

$ build/hello

Hello, EECS 211!

$

14

Building the project using Make

$ make

mkdir —p build

cc -0 build/hello src/hello.c —-std=cll —-pedantic -
Wall

$ build/hello

Hello, EECS 211!

$ sed —-i 's/EECS 211/everyone/' src/hello.c

14

Building the project using Make

$ make

mkdir —p build

cc -0 build/hello src/hello.c —-std=cll —-pedantic -
Wall

$ build/hello

Hello, EECS 211!

$ sed —-i 's/EECS 211/everyone/' src/hello.c

$

14

Building the project using Make

$ make

mkdir —p build

cc -0 build/hello src/hello.c —-std=cll —-pedantic -
Wall

$ build/hello

Hello, EECS 211!

$ sed —-i 's/EECS 211/everyone/' src/hello.c

$ build/hello

14

Building the project using Make

$ make

mkdir —p build

cc -0 build/hello src/hello.c —-std=cll —-pedantic -
Wall

$ build/hello

Hello, EECS 211!

$ sed —-i 's/EECS 211/everyone/' src/hello.c

$ build/hello

Hello, EECS 211!

$

14

Building the project using Make

$ make

mkdir —p build

cc -0 build/hello src/hello.c —-std=cll —-pedantic -
Wall

$ build/hello

Hello, EECS 211!

$ sed —-i 's/EECS 211/everyone/' src/hello.c

$ build/hello

Hello, EECS 211!

$ make

14

Building the project using Make

$ make

mkdir —p build

cc -0 build/hello src/hello.c —-std=cll -pedantic -
Wall

$ build/hello

Hello, EECS 211!

$ sed —-i 's/EECS 211/everyone/' src/hello.c

$ build/hello

Hello, EECS 211!

$ make

mkdir —p build

cc -0 build/hello src/hello.c —-std=cll -pedantic -
Wall

$

14

Building the project using Make

$ make

mkdir —p build

cc -0 build/hello src/hello.c —-std=cll -pedantic -
Wall

$ build/hello

Hello, EECS 211!

$ sed —-i 's/EECS 211/everyone/' src/hello.c

$ build/hello

Hello, EECS 211!

$ make

mkdir —p build

cc -0 build/hello src/hello.c —-std=cll -pedantic -
Wall

$ build/hello

14

Building the project using Make

$ make

mkdir —p build

cc -0 build/hello src/hello.c —-std=cll -pedantic -
Wall

$ build/hello

Hello, EECS 211!

$ sed —-i 's/EECS 211/everyone/' src/hello.c

$ build/hello

Hello, EECS 211!

$ make

mkdir —p build

cc -0 build/hello src/hello.c —-std=cll -pedantic -
Wall

$ build/hello

Hello, everyone!

$

14

