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So you've written a C program:

#include <stdio.h>

int main()

{
printf('Hello, EECS,211!'\n");
}

What now?



Compilation

We need to translate our program from
e source code (e.g., C, human readable)
to

e machine code (machine executable).
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What does machine code look like?
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55
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pushq S%rbp

movqg %rsp, %rbp
subq $16, S%rsp

leaq 55(%rip), %rdi
movb $0, %al

callg 14

xorl %ecx, %ecx
movl %eax, —-4(S%rbp)
movl %ecx, %eax
addq $16, S%rsp
popg %rbp

retq
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For the first few weeks of class, we are going to develop and
test our programs under Unix.

Unix A style of multi-user operating system invented 50
years ago. (Modern variants include Linux and
Mac OS X.)

shell The main program for controlling a Unix computer,
using textual commands.

terminal A program (or historically, device) for displaying

textual interactions, often remote, with a Unix
computer.
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Compared to point-and-click, you can say more with less:
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Advantages of the Unix shell (1/2)

Compared to point-and-click, you can say more with less:

$ mkdir backup
$ cp *.docx backup

$ mkdir thumbs
$ foreach i ( *.png )
convert —geometry 128x128 "$i" "thumbs/$i"
end



Advantages of the Unix shell (2/2)

You can automate repeated tasks by putting common
sequences of commands in shell scripts:

#!/bin/sh

for dir in "$x"; do
(
cd "$dir"
mkdir —p thumbs
for file in *.png; do
convert —geometry 128x128 "$file" \
"thumbs/$file"
done
)

done
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Compilation in the Unix shell

exec scl enable devtoolset-6 tcsh
mkdir eecs211

cd eecs211

emacs —nw hello.c
1s

hello.c

$ cc hello.c -o hello
$ 1s

hello hello.c

$ ./hello

Hello, EECS 211!

$
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e More files to compile, in complex combinations
e Want to just recompile the changed files

o Different compilers/machines want different options and
work differently



Build management

As programs get larger, builds get more complicated:

e More files to compile, in complex combinations
e Want to just recompile the changed files

o Different compilers/machines want different options and
work differently

We'll use a software building system called Make to automate
builds for us.
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Introduction to Make

Make is configured using a file called Makefile, which is a set
of rules that say what you can build, what it’s built from, and
how.

The simplest possible Makefile:

hello: hello.c
cc —o hello hello.c

(Meaning: To build hello from hello.c, run the command cc
-0 hello hello.c.)

Using Make:

$ make hello

cc —-o hello helloc

$ make hello

make: “build/hello' is up to date.
$
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Getting a Make project onto EECS

You can download an example Make project from the course
website:

$ cd eecs211
$ wget $URL211/lec/@lcompile.tgz

$ tar zxf @lcompile.tgz
$ cd @lcompile

$ 1s

Makefile src

$ Us src

hello.c

$
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Another Makefile

$ cat Makefile
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Another Makefile

$ cat Makefile
CFLAGS = -std=cll -pedantic -Wall

all: build/hello

build/hello: src/hello.c
mkdir —-p build
cc -0 $@ $< $(CFLAGS)

clean:
rm —Rf build

.PHONY: all clean
$
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Building the project using Make

$ make

mkdir —p build

cc -0 build/hello src/hello.c —-std=cll -pedantic -
Wall

$ build/hello

Hello, EECS 211!

$ sed —-i 's/EECS 211/everyone/' src/hello.c

$ build/hello

Hello, EECS 211!

$ make

mkdir —p build

cc -0 build/hello src/hello.c —-std=cll -pedantic -
Wall

$ build/hello

Hello, everyone!

$
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