
Homework 6: Reversi

EECS 211

Winter 2019

Due: March 2, 2019 at 11:59 PM
Partners: Yes; register on GSC before submission

Contents

1 Purpose 1

2 Getting it 1

3 Specification 2
3.1 Generalization to smaller sizes 2
3.2 Your implementation 2

4 Helper type reference 2
4.1 Position sets 3

– Position set pset; 3
– Position set pset{p1, . . . , pn}; 3
– pset.empty() 3
– pset.clear(); 3
– pset[pos] 3
– pset[pos] = true; 3
– pset |= other pset; 3
– for (Position pos : pset) 3

4.2 Moves and move maps 4
– move.first, move.second 4
– using Move map = ...; 4
– mmap[pos] = pset; 4
– mmap.empty() 4
– mmap.clear(); 4

4.3 Players 4
– other player(player) 4

4.4 The board 4
– board.dimensions() 4
– board[pos] 4
– board[pos] = player; 4
– board.set all(pset, player); 5
– board.count player(player) 5

– board.all positions() 5
– board.center positions() 5
– Board::all directions() 5

5 Design orientation 5
5.1 The model 5

– model.play move(pos); 6
– Model model(width, height); 6

5.2 The view 6
5.3 The controller 6

6 Implementation hints 6
6.1 Model factoring 7
6.2 Algorithm for computing moves 7
6.3 The UI 8
6.4 Testing private members 8
6.5 Which files should I change? Which

files may I change? 9

7 Deliverables and evaluation 10

8 Submission 10

1 Purpose

The goal is to get you writing more interesting algo-
rithms and using more interesting data types.

2 Getting it

Download the project ZIP file to your computer1, un-
zip it, and open the resulting directory in CLion2.

1To complete this homework on your own computer, you need a C++14 toolchain and the SDL2 libraries as in Lab 4. If you need to
work on a lab computer instead, see this Piazza post.

2Be careful that you open the hw06 directory and not some sub- or superdirectory thereof. If you do, CLion will create a bogus
CMakeLists.txt that won’t be able to find SDL2.

1

http://users.eecs.northwestern.edu/~jesse/course/eecs211/hw/hw06.zip
http://users.eecs.northwestern.edu/~jesse/course/eecs211/hw/hw04.pdf
https://piazza.com/class/jpk1il7enus4qr?cid=455

2

(a) Board after 4th move (b) Dark’s available moves (c) Gains for one move (d) Board after Dark moves

(e) Light’s available moves (f) Board after Light moves (g) Gains for one move (h) Board after Dark moves

Figure 1: Example of possible 5th through 7th moves on a 6-by-6 board

3 Specification

The game Reversi is played by two players, Dark and
Light, laying dark- and light-colored tiles on an 8-by-8
board. The game proceeds in two phases.

In the opening phase, the players alternate turns,
placing tiles in the center four squares of the board
((3, 3), (3, 4), (4, 3), and (4, 4) if 0-based). Dark goes
first, and the opening phase ends when the center
four squares are occupied.

In the main phase, each move must capture at least
one of the other player’s tiles, as follows. The current
player places a tile in an unoccupied square so that it
forms at least one straight line—horizontal, vertical,
or diagonal—with one or more of the other player’s
tiles in the middle and one of the current player’s tiles
on the other end. Then the other player’s tiles in the
line(s) are flipped to the current player. (See figure 1
for some example moves.)

The players take turns unless one player cannot
play, in which case the other player may play again.
The game is over when neither player can play. The
winner is the player with more tiles on the final board
(or it may be a tie).

3.1 Generalization to smaller sizes

To facilitate testing, we generalize the rules of Re-
versi to allow boards with dimensions down to 2-by-2,
including non-square boards (e.g., 7-by-4). To gener-
alize the opening phase of the game, we define the
center four squares to be at positions (cx − 1, cy − 1),
(cx−1, cy), (cx, cy−1), and (cx, cy), where cx = bw/2c
and cy = bh/2c.

For your convenience, a rectangle containing these
positions (which you can iterate over) is returned by
Board::center_positions() const.

3.2 Your implementation

To start the game, the user runs the reversi executable
with either no command-line arguments, or two argu-
ments, the width and height of the board. If the width
or height are out of range, or if some other number
of arguments is given, then the program exits with an
error message.

The user interface must make it possible to play
the game using either the mouse or the keyboard (or
both, if you wish). The game must allow the user to
make all legal moves and no illegal moves. It must
display the state of the model so that the user can see
which squares are occupied by light tiles, which by
dark tiles, and which by neither. When the game is
not over, it should display whose turn it is and give
some indication of which squares are valid to play in.
For full credit, it should also give feedback on which
tiles will flip as a result of each possible move. When
the game ends, the UI must indicate which player, if
any, has won.

It should not be possible for the user to cause the
game to crash via any interaction with the UI.

4 Helper type reference

To help define the model, we have provided sev-
eral types to build upon. We present these types

4.1 Position sets 3

in this section before discussing the model itself in
section 5.1 on page 5. The helper types are:

• A Position_set represents a set of game board
positions. (See section 4.1.)

• Type Move represents a possible move as a pair
of a single ge211::Position in which a player
can place a tile, and the Position_set of all po-
sitions gained by that move. (See section 4.2 on
the next page.)

• Type Move_map holds a collection of available
Moves whose first components are distinct,
and which supports looking up Moves by their
first components. (This is the type of the
next_moves_ member variable of the Model class
that your operations need to maintain.) (See
section 4.2 on the following page.)

• Player is an enum class with three enumera-
tors: dark, light, and neither. (See section 4.3
on the next page.)

• Class Board represents the state of the board.
(See section 4.4 on the following page.)

4.1 The Position_set class

The Position_set class is used to represent a set of
positions3 and offers a standard selection of set op-
erations. Position_sets support equality and stream
insertion (printing), which may be helpful for testing
and debugging.

The full documentation may be found in the src/-
move.h header, but the highlights are described here.

Position_set :: Position_set ();

Constructs the empty set of positions.

Position_set :: Position_set(
std:: initializer_list <

ge211::Position >);

Constructs the set of positions listed, like so:

Position_set pset{
{2, 3}, {3, 2}, {4, 1}

};

bool Position_set ::empty() const;

Returns whether this set is empty.

void Position_set ::clear ();

Removes all elements from this Position_set.

bool
Position_set :: operator [](Position)
const;

Looks up the given position in the set, returning a
bool indicating whether it is present.

Position_set :: reference
Position_set :: operator [](Position);

Looks up the given position in the set, returning a
reference-like object that can be assigned a bool to
change whether the position is in the set. For exam-
ple:

Position_set pset;

// add {2, 3} to `pset `:
pset[{2, 3}] = true;

// remove {2, 3} from `pset `:
pset[{2, 3}] = false;

Position_set&
Position_set :: operator |=(

Position_set);

Adds the positions in the given set to this set. Addi-
tionally, Position_set supports the full complement
of set operations:

• intersection: a & b and a &= b

• union: a | b and a |= b

• symmetric difference: a ∧ b and a ∧= b

• complement: ∼a

Note that set difference can be accomplished with
intersection and complement: a & ∼b.

Position_set :: iterator
Position_set ::begin() const;

Position_set :: iterator
Position_set ::end() const;

3 It is limited to positions whose coordinates are both less than 8, which suffices for Reversi.

4.2 Moves and move maps 4

These functions return the iterators necessary to it-
erate over a Position_set using a range-based for
loop, like so:

for (ge211:: Position pos : pset) {
...

}

4.2 Type aliases Move and Move_map

struct Move
{

ge211:: Position first;
Position_set second;

};

The Move type (see src/move.h) is an instantiation of
the standard library’s std::pair template struct. It
has two member variables, first and second. The
former contains the position of the move, and the
latter is the set of all positions gained by the move,
including both the move itself and any flips.

Moves support equality and stream insertion (print-
ing), which may be helpful for testing and debugging.

using Move_map =
std:: unordered_map <

ge211::Position ,
Position_set

>;

Type Move_map (also in src/move.h) is an instan-
tiation of the standard library’s class template
std::unordered_map with ge211::Position as the
key type and Position_set as the value type.
Move_maps support equality but not stream insertion.

All the std::unordered_map operations are avail-
able, but you will mostly likely need only these three:

Position_set&
Move_map :: operator [](

ge211:: Position);

Type Move_map overloads the indexing operator
(square brackets) to take a ge211::Position. If the
position is not already present then it inserts the given
position paired with an empty Position_set. It then
returns a reference to the Position_set, which allows
the caller to modify or assign it. Thus, we can asso-
ciate a position pos with a set of positions pset by
indexing the move map with pos and assigning pset
to the result:

mmap[pos] = pset;

bool Move_map ::empty() const;

Returns whether this move map is empty, meaning no
positions have been mapped to position sets.

void Move_map ::clear ();

Removes all moves from this move map.

4.3 The Player enumeraton

There are three Player values: Player::dark and
Player::light represent the two players, and
Player::neither represents absence of a player.
Players support equality and stream insertion (print-
ing), which may be helpful for testing and debugging.

There is one operation you will need:

Player other_player(Player);

Returns the other player.

4.4 The Board class

The Board class stores the state of the Reversi board. It
is, essentially, an updatable mapping from in-bounds
ge211::Positions to Players. Boards support equal-
ity and stream insertion (printing), which may be
helpful for testing and debugging.

The full documentation of the Board class is avail-
able in the src/board.h header file, but the highlights
you are likely to want are described here.

ge211:: Dimensions
Board:: dimensions () const;

Returns the dimensions of the board.

Player
Board:: operator [](ge211:: Position)
const;

Returns the player at the given position.

Board:: reference
Board:: operator [](ge211:: Position);

https://en.cppreference.com/w/cpp/utility/pair
https://en.cppreference.com/w/cpp/container/unordered_map

5

Returns a reference-like object that, when a Player
is assigned to it, stores that Player in the board at
the given position. For example, this statement stores
Player::dark at board position (2, 3):

board[{2, 3}] = Player ::dark;

void
Board:: set_all(Position_set , Player);

Stores the given Player in the board at all the posi-
tions in the given Position_set. For example, these
statements store Player::light at two board posi-
tions:

Position_set pset{{2, 5}, {3, 4}};
board.set_all(pset , Player ::light);

size_t
Board:: count_player(Player) const;

Returns the number of times the given player appears
on the board.

ge211:: Rectangle
Board:: all_positions () const;

Returns a rectangle containing all of the board’s posi-
tions. Since ge211::Rectangles are iterable, this can
be used to iterate over the board’s positions:

for (ge211:: Position pos :
board.all_positions ())

...

ge211:: Rectangle
Board:: center_positions () const;

Returns a rectangle containing just the four center po-
sitions that are playable in the opening phase. Since
ge211::Rectangles are iterable, this can be used to
iterate over the four center positions:

for (ge211:: Position pos :
board.center_positions ())

...

static
std::vector <ge211::Dimensions > const&
all_directions ();

Returns a (borrowed) std::vector containing the
eight unit direction vectors (as ge211::Dimensions).
This can be used to iterate over all possible line direc-
tions when evaluating a potential move:

for (ge211:: Dimensions dim :
Board:: all_directions ())

...

5 Design orientation

In this section we describe the design of the three
classes that you have to complete.

5.1 The model

The Model class (src/model.{h,cpp}) encapsulates the
state of the game and its rules. In particular, it keeps
track of:

• the current turn, if the game is ongoing
(Player turn_),

• the winning player, if any (Player winner_),

• the state of the board (Board board_), and

• a cache of which moves are available to the
current player (Move_map next_moves_).

While it is possible to generate the available moves
on demand given the other three data members, this
information is not cheap to compute, and the view
and controller will most likely need it much more of-
ten than it changes. So it makes sense to compute the
next possible moves when the game starts and then
after each turn, rather than recomputing it whenever
the UI wants to know which moves are valid.

In the Model class, we have defined a number of
member functions that you may want to call from the
view, the controller, or elsewhere in the model:

• Model::board() const returns a ge211::-
Rectangle that contains all positions in the
board.

• Model::is_game_over() const returns a bool
indicating whether the game is over.

• Model::turn() const returns the current
player, if any.

• Model::winner() const returns the winning
player, if any.

• Model::operator[](ge211::Position) const
returns the Player at the given position on the
board.

5.2 The view 6

• Model::find_move(ge211::Position) const
returns a pointer to the Move that would result
from playing at the given position, if allowed,
or nullptr if not allowed.

The last of these depends on the contents of
next_moves_ being correct. Ensuring that invariant is
your job. In particular, there are two members of the
Model class that are incomplete:

void
Model:: play_move(ge211:: Position);

This function plays a move at the given position if al-
lowed, or throws an exception if disallowed. We have
already provided code to check the legality of the
move for you and throw if necessary. Our starter code
leaves a pointer to the valid Move in a local variable,
movep. Your responsibility is to 1) actually execute the
move by modifying the board, 2) advance the turn—
to the other player if they can move, or back to the
same player if the other player cannot move, or to
game over if neither player can move, and 3) leave
next_moves_ in a correct state.

Model::Model(int width , int height);

This constructor initializes the model. We’ve provided
you the member initializer for the board, but you
need to write the code for filling next_moves_ with
the moves available to the first player on the first turn.
(This should probably happen via a private helper
function that Model::play_move calls as well.)

5.2 The view

The responsibility of the View class is to present the
state of the model in such a way that users can play the
game. We have not specified what the game should
look like, other than that it must be playable as de-
scribed in section 3.2 on page 2. You may emulate the
style of the diagrams in figure 1 on page 2 if you wish,
or design something else.

We have provided you with a minimal View class
in src/view.{h,cpp}, which you will have to complete
to make the game playable. This starter View class de-
fines a single member variable, Model const& model_.
It defines one constructor, which initializes model_;
you may want to extend this constructor to initialize
your sprites as well. Two member functions, for deter-
mining the window title and dimensions, are provided
for you (though you may change them if you want to
determine these things differently).

There is one function for you to write:
View::draw(ge211::Sprite_set&). This function is,
of course, responsible for determining what appears
on the screen. You will most likely want to add at
least one parameter to it, so that the controller can
communicate control state (such as the position of the
mouse) to the view.

5.3 The controller

The responsibility of the Controller class is to receive
input from the user and decide what to do with it.
We have not specified how control should work, other
than that the game must be playable as described in
section 3.2 on page 2. You may provide mouse con-
trol, keyboard control, or whatever usable interface
you desire.

We have provided you with a minimal Controller
class in src/controller.{h,cpp}, which you will have
to complete to make the game playable. This
starter Controller class defines two member vari-
ables to hold the model and the view. It defines
two constructors, each of which allows specifying
the model dimensions, and initializes the model
and the view. We have also overridden mem-
ber functions draw, initial_window_dimensions, and
initial_window_title in order to delegate those
three responsibilities to the view.

You will need to add user-input handling to the
controller by overriding additional member functions
of ge211::Abstract_game, such as:

• on_mouse_down if you want to react to mouse
clicks,

• on_mouse_move if you want to react to mouse
motion, and

• on_key if you want to react to typing on the
keyboard.

You will probably want to add at least one pri-
vate member variable to the Controller class to keep
track of the UI state. For example, if you want the
view to indicate the current player’s available moves
and their consequences based on where the mouse is
pointing, then the controller needs to store the mouse
position on each call to on_mouse_move so that it can
then pass it to the view when it calls View::draw from
Controller::draw.

6 Implementation hints

This section provides supplementary material to help
you figure out how to implement the specification.

https://tov.github.io/ge211/classge211_1_1_abstract__game.html#a44518135e411e35374f252d1c7d44e3e
https://tov.github.io/ge211/classge211_1_1_abstract__game.html#a184aaacf68bad060099912dc8d65c7df
https://tov.github.io/ge211/classge211_1_1_abstract__game.html#a5dd1fce58a747385e3372c62744933d7
https://tov.github.io/ge211/classge211_1_1_abstract__game.html
https://tov.github.io/ge211/classge211_1_1_abstract__game.html#a6d88b5777c0a08fe261bc39c0694dd4f
https://tov.github.io/ge211/classge211_1_1_abstract__game.html#aae80d0ae41edb758760e751670288f7c
https://tov.github.io/ge211/classge211_1_1_abstract__game.html#a9a5c9f0cf8036232e45bfa1c5430f9e6

6.1 Model factoring 7

6.1 Model factoring

Your main responsibility with respect to the model
implementation is to handle playing moves, and the
most difficult part of that is computing the available
moves to update next_moves_. In src/model.h we have
declared six suggested private helper functions to help
you break down this task. You don’t need to use them
or even implement them, but you may find them use-
ful. The suggested private helpers are:

• find_flips_(Position, Dimensions) const
takes the position of a prospective move by
the current player and a direction to search in
(as provided by Board::all_directions()). It
searches for a straight line of opposing player
tiles bounded by the given position at one end
and an existing tile belonging to the current
player on the other end. It returns the set of
those opposing player positions (which will be
empty if there is no such line).

This is a helper for. . .

• evaluate_position_(Position) const takes
the position of a prospective move and returns
a Position_set containing all positions that
would be gained by the current player playing
in that position, if allowed (or the empty set if
playing in the given position is disallowed).

This is a helper for. . .

• compute_next_moves_() clears out next_moves_
and then regenerates it with all moves currently
available to the current player.

This is a helper for the Model(int, int) con-
structor and for. . .

• bool advance_turn_() switches the turn to the
other player, regenerates next_moves_, and then
returns whether any moves are actually avail-
able to the new current player.

This is a helper for really_play_move_ (below).

• void set_game_over_() makes the game
over by setting the current player to
Player::neither and storing the winner, if
any, in winner_.

This is also a helper for. . .

• void really_play_move_(Move) executes the
given move by setting the approprite positions
on the board and then advancing the turn or
setting game over. It needs to try advancing the
turn twice—since if the other player cannot play
then the current player gets to play again. Only

if neither player has any moves available is the
game over.

6.2 Algorithm for computing moves

Computing next_moves_ requires a somewhat in-
volved algorithm, since it must evaluate every un-
occupied board position, or sometimes just four
(compute_next_moves_); and to evaluate each posi-
tion (evaluate_position_), it must check for “flip-
pable lines” of opposing player tiles in all eight direc-
tions (find_flips_).

Finding one line of flips

Given a starting, unoccupied position start and a
direction dir to search in, we can find a line of
flippable positions as follows. Start with an empty
Position_set to hold the result, and begin check-
ing positions moving away from start: start + dir,
start + 2 * dir, and so on. At each position there
are three possibilities:

• If we reach a position that would go off the
board (check that first!) or is unoccupied then
there is no flippable line to find, so the result is
the empty set.

• If a position contains an opposing player
tile then we add that position to our result
Position_set and move on to the next.

• If we reach a position containing the current
player’s tile then we return the Position_set
that we’ve accumulated.

Evaluating a position

We evaluate a position pos as the set of all posi-
tions that the current player would gain by play-
ing there—or the empty Position_set if playing
there is not allowed. First we check if it’s unoccu-
pied, since occupied positions are not playable and
evaluate to the empty set. Otherwise, we need to
search for flippable lines in all eight directions start-
ing from pos (probably by iterating over the result of
Board::all_directions()), and union together the
eight resulting Position_sets. (You can do this by
starting with an empty Position_set and then using
the |= operator to union each result of find_flips_
into it.) If the union of the sets is empty then position
pos is not playable for the current player and the re-
sult of the evaluation is the empty set. Otherwise, we
must add pos to the set of positions before returning
it, since pos will be gained by the potential move as
well.

6.3 The UI 8

Evaluating the whole board (as necessary)

Evaluating the whole board means first clearing
next_moves_, then checking for available moves and
adding them to next_moves_.

Before evaluating every board position, we need
to check whether any of the four center posi-
tions (board_.center_positions()) are unoccupied,
which would indicate that we are still in the opening
phase of the game. Since playing in one of those posi-
tions would not flip any other tiles, each unoccupied
center position gets mapped to the singleton set of
itself:

next_moves_[pos] = {pos};

If, after adding any unoccupied center positions,
next_moves_ is non-empty, then we are still in the
opening phase and should return next_moves_ with-
out checking the rest of the board.

Otherwise we are in the main phase, so we must
evaluate each position in the board and record each
non-empty evaluation in next_moves_. In particular,
if some position pos is a legal move that evaluates
to some Position_set pset then we store this fact in
next_moves_ like so:

next_moves_[pos] = pset;

Positions that evaluate to the empty set must not be
added to next_moves_, as that would cause play_move
to consider them to be available moves.

6.3 The UI

The UI description in section 3.2 on page 2 imposes a
number of requirements on what the player can do.
You are free to implement these requirements how-
ever you like, but here is a list of suggestions for how
you could:

• Display the board as a grid of squares, with the
Dark and Light players’ tiles as slightly smaller
black and white circles placed over them. (To
place one sprite atop another, you need to pro-
vide different z values as a third argument to
Sprite_set::add_sprite.)

• Allow the user to play a move by clicking in
the desired square. (If the user clicks in a dis-
allowed square or after the game is over, either
don’t react or display an error indication.)

• Once the game is over, indicate the winner by
rendering all non-winning tiles in gray instead
of black or white.

• Indicate the current turn (when the game isn’t
over) by having an image of the current player’s
tile (or something similar?) follow the mouse
pointer.

(This requires adding the mouse position as
a private member variable in the Controller
class.)

• When the mouse points to a square in which
the current player is allowed to move, indicate
the effect of moving in that position by chang-
ing the color of the squares in the positions
that would be gained by the player. The view
can easily discover this information by calling
Model::find_move with the logical (board) po-
sition of the square that the mouse pointer cur-
rently points to.

(This also requires adding the mouse position
as a private member variable in the Controller
class.)

You may find some helper functions useful. For
example, my View class includes these three:

ge211:: Position
View:: board_to_screen(

ge211:: Position) const;

ge211:: Position
View:: screen_to_board(

ge211:: Position) const;

void
View:: add_player_(

ge211:: Sprite_set&,
Player ,
ge211::Position ,
int z) const;

The first two convert positions from logical to phys-
ical and back. The third one adds the tile sprite for
the given player at the given physical position and
z layer, while ignoring Player::neither and turning
non-winning players’ tiles gray if the game is over.

6.4 Testing private members

Given that the model’s move evaluation algorithm in-
volves several steps and nested loops, how can you
test some smaller portions of it? Well, the first step is
factoring it into smaller, more testable pieces, such as
the suggested helper functions. But these are private,
which means that your tests won’t be able to access
them, right?

https://tov.github.io/ge211/classge211_1_1_sprite__set.html#a2240fce09cf44668dcb2e5605676935a

6.5 Which files should I change? Which files may I change? 9

Not exactly. We declared a friend struct
Test_access in the Model class, which means that
Model grants, to any members of a struct called
Test_access, access to its own private members. This
is there for the grading tests, but you can define a
Test_access struct in order to provide your tests with
privileged access to the model as well.

For example, if you wanted your tests to be able
to access the board directly and to call the private
find_flips_ helper, you might write this:

struct Test_access
{

Model& m_;

Board& board()
{

return m_.board_;
}

Position_set
find_flips(Position start ,

Dimensions dir)
{

return m_.find_flips_(
start , dir);

}
};

Then you could use it like this:

TEST_CASE("simple␣flips␣case")
{

Model model;
Test_access t{model};

t.board ()[{2, 2}] = Player ::dark;
t.board ()[{2, 3}] = Player ::light;

Position_set f;

f = t.find_flips ({2, 4}, {0, 1});
CHECK(f.empty ());

f = t.find_flips ({2, 4}, {0, -1});
CHECK(f == Position_set {{2, 3}});

}

6.5 Which files should I change? Which files
may I change?

It may be difficult figuring out what is necessary to
change, what is safe to change, and what will cause
trouble with grading. This section divides all the pro-

vided starter code files into categories based on how
you should change them.

• One file you definitely must change, but
carefully:

src/model.cpp – in particular:

Do fill in the sections marked TODO in the
Model(int, int) constructor and
play_move member function,

Do define any private helper functions
you like, including those we suggest
and/or your own ideas, but

Don’t modify any of the existing, complete
function implementations.

• Five files you definitely must change, and may
change however you like:

src/view.{h,cpp}
src/controller.{h,cpp}
test/model test.cpp

• Six files you must not change:

src/move.{h,cpp}
src/player.{h,cpp}
src/board.{h,cpp}

• Three files you may change at your discretion,
but carefully:

src/model.h – in particular:

Do add any private members (most likely
helper functions) you want, but

Don’t alter the declarations of any public
members, and

Don’t alter the definitions of private
member variables turn_, winner_,
board_, and next_moves_.

src/reversi.cpp – unlikely, but:

Don’t change how command-line arguments
are handled, but

Do change anything else, as you like.

CMakeLists.txt – unlikely, but:

Do add any new model .cpp files you
create to the variable MODEL_SRC, but

Don’t change anything else.

• Three files you may change, but probably don’t
have reason to:

test/{board,move,player} test.cpp

10

7 Deliverables and evaluation

For this homework you must:

1. Complete the two partially-implemented Model
members (the two-argument constructor and
function play_move) in src/model.cpp.

2. Complete the design and implementation
of the View and Controller classes in
src/{view,controller}.{h,cpp}, so that the game
is playable.

3. Add more test cases to test/model test.cpp in or-
der to the test that the model functions properly.

(We don’t have a way for you to write auto-
mated tests for the UI, but you should test it
interactively.)

As usual, self evaluation will spot-check your test cov-
erage by asking for just a few particular test cases.
You can’t anticipate what cases we may ask about, so
you should try to cover everything.

Your grade will be based on:

• the correctness of your Model implementation
with respect to the specification,

• the playability of your UI,

• the presence of sufficient test cases to ensure
your model code’s correctness, and

• adherance to the EECS 211 Style Manual.

8 Submission

Homework submission and grading will use the GSC
grading server, so you should upload your files on the
GSC web site. You must include any files that you cre-
ate or change. For this homework, that will definitely
include src/model.cpp, src/view.h, src/view.cpp, src/-
controller.h, src/controller.cpp, and test/model test.cpp.
See section 6.5 on the previous page for a comprehen-
sive list of which files you must and may change.

If you work with a partner then you must register
either on the GSC website or using the gsc partner
command before submitting your work. Once a part-
ner request is accepted, you and your partner’s sub-
missions are cleared and joined together. When one
partner uploads files or performs self evaluation, the
results will be visible to both.

http://users.eecs.northwestern.edu/~jesse/course/eecs211/style.html
https://eecs211.cs.northwestern.edu/gsc
https://eecs211.cs.northwestern.edu/gsc

	Purpose
	Getting it
	Specification
	Generalization to smaller sizes
	Your implementation

	Helper type reference
	Position sets
	– Position_set pset;
	– Position_set pset{p1, …, pn};
	– pset.empty()
	– pset.clear();
	– pset[pos]
	– pset[pos] = true;
	– pset |= other_pset;
	– for (Position pos : pset)

	Moves and move maps
	– move.first, move.second
	– using Move_map = ...;
	– mmap[pos] = pset;
	– mmap.empty()
	– mmap.clear();

	Players
	– other_player(player)

	The board
	– board.dimensions()
	– board[pos]
	– board[pos] = player;
	– board.set_all(pset, player);
	– board.count_player(player)
	– board.all_positions()
	– board.center_positions()
	– Board::all_directions()

	Design orientation
	The model
	– model.play_move(pos);
	– Model model(width, height);

	The view
	The controller

	Implementation hints
	Model factoring
	Algorithm for computing moves
	The UI
	Testing private members
	Which files should I change? Which files may I change?

	Deliverables and evaluation
	Submission

