Invariants and Encapsulation

EECS 211

Winter 2018

A struct encapsulating a binary search tree

```
struct Tree
    struct Node:
    using link_t = std::shared_ptr<Node>;
    struct Node
         std::string key;
         unsigned value;
         link t left;
         link t right;
    };
    link t root;
    size t size;
};
```

Invariants

Invariants are facts about a data structure that must always be true (for it to work properly).

- Operations must preserve invariants, and
- Consequently, operations can rely on invariants.

The Tree struct has invariants

For any Tree t,

- t.size needs to equal the actual number of elements
- For every node n, all the keys of n.left must be less than n.key
- For every node n, all the keys of n.right must be greater than n.key

The Tree struct has invariants

For any Tree t,

- t.size needs to equal the actual number of elements
- For every node n, all the keys of n.left must be less than n.key
- For every node n, all the keys of n.right must be greater than n.key

Then:

- Operations that need to know the size can safely use t.size.
- Operations that modify need to maintain t.size.
- Lookup operations can rely on ordering because modification operations maintain ordering.

A struct for rational numbers

```
// A rational number num/den
struct Rational
{
    long num;
    long den;
};
```

There are some issues with representing rational numbers:

There are some issues with representing rational numbers:

 Do Rational {2, 3} and Rational {4, 6} represent the same number?

There are some issues with representing rational numbers:

- Do Rational (2, 3) and Rational (4, 6) represent the same number?
- What about Rational {2, 3} and Rational {-2, -3}?

There are some issues with representing rational numbers:

- Do Rational (2, 3) and Rational (4, 6) represent the same number?
- What about Rational {2, 3} and Rational {-2, -3}?
- What does Rational (5, 0) mean?

Solution: Rational struct invariants

For any Rational r,

- r.den > 0
- gcd(r.num, r.den) == 1

Solution: Rational struct invariants

For any Rational r,

- r.den > 0
- gcd(r.num, r.den) == 1

These two conditions ensure that:

- We don't have nonsense rationals like Rational (5, 0).
- Every representable rational number has exactly one representation.

- To CLion! -