Types, Values, Variables &
Assignment

EECS 211
Winter 2018

Road map

Strings and string 1/O
Integers and integer I/O
Types and objects *
Type safety

*Not as in object orientation—we'll get to that much later.

Input and output

#include <iostream>
#include <string>

using namespace std;

int main()

{

cout << "Please enter your name: ';

string first_name;
cin >> first_name;

cout << "Hello, " << first_ name << '\n';

Using libraries

#include <iostream)
#include <string>

Includes the 1/O stream library header, which lets us refer to cin
and cout to do I/O, and the string library header, which lets us
use strings.

Using libraries

#include <iostream)
#include <string>

Includes the 1/O stream library header, which lets us refer to cin
and cout to do I/O, and the string library header, which lets us
use strings.

using namespace std;

Tells C++ to let us refer to things in the standard library without
prefixing them with std::. Otherwise we’d have to write std::cin.

Main function

int main()

{

}

Wraps the main function of every program.

Input and type

string first_name;
cin >> first_name;

e We define a variable first_name to have type string
» This means that first_name can hold textual data
» The type of the variable determines what we can do with it
e Here, cin>>first_name; reads characters until it sees
whitespace (“a word”)

Reading multiple words

int main()

{

cout << "Please enter your first and second names:\n”;

string first;

string second;

cin >> first >> second;

string name = first + ' ' + second;

cout << "Hello, " << name << '\n';

Fine print: left out the includes and using, since every program will have
those from now on

Syntax of cin

cin >>a >>b;
means the same thing as

cin >> a;
cin >> b;

Syntax of cin

cin >>a >>b;
means the same thing as

cin >> a;
cin >> b;

IS THIS MAGIC?

Syntax of cin

cin >>a >>b;
means the same thing as

cin >> a;
cin >> b;

IS THIS MAGIC? No, because

e cin >> a returns a reference to cin

Syntax of cin

cin >>a >>b;
means the same thing as

cin >> a;
cin >> b;
IS THIS MAGIC? No, because

e cin >> a returns a reference to cin
e cin >>a >>bmeans (cin>>a) >>b

Syntax of cin

cin >>a >>b;
means the same thing as

cin >> a;
cin >> b;

IS THIS MAGIC? No, because

e cin >> areturns a reference to cin
e cin >>a >>bmeans (cin>>a) >>b
e j.e., operator>> is left associative

Syntax of cin

cin >>a >>b;
means the same thing as

cin >> a;
cin >> b;

IS THIS MAGIC? No, because

e cin >> areturns a reference to cin

e cin >>a >>bmeans (cin>>a) >>b
e j.e., operator>> is left associative

e (same deal for cout and operator< <)

8

Reading integers

int main()

{

cout << "Please enter your first name and age:\n”;

string first_name;
int age;
cin >> first_ name >> age;

cout << "Hello, " << first name << ', age
<< age << "\n';

Integers and numbers

string s int x or double x

10

Integers and numbers

string s | int x or double x

cin >> s reads a word ‘ cin >> x reads a number

10

Integers and numbers

string s | int x or double x

cin >> s reads a word | ¢cin >> x reads a number
cout << s writes cout << x writes

10

Integers and numbers

string s | int x or double x
cin >> s reads a word | ¢cin >> x reads a number
cout << s writes cout << x writes

s1 + s2 concatenates | x1 4+ x2 adds

10

Integers and numbers

string s

int x or double x

cin >> s reads a word
cout << s writes

s1 + s2 concatenates
+-+s is an error

cin >> x reads a number
cout << x writes

x1 4+ x2 adds

++x increments in place

10

Integers and numbers

string s

int x or double x

cin >> s reads a word
cout << s writes

s1 + s2 concatenates
+-+s is an error

cin >> x reads a number
cout << x writes

x1 4+ x2 adds

++x increments in place

The type of a variable determines

e what operations are valid

e and what they mean for that type

10

Names, a/k/a identifiers
A legal name in C++

e starts with a letter,

11

Names, a/k/a identifiers
A legal name in C++

e starts with a letter,
e contains only letters, digits, and underscores, and

11

Names, a/k/a identifiers
A legal name in C++

e starts with a letter,
e contains only letters, digits, and underscores, and
e isn’t a language keyword (e.g., if).

11

Names, a/k/a identifiers
A legal name in C++

e starts with a letter,
e contains only letters, digits, and underscores, and
e isn’'t a language keyword (e.g., if).

Which of these names are illegal? Why?

e purple line

e number_of bees
jflsiejslf_

e else
timetomarket
Fourier_transform
e 12X

y2

11

Names, a/k/a identifiers
A legal name in C++

e starts with a letter,
e contains only letters, digits, and underscores, and
e isn’'t a language keyword (e.g., if).

Which of these names are illegal? Why?

e purple line (space not allowed)

e number_of bees

jflsiejslf_

else (keyword)

timetomarket (bad punctuation)
Fourier_transform

12x (starts with a digit)

y2

11

Also, don’t start a name with an underscore

The compiler might allow it, but technically such names are
reserved for the system

12

Choose meaningful names

e Abbreviations and acronyms can be confusing: myw, bamf,
TLA

13

Choose meaningful names

e Abbreviations and acronyms can be confusing: myw, bamf,
TLA
e Very short names are meaningful only when there’s a
convention:
» X is a local variable
» nisanint
» iis aloop index

13

Choose meaningful names

e Abbreviations and acronyms can be confusing: myw, bamf,
TLA

e Very short names are meaningful only when there’s a
convention:

» X is a local variable
» nisanint
» iis aloop index

e The length of a name should be proportional to its scope

13

Choose meaningful names

Abbreviations and acronyms can be confusing: myw, bamf,
TLA

Very short names are meaningful only when there’s a
convention:

» X is a local variable

» nisanint

» iis aloop index
The length of a name should be proportional to its scope
Don’t use overly long names

13

Choose meaningful names

Abbreviations and acronyms can be confusing: myw, bamf,
TLA
Very short names are meaningful only when there’s a
convention:

» X is a local variable

» nisanint

» iis aloop index

The length of a name should be proportional to its scope

Don’t use overly long names
» Good:
> partial_sum
» element_count

13

Choose meaningful names

Abbreviations and acronyms can be confusing: myw, bamf,
TLA
Very short names are meaningful only when there’s a
convention:

» X is a local variable

» nisanint

» iis aloop index

The length of a name should be proportional to its scope

Don’t use overly long names
» Good:
» partial_sum
» element_count
» Bad:

» the number_of elements
» remaining_free_slots_in_the_symbol_table

13

Simple arithmetic

#include <cmath> // For sqrt

int main()
{
cout << "Please enter a floating-point number: ";
double f;
cin >> f;
cout << "f = Y L
<<"\nf + 1 == "<<f+1
<< "\n2f == " << 2xf
<< "\n3f == " << 3xf
<< "\nf? == " << fxf
<< "\nvf == " << sqgri(f) << "\n';

14

A simple computation

#include <cmath
#include <iostream)

using namespace std;

int main()

{

double r;

cout << "Please enter the radius: ';
cin >>r;

doublec =2 %M Pl xr;
cout << "Circumference is " <<c << '\n';

15

Types and literals

type | bits* | literals

on current architectures

16

Types and literals

type | bits* | literals

bool ‘ 1t ‘ true, false

" on current architectures
T stored as 8 bits

16

Types and literals

type | bits* | literals
bool 1t true, false
Chal’ 8 IaI,IBI,I4I,I/I

" on current architectures
T stored as 8 bits

16

Types and literals

type | bits* | literals

bool 1t true, false

Char 8 |a|,|B|,|4|’|/I
int 320r64 | 0,1, 765, -6, OxCAFE

" on current architectures
T stored as 8 bits

16

Types and literals

type bits * literals

bool 1t true, false

Chal’ 8 IaI,IBI,I4I,I/I

int 32o0r64 | 0,1, 765, -6, OxCAFE
long 64 oL, 1L, 10000000000L

on current architectures

T stored as 8 bits

16

Types and literals

type bits * literals

bool 1t true, false

char 8 'a', 'B', '4','/"'

int 32o0r64 | 0,1, 765, -6, OxCAFE
long 64 oL, 1L, 10000000000L
double | 64 0.0,1.2,-0.765, -6e15

on current architectures

T stored as 8 bits

16

Types and literals

type bits * literals

bool 1t true, false

char 8 ‘a', 'B', '4','/!

int 320r64 | 0,1, 765, -6, OxCAFE
long 64 oL, 1L, 10000000000L
double | 64 0.0,1.2,-0.765, -6e15
string | varies "Hello, world!"#

on current architectures

T stored as 8 bits

* actually has type const charf], but converts automatically to string

16

Types

e C++ provides built-in types:
bool

(unsigned or signed) char
(unsigned) short
(unsigned) int

(unsigned) long

float

double

vV VvV vV VvV VY

17

Types

e C++ provides built-in types:
bool

(unsigned or signed) char
(unsigned) short
(unsigned) int

(unsigned) long

float

double

e C++ programmers can define new types

» called “user-defined types”
» you'll learn to define your own soon

vV VvV vV VvV VY

17

Types

e C++ provides built-in types:
bool

(unsigned or signed) char
(unsigned) short
(unsigned) int

(unsigned) long

float

double

e C++ programmers can define new types

» called “user-defined types”
» you'll learn to define your own soon

e The C++ standard library (STL) provides types

» e.g., string, vector, complex
» technically these are user-defined, but they come with C++

vV VvV vV VvV VY

17

Objects

e An object is some memory that can hold a value (of some
particular type)

18

Objects

e An object is some memory that can hold a value (of some
particular type)

e A variable is a named object

18

Objects

e An object is some memory that can hold a value (of some
particular type)

e A variable is a named object
e A definition names and creates an object

18

Objects

An object is some memory that can hold a value (of some
particular type)

A variable is a named object
A definition names and creates an object
A initialization fills in the initial value of a variable

18

Definition and initialization

int a;

19

Definition and initialization

int a;

19

Definition and initialization

int a; ai -2340024]

19

Definition and initialization

int a; ai -2340024]
intb =9; bl 9]

19

Definition and initialization

int a; a; -2340024
intb =9; o 9
autoc="'z"; //cisachar c| ‘Z

19

Definition and initialization

int a; a; -2340024
intb =9; o 9
autoc="'z"; //cisachar C:

double x = 6.7; X: 6.7

19

Definition and initialization

int a; a:
intb =9; b| 9]
autoc="'z"; //cisachar C:
double x = 6.7; X 6.7
string s = "hello!"; s:] 6| “heIIo!”\

19

Definition and initialization

int a; a:
intb =9; b| 9]
autoc="'z"; //cisachar C:
double x = 6.7; X 6.7
string s = "hello!"; s:] 6| “heIIo!”\
string t; t: 0|“

19

Language rule: Type safety

Definition: In a type safe language, objects are used only
according to their types

20

Language rule: Type safety

Definition: In a type safe language, objects are used only
according to their types

e Only operations defined for an object will be applied to it
e A variable will be used only after it has been initialized

e Every operation defined for a variable leaves the variable
with a valid value

20

Language rule: Type safety

Definition: In a type safe language, objects are used only
according to their types

e Only operations defined for an object will be applied to it

e A variable will be used only after it has been initialized

e Every operation defined for a variable leaves the variable
with a valid value

Ideal: Static type safety

e A program that violates type safety will not compile
e The compiler reports every violation

20

Language rule: Type safety

Definition: In a type safe language, objects are used only
according to their types

e Only operations defined for an object will be applied to it
e A variable will be used only after it has been initialized

e Every operation defined for a variable leaves the variable
with a valid value

Ideal: Static type safety

e A program that violates type safety will not compile
e The compiler reports every violation

Ideal: Dynamic type safety

e An operation that violates type safety will not be run
e The program or run-time system catches every potential

violation
20

Assignment and increment

The value of a variable may change.

el

inta=7;

21

Assignment and increment

The value of a variable may change.

el

inta=7;
a=9 [|

21

Assignment and increment

The value of a variable may change.

el

inta=7;
a=9 [9

21

Assignment and increment

The value of a variable may change.

a:
nta=7, | 7]
a=9 [9

a=a+a ||

21

Assignment and increment

The value of a variable may change.

a:
inta=7;
a=9 [9

a=a+a

21

Assignment and increment

The value of a variable may change.

a:
inta =7,
a=9 [9
a=a+a

at-2 []

21

Assignment and increment

The value of a variable may change.

a:
inta=7;
a=9 [9
a=a+a;

a+=2;

21

Assignment and increment

The value of a variable may change.

a:
inta=7;
a=% |9
a-a+a
a+=2;

I

21

Assignment and increment

The value of a variable may change.

a:
inta=7;
a=% |9
a-a+a
a+=2;

++a;

21

A type safety violation: implicit narrowing

Beware! C++ does not prevent you from putting a large value
into a small variable (though a compiler may warn)

int main()
{
inta =20000;
charc = a;
intb =c;
if (al=Db) // I= means “not equal”
cout << "oops!: "<<a<<" = "<<b<< '\n';
else

cout << "Wow! We have large characters\n";

}

Try it to see what value b gets on your machine

22

A type-safety violation: uninitialized variables

Beware! C++ does not prevent you from trying to use a variable
before you have initialized it (though a compiler typically warns)

int main()
int x; // x gets a “random” initial value
char c; // ¢ gets a “random” initial value
double d; //d gets a “random” initial value

// not every bit pattern is a valid floating-point value, and on some
// implementations copying an invalid float/double is an error:
double dd = d; // potential error: some implementations

// prints garbage (if you're lucky):
cout <<’x:"<<x<<’er"<<e<<Td V<< d <<\

23

A type-safety violation: uninitialized variables

Beware! C++ does not prevent you from trying to use a variable
before you have initialized it (though a compiler typically warns)

int main()
int x; // x gets a “random” initial value
char c; // ¢ gets a “random” initial value
double d; //d gets a “random” initial value

// not every bit pattern is a valid floating-point value, and on some
// implementations copying an invalid float/double is an error:
double dd = d; // potential error: some implementations

// prints garbage (if you're lucky):
cout <<’x:"<<x<<’er"<<e<<Td V<< d <<\

}

Always initialize your variables. Watch out: The debugger may
initialize variables that don’t get jgitialized when running

A technical detail

In memory, everything is just bits; type is what gives meaning to
the bits:

e (bits/binary) 01100001 is the int 97 and also char 'a'
e (bits/binary) 01000001 is the int 65 and also char 'A'
e (bits/binary) 00110000 is the int 48 and also char '0'

charc="'a';

cout << c; // print the value of character c, which is ’a’

inti=c;

cout << i; // print the integer value of the character c, which is 97

24

A word on efficiency

For now, don’t worry about “efficiency”

e Concentrate on correctness and simplicity of code

25

A word on efficiency

For now, don’t worry about “efficiency”

e Concentrate on correctness and simplicity of code

C++ is derived from C, low-level programming language

e C++’s built-in types map directly to computer main memory
» achar is stored in a byte
» an int is stored in a word
» a double fits in a floating-point register
e C++’s built-in ops. map directly to machine instructions
» + on ints is implemented by an integer add operation
» — on ints is implemented by a simple copy operation
» C++ provides direct access to most of facilities provided by
modern hardware

25

A word on efficiency

For now, don’t worry about “efficiency”

e Concentrate on correctness and simplicity of code

C++ is derived from C, low-level programming language

e C++’s built-in types map directly to computer main memory
» achar is stored in a byte
» an int is stored in a word
» a double fits in a floating-point register
e C++’s built-in ops. map directly to machine instructions
» + on ints is implemented by an integer add operation
» — on ints is implemented by a simple copy operation
» C++ provides direct access to most of facilities provided by
modern hardware

25

A bit of philosophy

One of the ways that programming resembles other kinds
of engineering is that it involves tradeoffs.

You must have ideals, but they often conflict, so you must
decide what really matters for a given program.
» Type safety
Run-time performance
Ability to run on a given platform
Ability to run on multiple platforms with same results
Compatibility with other code and systems
Ease of construction
Ease of maintenance

Don’t skimp on correctness or testing
By default, aim for type safety and portability

vV Vv vy VY Y

26

