
EECS 211 Lab 9
Exam Review

Winter 2018

In this week’s lab, we will be going over some final topics including
templates and iterators, as well as reviewing for the exam.

If you have any lingering questions during the lab, don’t hesitate
to ask your peer mentor!

Getting the code

Download the zip file from the course site:

http://users.eecs.northwestern.edu/~jesse/course/eecs211/lab/eecs211-lab09.

zip

After you have downloaded the zip file onto your laptop, extract the
zip file into its own folder. Make sure you keep track of which folder
it’s in! Next, open up CLion and Click on File –> Open Project, and
click on the Lab 9 project that you just unzipped.

Once you open the project, try building the lab and then running
the lab9 executable. You should see some output printed in your
output subwindow. If you need a reminder on how to build and
run code in CLion, consult lab 3/4 or ask your TA. Once this works,
you’re ready to start the lab!

Casting with inheritance

General Idea

The general reason for downcasting that we have been seeing in our
homework is to use member functions of a derived or child class.
For example, if you have an array of pointers to a base class (like the
Nodes), and you want to treat one of them as a sub-type, such as
a laptop, then you would need to downcast. In order to do so, you
can use a convenient function called dynamic cast. This will return
either nullptr, or a pointer to the child or derived class. This syntax is
shown below:

Parent* p;

Child* c= dynamic_cast<Child *> p;

if (c == nullptr) {

// p can not be converted to child type

} else {

http://users.eecs.northwestern.edu/~jesse/course/eecs211/lab/eecs211-lab09.zip
http://users.eecs.northwestern.edu/~jesse/course/eecs211/lab/eecs211-lab09.zip


eecs 211 lab 9 2

//call a member function of your new child object.

}

Templates

Function Templates

Function templates are extremely helpful in order to make your code
more modular, and easier to adapt as your code base grows. It does
this by "genericizing" (or removing) types in your function. For ex-
ample, you may need to write code which performs a mathematical
operation (such as squaring) on two values together, but there are
many different possible data types, such as doubles or ints. Without
templates, you would probably write this by having several different
functions, which take in different data types as arguments. With tem-
plates, you can make this code simpler by only writing one function
which computes that same mathematical operation. This is helpful
because if you decide you want to change the way your formula
works, instead of having to go into several functions to make this
adjustment, you only need to change your generic function. Here is
an example:

template<typename T>

T square(T num) {

return num * num

}

Now you can call square on an int or a double, and it would work
regardless of the type. This is shown in lab-09.cpp

Class / Struct Templates

Similarly to function templates, class or struct templates allow you
to write structs or classes that can contain different types. This can
be especially useful for structs or objects where you want to contain
items of several types, for example like a linked list or a vector.

template<typename T>

struct ListNode {

T value;

ListNode<T>* next;

};

int main() {

ListNode<int> intNode;

intNode.value = 211;



eecs 211 lab 9 3

ListNode<string> stringNode;

stringNode.value = "EECS 211";

}

Templates, like inheritance allow for polymorphism in your code.

Iterators

Iterators can provide a clean way to traverse through STL containers.
As with templates, usually in conjunction with them in fact, they
allow you to "genericize" more of your code, by writing functions
that work for different types of containers. For example, to print out
the values in either a vector, list, or any other iterable container, you
could use the following code:

template <typename Fwd_iter>

void print_container(Fwd_iter start, Fwd_iter limit) {

for(Fwd_iter i = start; i != limit; i++) {

cout << *i;

}

}

Few More Iterator Tips

When you have an iterator as above, you can access several steps
further in your sequence by saying things like (i += 3), which will
push your iterator over three spots in your collection. Another thing
to note, is that in order to get the value at your iterator, you deference
it using the *.

More Exam Review Questions

Raw Pointers vs Shared Pointers

Explain the difference between raw pointers and shared pointers,
and name one situation for each where you would choose it over the
other.

What’s wrong with the code in the rawPtrCode function in lab-
09.cpp?

Raw Pointers and Memory Management

Implement the removeHalf() in lab-09.cpp, which deletes every other
linked list node starting with the second node. Use the ListNode
definition (struct template) defined in lab-09.cpp.



eecs 211 lab 9 4

What differences are there between the shared_ptr version of the
function from Lab 5 and your raw pointer implementation?

Pointer Arithmetic

Assuming that doubles are 8 bytes, how many bytes will testPtr have
moved in the ptrMath function?

Classes and Operator Overloading

Write a constructor with the following signature in the Complex class
in review_classes.cpp.

Complex(double real, double imaginary);

Complete the function definition for the +operator in review_classes.cpp
to allow for the addition of complex numbers.

Inheritance

Animal *a = new Dog(’corgi’, 5);

delete a;

Refer to the Animal and Dog classes in review_classes.cpp. Why does
the above code have undefined behavior?

Fix the Animal class to prevent the undefined behavior.

Access Specifiers

In this Animal class, what member variables you access from main()?
What about from a sub-class member function, such as Dog?
What can you only access from the Animal member functions

themselves?

Pass by Reference and Const

Why does the animals vector have the const keyword, when it is
passed by reference in the get_oldest_animal function?

What would happen if you tried mutating the animals vector in
the get_oldest_animal function?

Function Templates and Iterators

Complete the add(FwdIter beg, FwdIter end) function template, which
returns the sum of all elements within the iterator range [beg, end).

How would you call this function on a std::vector<Complex>?
Write the code to instantiate the vector and corresponding vector
iterator.


