
EECS 211 – Fundamentals of Computer Programming II Homework #5

Homework #5
Released: 02-08-2018

Due: 02-15-2018 11:59pm

This is the first homework in the homework series of our project to build a tiny network simulator.
In this homework, you are required to implement three utility functions and write comprehensive
unit tests. The three functions are: parse_int and tokenize in parsing.cpp, and parse_IP in
datagram.cpp. We will talk about the specification of these functions in Section 2. Hints on how to
implement these functions are given in Section 5. Unit tests will be written in networksim_test.cpp

In addition to what we have seen in the class, we will also be introducing two more C++ language
features (or standard library classes) in this homework: scoped enum “enum class” and fixed-sized
arrays “std::array”.

Scoped Enum, enum class
Scoped enum gives one the ability to defined groups of uninterpreted symbols in the code. There
are two groups of enum classes in the provided code, the first one models the commands of our
simulator and the second one models the error codes in our system.

// interface.h // errors.h
enum class cmd_code enum class err_code
{ {

halt, cmd_undefined,
system_status, syntax_error,
// ... bad_ip_address,
undefined, // ...

}; };

The syntax for referring to symbols in an enum class group is “GroupName::Symbol”. For exam-
ple, we can refer to cmd_codes by cmd_code::halt, cmd_code::system_status, cmd_code::undefined
and refer to error codes by err_code::cmd_undefined, err_code::syntax_error and err_code::
bad_ip_address.

These symbols are normal values in a C++ code. We can store them in variables, pass them to
functions or even use them to throw exceptions as in the following example. While these symbols
can be easily compared for equality with the symbols in the same group, we need additional work
even just to make them printable. Throughout the project, we will only compare the symbols for
equality.

The rationale behind this language construct is to provide a way to model enumerated items.
With enum classes, we can avoid using plain integers to represent enumerated items and avoid
name conflicts.

void err(err_code e)
{

if (e == err_code::cmd_undefined)
cout << "undefined command\n";

}

err_code e = err_code::syntax_error;
err(e);
throw err_code::bad_ip_address;

1



EECS 211 – Fundamentals of Computer Programming II Homework #5

Fixed-Size Array, std::array
In datagram.h, IP_address is temporarily defined as an array of four ints. std::array is a C++
standard class defined in the array header that let one create a fixed-size array on the stack.

// datagram.h
#include <array>
using IP_address = std::array<int, 4>;

An std::array<T, N> is a type of an array storing N objects of type T. Take std::array<string,
5> as an example, it is the type for an array of 5 strings. Similar to std::vector, we can use the
_[_] operator to access the elements of an array and use the _.size() member function to obtain
its length. Since the length of an array is fixed, there is no _.push_back(_) member function.

std::array<int, 4> ip;
ip[0] = 192; ip[1] = 168; ip[2] = 0; ip[3] = 1;
cout << ip[1] - ip[0] << ' ' << ip.size() << '\n';

1 Project Introduction: Homework 5-8

Laptop1

Laptop2

Laptop3

Server1

Server2

WAN1
•

WAN2 •

WAN3

•

WAN4

•

Server3

Server4

Laptop4

Laptop5

Laptop6

Laptop7

In this project, we are going to build a tiny network simulator modeling a small system that has
laptops, servers and WAN (Wide Area Network) nodes. We will also model datagram transmission
between them. A laptop must first be connected to a server. A server can connect multiple laptops,
building a LAN (Local Area Network) between them. A server can also be connected to multiple
WANs, in which case it will be able to transfer datagrams indirectly to other servers and finally
to other laptops outside LAN. A WAN node can connect not only to arbitrary servers, but also to
other WAN nodes.

Starting from homework 6, we will implement one class for each of the constructs in this system:
a System class for the entire network system, a Datagram class for datagrams and machine classes
Laptop, Server, WAN_node for laptops, servers, and WAN nodes respectively. The System class will
have member functions corresponding to network operations. These include: sending and receiving
a datagram on a Laptop, adding and removing machines from the network, and a time ticking
function for servers and WAN nodes to route datagrams one step toward their destination.

The simulator, aside from the System class modeling the entire network, also contains a command
line interface to interact with the user. The user can enter commands to control the system and
view the status of the network system. In this homework, we are going to implement three utility
parsing functions that help the command line interface convert input strings into commands and
accompanying data in order to invoke the corresponding member functions of the System class.

In provided the code, main.cpp and interface.cpp implement the command line interface. In
main.cpp, the main function repeatedly reads a line from the user, parses the input into tokens
by the tokenize function in Section 2, and calls execute_command to perform the corresponding
operations. If an error is thrown, it catches the error code err_code and prints an error message.

2



EECS 211 – Fundamentals of Computer Programming II Homework #5

In interface.cpp, the execute_command function first identifies the input command by search-
ing through the command_syntaxes list, match the command string and obtain the cmd_code for
the input command. execute_command then parses the accompanying data (some by parse_IP
in this homework) and invokes the member function of System. However, in this homework, the
execute_command function merely calls made up functions that print a message. The actual System
definition, execute_command, as well as user command explanation, will be given in later homework.

2 Parsing Strings
2.1 Tokenizing Strings
Implement the function std::vector<std::string> tokenize(const std::string& line); that
tokenizes the input string while recognizing double quotes “"”. In our case, tokenizing a string line
means sequentially grouping characters other than spaces and double quotes in line as multiple
substrings. Recognizing double quotes means treating the characters between two enclosing ‘"’s as
being in the same substring. Here are some examples1:

// The tokenization of ` de@f.com "ghi j-k " w == "z"' is, in C++ syntax,
// tokens == {"de@f.com", "ghi j-k ", "w", "==", "z"}
vector<string> tokens = tokenize(" de@f.com \"ghi j-k \" w == \"z\"");

// The tokenization of `hel"l"o world "" "eecs 211"' is, in C++ syntax,
// tokens == {"hel", "l", "o", "world", "", "eecs 211"}
vector<string> tokens = tokenize("hel\"l\"o world \"\" \"eecs 211\"");

// The tokenization of `"abc\""def"' is, in C++ syntax,
// tokens == {"abc\\", "def"}
vector<string> tokens = tokenize("\"abc\\\" \"def\"");

In the first example, the first group of consecutive characters that are neither spaces nor double
quotes are “de@f.com”. The second group are the characters “ghi j-k ”, enclosed by two double
quotes. Continuing this mannar, the three following groups are “w”, “==” and “z”. Similar to the
second group, “z” is enclosed by two double quotes.

In the second example, the first group of characters are “hel”, because the double quote following
the first l ends the group. But the double quote also starts the second group, which is the second
l, enclosed by two double quotes. The third group “o” then follows and stops after o as there is a
space. The fifth group is an empty string enclosed by a pair of double quotes.

In the third example, two pairs of matching double quotes “"abc\"” and “"def"” enclose two
groups of consecutive characters that are not double quotes. Thus the first group of characters are
“abc\” and the second group of characters are “def”. Note that there could be no spaces between
these two pairs of double quotes. Even though the character sequence \" is treated specially in
C++ string literals, it does not have any special meaning in our tokenize function.

2.2 Parsing Integers
Implement the function int parse_int(const std::string& s); that parses the entire string s
into an int without using any library functions like string streams, atoi, stoi, etc. For example,
parse_int("29") == 29 and parse_int("00456000") == 456000.

1“\"” and “\\” are how we insert double quotes and back slashes in C++ string literals.

3



EECS 211 – Fundamentals of Computer Programming II Homework #5

A valid s which represents a number should be non-empty and consists only of characters from
'0' to '9'. There can be no spaces, no new lines, no letters and no symbols. In particular, this
also implies that our parse_int function will not deal with negative numbers.

2.3 Parsing IP Addresses
Implement the function IP_address parse_IP(std::string s); that parses the entire string s
into an IP_address. As seen in the introduction, the IP_address type is temporarily defined to be
the synonym of four-element int arrays std::array<int, 4>. In addition, the values of all four
ints in a valid IP address must be between 0 and 255 (inclusive).

A valid IP address, when represented as a string s, should be four numbers separated by exactly
three dots, "d0.d1.d2.d3". The four numbers d0, . . . , d3 must represent non-negative numbers in
the sense of Section 2.2. Also, there can be no spaces, no new lines, no letters and no symbols except
those three dots.

Here are some examples:

// In C++ syntax, ip == {192, 168, 0, 1}
IP_address ip = parse_IP("192.168.0.1");

// In C++ syntax, ip == {255, 255, 255, 0}
IP_address ip = parse_IP("255.255.255.0");

// In C++ syntax, ip == {0, 0, 0, 0}
IP_address ip = parse_IP("0.0.0.0");

3 Handling Errors
For error handling,

• tokenize should throw a runtime_error if the double quotes are not in pairs.

• parse_int should throw a runtime_error when the input string does not represent non-
negative integers – those that do not fit into the string format specified in Section 2.2.

• parse_IP should throw an err_code exception with value bad_ip_address if the input is not
a string that represents a valid IP address. In other words, when parse_IP is called with
a string that does not fit into the string format specified in Section 2.3, it should “throw
err_code::bad_ip_address;”.2

4 Unit Testing
Implement comprehensive unit tests for the three functions specified in Section 2 in networksim_test.cpp.
You have to figure out what cases there might be and implement a corresponding unit test to ensure
that the required functions work properly. We will also grade on the completeness of unit test
coverage in the form of self-evaluation as in Homework 4.

2Note that the string format includes both the numbers and dots, and the ranges of the numbers, which are limited.

4



EECS 211 – Fundamentals of Computer Programming II Homework #5

5 Hints
There are more than one possible solutions for all required functions in this homework. Below
are some hints on how these functions can be implemented. Feel free to come up with other
implementations so long as the behavior matches the specification.

Strings can be indexed like vectors (s[i]) to get each character, or you can loop over the
characters of a string with a for-each loop. You can also construct a string character-by-character
using string::push_back(char).

The string::substr(size_t begin, size_t length) member function might be useful in some
functions. When we call s.substr(a, l) on a string s, it will return a new string of length l that
equals to the content of s starting at position a.

5.1 std::vector<std::string> tokenize(const std::string& line);
We can implement the tokenize function by nested loops. The outside loop scans through line.
Upon the loop seeing the begin of a group of characters (i.e. a non-space character or a double
quote), the inner loop scans from the current position to find the end of the group.

If the beginning character of this group is a double quote, then the inner loop scans until it finds
the ending double quote. Otherwise, the inner loop scans until it finds the first character outside
this group, which can be either a space or a double quote. We then collect the group of characters
found by the inner loop in a vector, and the outer loop continues from where the inner loop ends.

To sum up, the function looks like:

current_position = 0
while we have more to search

if line[current_position] is a double quote
the inner loop scans to find the ending double quote
we have found a new group of characters
set current_position to where the inner loop ends + 1

else if line[current_position] is not a space
the inner loop scans to find the ending position (a space or a double quote)
we have found a new group of characters
set current_position to where the inner loop ends

else
advance current_position by 1

5.2 int parse_int(const std::string& s);
Before implementing this function, please note that '0' and 0, '1' and 1, ..., '9' and 9 are all
different values. The former ones are char literals and the latter ones are integer literals. Even
though the former ones can be casted to integral types, it is still likely that they assume different
values from the latter ones. For example, '0' assumes the value 48 and '9' assumes the value 57
on my machine (see: ASCII code).

To map the char literals to integer values, one simple way is to declare a vector storing the
characters and look them up to obtain the integer value, like the following:

// '0' is stored in ords[0], ..., '9' is stored in ords[9]
const vector<char> ords{'0', '1', '2', '3', '4', '5', '6', '7', '8', '9'};

To come up with an conversion algorithm, let’s first examine an example. To process the string "8",
we only need to look up the ords vector. To process the string "214", we can first convert the

5



EECS 211 – Fundamentals of Computer Programming II Homework #5

string "21" to the number 21 and lookup the character '4' in ords to obtain its value, 4. Then,
the numeric value of the entire string "214" will be 21× 10 + 4.

(This does not imply constructing the string "21" from the string "214". Idiomatic C++ style
will use a for or for-each loop over the characters of the string, multiplying and adding at each
step.)

5.3 IP_address parse_IP(std::string s);
We can use the tokenize function and the parse_int function that we have just written. Given
a string "192.168.0.1", we first write a loop to replace the dots by spaces to obtain "192 168 0
1". Then tokenize gives back a vector of four strings {"192", "168", "0", "1"}. Now we can
apply parse_int to obtain the final result {192, 168, 0, 1}.

Beware that this approach would have allowed additional invalid IP addresses to pass through
the parser such as " 192 . 168 0.\"1\"". We need to check, then, that there are no characters
other than digits and dots, before or while replacing the dots with spaces.

6


