
EECS 211 – Fundamentals of Computer Programming II Homework #4

Homework #4
Released: 02-01-2018

Due: 02-08-2018 11:59pm

We are going to implement a linked-list library and practice (shared) pointer operations. This homework
comes with three files:

• linked_lib.h contains the declarations of the APIs of the linked library. See Section 1 for detailed
introduction.

• linked_lib.cpp contains the actual implementation of the linked APIs.

• linked_test.cpp contains the unit tests of the linked library.

Most of the APIs accepts an argument of type List&, representing the head of a linked-list as we did in
the example code in the class. Since it is a reference, changing that argument is the same as changing the
variable it is referencing. For example, in the following code, ptr will be non-null and *ptr will be 9. Review
the examples in the class if you are not familiar with this technique.

void init_with_9(shared_ptr<int>& node)
{
node = make_shared<int>(9);

}

shared_ptr<int> ptr;
CHECK(ptr == nullptr);
init_with_9(ptr);
CHECK(ptr != nullptr && *ptr == 9);

There is no main program for this homework. When compiling, an executable linked_test will be built.
This is the executable for unit testing. Similar to homework 2, we are going to implement the APIs, handle
incorrect arguments and write unit tests for the library.

When doing this homework, it will be very helpful to draw a diagram for every statement involving
pointers in the code. This is not part of the requirement, but just a way to help making it easier to track
pointer operations.

1 Linked-List Library
struct ListNode
{
int data;
std::shared_ptr<ListNode> next;

};

using List = std::shared_ptr<ListNode>;

Linked-lists are represented as shared pointers to ListNode structs. A ListNode struct contains a data field,
and a shared-pointer field next pointing to further nodes, as in the examples in the class. Being a shared
pointer, nullptr is also a valid linked-list which has no nodes.

In this homework, we guarantee that all linked-lists will be valid. Any two linked-lists will not intersect
with each other, and no linked-list contains a loop. Now, please complete the implementation of the following
functions in linked_lib.cpp.
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1.1 List pop_front(List& front);
The function List pop_front(List& front); removes the first node from the linked-list front and returns
the original first node. pop_front should also set the next of the original first node to nullptr. For example,
before invoking pop_front on ptr, we have

...

ptr

After running node = pop_front(ptr);, the first node of the linked-list pointed by ptr is removed. ptr
now points to the second node, and the original first node is returned by pop_front with its next set to
nullptr.

...

ptrnode

1.2 void push_back(List& front, int data);
void push_back(List& front, int data); creates a new ListNode containing data and insert that new
node to the end of the linked-list pointed by front. If front is nullptr, simply make front point to the
new node.

Before invoking push_back:

nullptr

ptr1

nullptr

ptr2

After running push_back(ptr1, 5); and push_back(ptr2, 8);:

5 nullptr

ptr1

8 nullptr

ptr2

1.3 int& nth_element(List front, size_t n);
int& nth_element(List front, size_t n); returns the reference to the data in the nth element of the
linked-list front, counting from zero. For example, nth_element(ptr, 2); returns the reference to the
data that contains 5 in Section 1.2.

Note that you must not copy data, but directly return p->data for some node pointer p.

1.4 void filter_lt(List& front, int limit);
void filter_lt(List& front, int limit); deletes all elements that are greater than or equal to limit
in the linked-list front while keeping all other elements intact. For example, before invoking filter_lt,

2



EECS 211 – Fundamentals of Computer Programming II Homework #4

7 8 1 10 −2 nullptr

ptr

After running filter_lt(ptr, 7);:

1 −2 nullptr

ptr

Note that the nodes in the list after filter_lt should be the original nodes passed to it. It must not
allocate, meaning it must not call make_shared either directly or indirectly.

2 Write Unit Tests and Handle Errors
As in homework 2, please throw a runtime_error for erroneous arguments. push_back will never fail;
filter_lt simply does nothing for empty linked-lists. The only erroneous cases are:

• pop_front where front is nullptr.

• nth_element where n is out of bound. That is, n ≥ length of front.

Please also implement proper unit tests for every API. You have to figure out what cases there might be and
implement a corresponding unit test to ensure that the API works properly under the assumption that the
APIs will only be invoked with valid linked-lists.

There is one sample unit test provided in linked_lib.cpp demonstrating how you could write a simple
test for linked-lists. The test starts by setting up a made-up linked-list as the input for the API, invoke the
API, and then examing that the result is as expected. You may leave that test there or remove it.
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