
Lifetimes and References
EECS 211

Winter 2017



Scope

A scope is a region of program text:

• global scope (outside any language construct)
• namespace scope (outside everything but a namespace)
• class scope (inside a class or struct)
• local scope (between { and } braces; includes function

scope)
• statement scope (loop variable in a for)

They nest!

Useful because:

• Declarations from outer scopes are visible in inner scopes
• Declarations from inner scopes are not visible in outer

scopes
• (Exception: class stuff)

2



Scope

A scope is a region of program text:

• global scope (outside any language construct)
• namespace scope (outside everything but a namespace)
• class scope (inside a class or struct)
• local scope (between { and } braces; includes function

scope)
• statement scope (loop variable in a for)

They nest! Useful because:

• Declarations from outer scopes are visible in inner scopes
• Declarations from inner scopes are not visible in outer

scopes
• (Exception: class stuff)

2



Scope example

int number_of_bees = 0; // global scope — visible everywhere
void increase_bees(); // also global scope

void buzz(int n) // buzz is global, n is local to buzz
{

if (number_of_bees > n) {
cout << 'b';

for (int i = 0; // i has statement scope
i < number_of_bees;
++i)
cout << 'z';

}

increase_bees();
}

3



Scope example

int number_of_bees = 0; // global scope — visible everywhere
void increase_bees(); // also global scope

void buzz(int n) // buzz is global, n is local to buzz
{

if (number_of_bees > n) {
cout << 'b';

for (int i = 0; // i has statement scope
i < number_of_bees;
++i)
cout << 'z';

}

increase_bees();
}

3



Scope example

int number_of_bees = 0; // global scope — visible everywhere
void increase_bees(); // also global scope

void buzz(int n) // buzz is global, n is local to buzz
{

if (number_of_bees > n) {
cout << 'b';

for (int i = 0; // i has statement scope
i < number_of_bees;
++i)
cout << 'z';

}

increase_bees();
}

3



Scope example

int number_of_bees = 0; // global scope — visible everywhere
void increase_bees(); // also global scope

void buzz(int n) // buzz is global, n is local to buzz
{

if (number_of_bees > n) {
cout << 'b';

for (int i = 0; // i has statement scope
i < number_of_bees;
++i)
cout << 'z';

}

increase_bees();
}

3



Scope example

int number_of_bees = 0; // global scope — visible everywhere
void increase_bees(); // also global scope

void buzz(int n) // buzz is global, n is local to buzz
{

if (number_of_bees > n) {
cout << 'b';

for (int i = 0; // i has statement scope
i < number_of_bees;
++i)
cout << 'z';

}

increase_bees();
}

3



Local scope is local

Variable names declared in different scopes refer to different
objects:

bool is_even(int n) { return n % 2 == 0; }

bool is_odd(int n) { return n % 2 == 1; }

There are two unrelated objects named n above

4



Local scope is local

Variable names declared in different scopes refer to different
objects:

bool is_even(int n) { return n % 2 == 0; }

bool is_odd(int m) { return m % 2 == 1; }

There were two unrelated objects named n above

4



Lifetimes example

double mean(vector<double> w)
{

double result = 0;
for (double wi : w) result += wi;
return result / w.size();

}

double variance(vector<double> v)
{

double m = mean(v), total = 0;
for (double vi : v) total += (vi − m) ∗ (vi − m);
return total / v.size();

}

double std_dev(vector<double> u)
{ return my_sqrt(variance(u)); }

5



Object lifetimes are nested!

v outlives w, m, and total,

which outlive vi,
which outlives w and result,
which in turn outlive wi.

6



Object lifetimes are nested!

v outlives w, m, and total,
which outlive vi,

which outlives w and result,
which in turn outlive wi.

6



Object lifetimes are nested!

v outlives w, m, and total,
which outlive vi,
which outlives w and result,

which in turn outlive wi.

6



Object lifetimes are nested!

v outlives w, m, and total,
which outlive vi,
which outlives w and result,
which in turn outlive wi.

6



Stack layout for nested scopes
Stack frame for std_dev:
u: {4, 4, 5, 3}

7



Stack layout for nested scopes
Stack frame for std_dev:

u: {4, 4, 5, 3}
Stack frame for variance:

v: {4, 4, 5, 3}
m: 9.028123E-04

total: 0.000000E+00
vi: 3.487345E+34

8



Stack layout for nested scopes
Stack frame for std_dev:

u: {4, 4, 5, 3}
Stack frame for variance:

v: {4, 4, 5, 3}
m: 9.028123E-04

total: 0.000000E+00
vi: 3.487345E+34

Stack frame for mean:
w: {4, 4, 5, 3}

result: 0.000000E+00
wi: 1.200218E+17

9



Stack layout for nested scopes
Stack frame for std_dev:

u: {4, 4, 5, 3}
Stack frame for variance:

v: {4, 4, 5, 3}
m: 9.028123E-04

total: 0.000000E+00
vi: 3.487345E+34

Stack frame for mean:
w: {4, 4, 5, 3}

result: 0.000000E+00
wi: 4.000000E+00

9



Stack layout for nested scopes
Stack frame for std_dev:

u: {4, 4, 5, 3}
Stack frame for variance:

v: {4, 4, 5, 3}
m: 9.028123E-04

total: 0.000000E+00
vi: 3.487345E+34

Stack frame for mean:
w: {4, 4, 5, 3}

result: 4.000000E+00
wi: 5.000000E+00

9



Stack layout for nested scopes
Stack frame for std_dev:

u: {4, 4, 5, 3}
Stack frame for variance:

v: {4, 4, 5, 3}
m: 9.028123E-04

total: 0.000000E+00
vi: 3.487345E+34

Stack frame for mean:
w: {4, 4, 5, 3}

result: 1.600000E+01
wi: 3.000000E+00

9



Stack layout for nested scopes
Stack frame for std_dev:

u: {4, 4, 5, 3}
Stack frame for variance:

v: {4, 4, 5, 3}
m: 4.000000E+00

total: 0.000000E+00
vi: 3.487345E+34

10



Stack layout for nested scopes
Stack frame for std_dev:

u: {4, 4, 5, 3}
Stack frame for variance:

v: {4, 4, 5, 3}
m: 4.000000E+00

total: 0.000000E+00
vi: 4.000000E+00

10



Stack layout for nested scopes
Stack frame for std_dev:

u: {4, 4, 5, 3}
Stack frame for variance:

v: {4, 4, 5, 3}
m: 4.000000E+00

total: 1.000000E+00
vi: 5.000000E+00

10



Const reference example

double mean(const vector<double>& w)
{

double result = 0;
for (double wi : w) result += wi;
return result / w.size();

}

double variance(const vector<double>& v)
{

double m = mean(v), total = 0;
for (double vi : v) total += (vi − m) ∗ (vi − m);
return total / v.size();

}

double std_dev(vector<double> u)
{ return my_sqrt(variance(u)); }

11



Stack layout for nested scopes
Stack frame for std_dev:

u: {4, 4, 5, 3}
Stack frame for variance:

v: reference to u
m: 9.028123E-04

total: 0.000000E+00
vi: 3.487345E+34

Stack frame for mean:
w: reference to u

result: 1.600000E+01
wi: 3.000000E+00

12



Copying example: banking
Function deposit gets a copy of the vector, and returns a copy of
the copy:

struct Account {
double balance;
std::string owner;

};

std::vector<Account> deposit(std::vector<Account> accts,
long acct_number,
unsigned long amount)

{
check_deposit(acct_number);
accts[acct_number].balance += amount;
return accts;

}

13



Reference example: banking

Function deposit borrows a reference to the vector and operates
on that:

struct Account {
double balance;
std::string owner;

};

void deposit(std::vector<Account>& accts,
long acct_number,
unsigned long amount)

{
check_deposit(acct_number);
accts[acct_number].balance += amount;

}

14



Harmful reference example

You can only borrow something for as long as it exists:

std::vector<double>& get_input()
{

std::vector<double> result;
...
return result;

}

The vector result exists only as long as function get_input is
active. So by the time the caller gets it, the reference refers to an
object that no longer exists.

15



Guidelines for borrowing

To avoid harmful (undefined) behavior:
• Most references should be parameters.

▶ The caller should guarantee that the object exists through the
call.

▶ The callee should not save a reference to the object.

• Returned references are borrowed parts of objects that were
passed in.

▶ For example, a vector index operation returns a reference to
an element.

▶ So the caller knows that the part object lives as long as the
whole.

16



Guidelines for borrowing

To avoid harmful (undefined) behavior:
• Most references should be parameters.

▶ The caller should guarantee that the object exists through the
call.

▶ The callee should not save a reference to the object.
• Returned references are borrowed parts of objects that were

passed in.
▶ For example, a vector index operation returns a reference to

an element.
▶ So the caller knows that the part object lives as long as the

whole.

16



– To CLion! –

17


