Headers and Testing

EECS 211
Winter 2017

Declarations

A declaration introduces a name into a scope (region of code):

e gives a type for the named object
e sometimes includes an initializer
e must come before use

Declarations

A declaration introduces a name into a scope (region of code):

e gives a type for the named object
e sometimes includes an initializer
e must come before use

Examples:

e inta=17;

e intb;

e vector<string> c;

e double my_sqgrt(double);

Headers

Declarations are frequently introduced through headers:

int main()

{

std::cout << "Hello, world!\n";

}

Error: unknown identifier std::cout

Headers

Declarations are frequently introduced through headers:

#include <iostream>

int main()

{
}

std::cout << "Hello, world!\n";

Definitions

A declaration that (also) fully specifies the declarandum is a
definition.

Definitions

A declaration that (also) fully specifies the declarandum is a
definition.

Examples:

inta=>5;

Definitions

A declaration that (also) fully specifies the declarandum is a
definition.

Examples:

inta=>5;
int b; // but why?

Definitions

A declaration that (also) fully specifies the declarandum is a
definition.

Examples:

inta = >5;
int b; // but why?
vector<double> v;

Definitions

A declaration that (also) fully specifies the declarandum is a
definition.

Examples:

inta=>5;

int b; // but why?

vector<double> v;

double square(double x) { return x x x; }

Definitions

A declaration that (also) fully specifies the declarandum is a
definition.

Examples:

inta = 5;

intb; //but why?

vector<double> v;

double square(double x) { return x x x; }
struct Point { int x, y; };

Definitions

A declaration that (also) fully specifies the declarandum is a
definition.

Examples:

inta = 5;

intb; //but why?

vector<double> v;

double square(double x) { return x x x; }
struct Point { int x, y; };

Examples of non-definition declarations:

extern int b;
double square(double);
struct Point;

Declarations and definitions

| declarations definitions

may be repeated yes no
must come before use yes no

Why both?

To refer to something, we need only its declaration
We can hide its definition, or save it for later

In large programs, declarations go in header files to ease sharing

Declaration example

double my_sqart(double x)
{

}

int main()

{
}

- my_sart(y) - -

Declaration example

int main()

{
}

double my_sqart(double x)

{

- my_sqrt(y) - - // unknown identifier

Declaration example

double my_sqgrt(double);

int main()

{
} - my_sqrt(y) - - -

double my_sqrt(double x)
{

Library declaration example

In my_math. h:
double my_sqgrt(double);
In my_math. cpp:

#include "my_math.h”

double my_sqrt(double x)
foon]

In some other (client) . cpp source file:

#include "my_math.h”

intf() { --- my_sart(c) --- }

Testing

One client of our library code is our test suite, in
my_math_test.cpp:

#include "my_math.h”

#include <UnitTest++/UnitTest++.h>
TEST(My_sqrt_9_is_correct)

{

}

CHECK_EQUAL (3, my_sqrt(9));

More testing

#include "my_math.h”
#include <UnitTest++/UnitTest++.h>

TEST(My_sqart_2_is_close)

{
CHECK_CLOSE(1.414, my_sqrt(2), 0.001);
}
TEST(My_sqart_throws_on_negative)
{

CHECK_THROW(my_sart(-9), std::runtime_error);
}

10

Building

CMakeLists. txt needs to specify which files should be
compiled together to make which programs:

cmake_minimum_required(VERSION 3.3)
project(my_sqrt CXX)
include(.eecs211/CMakeLists. txt)

add_program(sqrt_client
sqrt_client.cpp
my_sqrt.cpp)

add_test_program(my_sqrt_test
my_sqrt_test.cpp
my_sqrt.cpp)

11

— To CLion! —

12

