
Separating I/O from Computation
EECS 211

Winter 2017



Good software design

• Correct
• Efficient
• Simple

2



Code isn’t just for computers

In practice, other people need to read it:

• Your boss

• Your colleagues
• Your successors
• You in the future

3



Code isn’t just for computers

In practice, other people need to read it:

• Your boss
• Your colleagues

• Your successors
• You in the future

3



Code isn’t just for computers

In practice, other people need to read it:

• Your boss
• Your colleagues
• Your successors

• You in the future

3



Code isn’t just for computers

In practice, other people need to read it:

• Your boss
• Your colleagues
• Your successors
• You in the future

3



Separation of concerns

Input Computation Output

4



Separation of concerns

Input Computation Outputdata data

5



Data must be structured

Bits without structure are meaningless
Two most basic data structures:

• struct
• vector

6



What they are

• a struct creates a new type of compound of box made of
smaller boxes

• a vector is a sequence of any number of boxes of the same
type

7



Struct basics: declaration

To declare a new struct type:

struct Posn
{

double x;
double y;

};

struct Account
{

long id;
std::string owner;
long balance;

};

8



Struct basics: declaration

To declare a new struct type:

struct Posn
{

double x;
double y;

};

struct Account
{

long id;
std::string owner;
long balance;

};

8



Struct basics: construction

To declare and initialize a struct variable, list the values of the
member variables:

Posn p{3, 4};

You can also create a struct without declaring a variable:

Posn get_posn()
{

double x = get_x_coordinate();
double y = get_y_coordinate();
return Posn{x, y};

}

9



Struct basics: construction

To declare and initialize a struct variable, list the values of the
member variables:

Posn p{3, 4};

You can also create a struct without declaring a variable:

Posn get_posn()
{

double x = get_x_coordinate();
double y = get_y_coordinate();
return Posn{x, y};

}

9



Struct basics: using
A member variable of a struct is accessed by following the struct
with a period and the name of the member variable:

Posn p = get_posn();
std::cout << '(' << p.x << ", " << p.y << ')';

If you don’t initialize a struct, its fields are uninitialized:

Posn p;
z = p.x + p.y; // Error!

However, you can assign them:

p.x = 3;
p.y = 4;

10



Struct basics: using
A member variable of a struct is accessed by following the struct
with a period and the name of the member variable:

Posn p = get_posn();
std::cout << '(' << p.x << ", " << p.y << ')';

If you don’t initialize a struct, its fields are uninitialized:

Posn p;
z = p.x + p.y; // Error!

However, you can assign them:

p.x = 3;
p.y = 4;

10



Struct basics: using
A member variable of a struct is accessed by following the struct
with a period and the name of the member variable:

Posn p = get_posn();
std::cout << '(' << p.x << ", " << p.y << ')';

If you don’t initialize a struct, its fields are uninitialized:

Posn p;
z = p.x + p.y; // Error!

However, you can assign them:

p.x = 3;
p.y = 4;

10



Vector basics: creating

You can declare a vector with elements similar to how you
declare a struct:

#include <vector>

std::vector<int> v{2, 3, 4, 5};

However, it’s more common to build using push_back:

std::vector<int> v;
v.push_back(2);
v.push_back(1);
v.push_back(3);

v now contains 2, 1, 3.

11



Vector basics: creating

You can declare a vector with elements similar to how you
declare a struct:

#include <vector>

std::vector<int> v{2, 3, 4, 5};

However, it’s more common to build using push_back:

std::vector<int> v;
v.push_back(2);
v.push_back(1);
v.push_back(3);

v now contains 2, 1, 3.

11



Vector basics: size

The size member function returns the number of elements:

for (size_t i = 0; i < v.size(); ++i)
std::cout << v[i] << '\n';

Note! The number of elements is one more than the last index.

12



Vector basics: size

The size member function returns the number of elements:

for (size_t i = 0; i < v.size(); ++i)
std::cout << v[i] << '\n';

Note! The number of elements is one more than the last index.

12



Vector basics: empty

The empty member function returns whether a vector is empty:

if (grades.empty())
std::cout << "No grades were entered.";

13



Vector basics: access

Reverse a vector:

for (size_t i = 0; i < v.size() / 2; ++i) {
size_t j = v.size() − i − 1;
int temp = v[i];
v[i] = v[j];
v[j] = temp;

}

14



Vector basics: iteration

Can you spot the bug?

double sum = 0.0;

for (size_t i = 0; i <= v.size(); ++i)
sum += v[i];

15



Vector basics: iteration

Can’t overrun the bounds when using for-each syntax:

double sum = 0.0;

for (double vi : v)
sum += vi;

16



To the terminal!

17


