
Control Statements and Functions
EECS 211

Winter 2017

Agenda

• Computation
▶ What is computable? How best to compute it?
▶ Abstractions, algorithms, heuristics, data structures

• Language constructs and ideas
▶ Sequential order of execution
▶ Expressions and statements
▶ Selection
▶ Iteration
▶ Functional abstraction

• How to talk about syntax

2

You already know most of this

• You know how to do arithmetic:
▶ d = a+ b× c

• You know how to sequence:
▶ “Open the door, then walk through.”

• You know how to select:
▶ “If it’s raining, take an umbrella; otherwise take sunglasses.”

• You know how to iterate:
▶ “Do 20 reps.”
▶ “Stir until no lumps remain.”

• You know how to do function calls (sort of):
▶ “Go ask Alice and report back to me.”

So what I’ll be showing you is mainly syntax for things you already
know.

3

You already know most of this

• You know how to do arithmetic:
▶ d = a+ b× c

• You know how to sequence:
▶ “Open the door, then walk through.”

• You know how to select:
▶ “If it’s raining, take an umbrella; otherwise take sunglasses.”

• You know how to iterate:
▶ “Do 20 reps.”
▶ “Stir until no lumps remain.”

• You know how to do function calls (sort of):
▶ “Go ask Alice and report back to me.”

So what I’ll be showing you is mainly syntax for things you already
know.

3

You already know most of this

• You know how to do arithmetic:
▶ d = a+ b× c

• You know how to sequence:
▶ “Open the door, then walk through.”

• You know how to select:
▶ “If it’s raining, take an umbrella; otherwise take sunglasses.”

• You know how to iterate:
▶ “Do 20 reps.”
▶ “Stir until no lumps remain.”

• You know how to do function calls (sort of):
▶ “Go ask Alice and report back to me.”

So what I’ll be showing you is mainly syntax for things you already
know.

3

You already know most of this

• You know how to do arithmetic:
▶ d = a+ b× c

• You know how to sequence:
▶ “Open the door, then walk through.”

• You know how to select:
▶ “If it’s raining, take an umbrella; otherwise take sunglasses.”

• You know how to iterate:
▶ “Do 20 reps.”
▶ “Stir until no lumps remain.”

• You know how to do function calls (sort of):
▶ “Go ask Alice and report back to me.”

So what I’ll be showing you is mainly syntax for things you already
know.

3

You already know most of this

• You know how to do arithmetic:
▶ d = a+ b× c

• You know how to sequence:
▶ “Open the door, then walk through.”

• You know how to select:
▶ “If it’s raining, take an umbrella; otherwise take sunglasses.”

• You know how to iterate:
▶ “Do 20 reps.”
▶ “Stir until no lumps remain.”

• You know how to do function calls (sort of):
▶ “Go ask Alice and report back to me.”

So what I’ll be showing you is mainly syntax for things you already
know.

3

You already know most of this

• You know how to do arithmetic:
▶ d = a+ b× c

• You know how to sequence:
▶ “Open the door, then walk through.”

• You know how to select:
▶ “If it’s raining, take an umbrella; otherwise take sunglasses.”

• You know how to iterate:
▶ “Do 20 reps.”
▶ “Stir until no lumps remain.”

• You know how to do function calls (sort of):
▶ “Go ask Alice and report back to me.”

So what I’ll be showing you is mainly syntax for things you already
know.

3

Computation: the big picture

(input) data code (output) data

data

• Input: from keyboard, files, mouse, other input devices, the
network, other programs

• Code: consumes the input and does something to produce
the output

• Output: to the screen, files, printer, other output devices, the
network, other programs

4

Expressing computation
Our job is to express computations

• simply,
• correctly, and
• efficiently.

Tools:
• Divide and conquer

▶ Break a big computation into several smaller ones
• Abstraction

▶ Use a higher-level concept that hides detail
• Data organization (often key to good code)

▶ Input/output formats
▶ Communication protocols
▶ Data structures

Note the emphasis is on structure and organization

5

Expressing computation
Our job is to express computations

• simply,
• correctly, and
• efficiently.

Tools:

• Divide and conquer
▶ Break a big computation into several smaller ones

• Abstraction
▶ Use a higher-level concept that hides detail

• Data organization (often key to good code)
▶ Input/output formats
▶ Communication protocols
▶ Data structures

Note the emphasis is on structure and organization

5

Expressing computation
Our job is to express computations

• simply,
• correctly, and
• efficiently.

Tools:
• Divide and conquer

▶ Break a big computation into several smaller ones

• Abstraction
▶ Use a higher-level concept that hides detail

• Data organization (often key to good code)
▶ Input/output formats
▶ Communication protocols
▶ Data structures

Note the emphasis is on structure and organization

5

Expressing computation
Our job is to express computations

• simply,
• correctly, and
• efficiently.

Tools:
• Divide and conquer

▶ Break a big computation into several smaller ones
• Abstraction

▶ Use a higher-level concept that hides detail

• Data organization (often key to good code)
▶ Input/output formats
▶ Communication protocols
▶ Data structures

Note the emphasis is on structure and organization

5

Expressing computation
Our job is to express computations

• simply,
• correctly, and
• efficiently.

Tools:
• Divide and conquer

▶ Break a big computation into several smaller ones
• Abstraction

▶ Use a higher-level concept that hides detail
• Data organization (often key to good code)

▶ Input/output formats
▶ Communication protocols
▶ Data structures

Note the emphasis is on structure and organization

5

Expressing computation
Our job is to express computations

• simply,
• correctly, and
• efficiently.

Tools:
• Divide and conquer

▶ Break a big computation into several smaller ones
• Abstraction

▶ Use a higher-level concept that hides detail
• Data organization (often key to good code)

▶ Input/output formats
▶ Communication protocols
▶ Data structures

Note the emphasis is on structure and organization
5

Programming language features

Each language feature exists to express a fundamental idea:

+ addition
∗ multiplication
{ stm stm ... } sequencing
if (expr) stm else stm selection
while (expr) stm iteration
f(x); function call

The meaning of each feature is simple, but we combine them into
programs of arbitrary complexity.

6

Programming language features

Each language feature exists to express a fundamental idea:

+ addition
∗ multiplication
{ stm stm ... } sequencing
if (expr) stm else stm selection
while (expr) stm iteration
f(x); function call

The meaning of each feature is simple, but we combine them into
programs of arbitrary complexity.

6

Expressions

An expression computes a value:

int length = 20; // simplest expression is a literal
int width = 40;

int area = length ∗ width; // multiplication

// as in algebra, you can compose operations
int average = (length + width) / 2;

The usual rules of precedence apply:
a ∗ b + c / d means (a ∗ b) + (c / d), not ((a ∗ b) + c) / d

When in doubt, parenthesize (but don’t overdo it)

7

Expressions

An expression computes a value:

int length = 20; // simplest expression is a literal
int width = 40;

int area = length ∗ width; // multiplication

// as in algebra, you can compose operations
int average = (length + width) / 2;

The usual rules of precedence apply:
a ∗ b + c / d means (a ∗ b) + (c / d), not ((a ∗ b) + c) / d

When in doubt, parenthesize (but don’t overdo it)

7

Expressions

An expression computes a value:

int length = 20; // simplest expression is a literal
int width = 40;

int area = length ∗ width; // multiplication

// as in algebra, you can compose operations
int average = (length + width) / 2;

The usual rules of precedence apply:
a ∗ b + c / d means (a ∗ b) + (c / d), not ((a ∗ b) + c) / d

When in doubt, parenthesize (but don’t overdo it)

7

Expressions

An expression computes a value:

int length = 20; // simplest expression is a literal
int width = 40;

int area = length ∗ width; // multiplication

// as in algebra, you can compose operations
int average = (length + width) / 2;

The usual rules of precedence apply:
a ∗ b + c / d means (a ∗ b) + (c / d), not ((a ∗ b) + c) / d

When in doubt, parenthesize (but don’t overdo it)

7

Expressions

An expression computes a value:

int length = 20; // simplest expression is a literal
int width = 40;

int area = length ∗ width; // multiplication

// as in algebra, you can compose operations
int average = (length + width) / 2;

The usual rules of precedence apply:
a ∗ b + c / d means (a ∗ b) + (c / d), not ((a ∗ b) + c) / d

When in doubt, parenthesize (but don’t overdo it)

7

What expressions are made of

Operators and operands

• operators specify what to do
• operands specify the data to do it to

Some common operators:

Operator(s) Meaning bool int double
+, −, ∗, / arithmetic Yes Yes
% remainder Yes
== equal Yes Yes Yes
!= not equal Yes Yes Yes
<, <=, >, >= comparisons Yes Yes
&&, | | and, or Yes

8

What expressions are made of

Operators and operands

• operators specify what to do
• operands specify the data to do it to

Some common operators:

Operator(s) Meaning bool int double
+, −, ∗, / arithmetic Yes Yes
% remainder Yes
== equal Yes Yes Yes
!= not equal Yes Yes Yes
<, <=, >, >= comparisons Yes Yes
&&, | | and, or Yes

8

Concise operators

For many binary operators, there are (roughly) equivalent more
concise versions:

a += c means a = a + c
a ∗= scale means a = a ∗ scale
++a means a += 1

or a = a + 1

Use them when they make your code clearer

9

Syntax of Expressions

In BNF:
⟨expr⟩ := ⟨⟨numeric-literal⟩⟩

| ⟨⟨string-literal⟩⟩
| ⟨⟨variable⟩⟩
| ⟨expr⟩ ⟨⟨op⟩⟩ ⟨expr⟩
| ⟨expr⟩ (⟨expr-list⟩)
| (⟨expr⟩)

⟨expr-list⟩ :=
| ⟨expr⟩ ⟨expr-cont⟩

⟨expr-cont⟩ :=
| , ⟨expr⟩ ⟨expr-cont⟩

10

https://en.wikipedia.org/wiki/Backus%E2%80%93Naur_form

Syntax of Expressions

In BNF:
⟨expr⟩ := ⟨⟨numeric-literal⟩⟩

| ⟨⟨string-literal⟩⟩
| ⟨⟨variable⟩⟩
| ⟨expr⟩ ⟨⟨op⟩⟩ ⟨expr⟩
| ⟨expr⟩ (⟨expr-list⟩)
| ⟨expr⟩ ? ⟨expr⟩ : ⟨expr⟩
| (⟨expr⟩)

⟨expr-list⟩ :=
| ⟨expr⟩ ⟨expr-cont⟩

⟨expr-cont⟩ :=
| , ⟨expr⟩ ⟨expr-cont⟩

10

https://en.wikipedia.org/wiki/Backus%E2%80%93Naur_form

Statements
A statement is one of:

• an expression followed by a semicolon,
• a declaration, or
• a control statement that determines control flow.

Examples:

• a = b;
• double d2 = 2.5;
• if (x == 2) y = 4;
• while (cin >> number) numbers.push_back(number);
• int average = (length + width) / 2;
• return x;

I don’t expect you to recognize all of these…yet.

11

Statements
A statement is one of:

• an expression followed by a semicolon,
• a declaration, or
• a control statement that determines control flow.

Examples:

• a = b;
• double d2 = 2.5;
• if (x == 2) y = 4;
• while (cin >> number) numbers.push_back(number);
• int average = (length + width) / 2;
• return x;

I don’t expect you to recognize all of these…yet.

11

Statements
A statement is one of:

• an expression followed by a semicolon,
• a declaration, or
• a control statement that determines control flow.

Examples:

• a = b;
• double d2 = 2.5;
• if (x == 2) y = 4;
• while (cin >> number) numbers.push_back(number);
• int average = (length + width) / 2;
• return x;

I don’t expect you to recognize all of these…yet.
11

Syntax of Statements

⟨type⟩ := int | double | string | · · ·

⟨decl⟩ := ⟨type⟩ ⟨⟨variable⟩⟩ = ⟨expr⟩
| ⟨type⟩ ⟨⟨variable⟩⟩

⟨stmt⟩ := ⟨expr⟩ ;
| ⟨decl⟩ ;
| if (⟨expr⟩) ⟨stmt⟩ else ⟨stmt⟩
| if (⟨expr⟩) ⟨stmt⟩
| while (⟨expr⟩) ⟨stmt⟩
| for (⟨decl⟩ ; ⟨expr⟩ ; ⟨expr⟩) ⟨stmt⟩
| return ⟨expr⟩ ;
| { ⟨stmt-list⟩ }

⟨stmt-list⟩ :=
| ⟨stmt⟩ ⟨stmt-list⟩

12

Selection

Sometimes we must choose between alternatives.

For example, suppose we want to identify the larger of two
numbers. We can use an if statement:

if (a < b)
max = b;

else
max = a;

The syntax is
⟨stmt⟩ := if (⟨expr⟩) ⟨stmt⟩ else ⟨stmt⟩

13

Selection

Sometimes we must choose between alternatives.

For example, suppose we want to identify the larger of two
numbers. We can use an if statement:

if (a < b)
max = b;

else
max = a;

The syntax is
⟨stmt⟩ := if (⟨expr⟩) ⟨stmt⟩ else ⟨stmt⟩

13

Sequencing
What if you want to do more than one thing in an if?

Use a compound statement:

if (a < b) {
max = b;
min = a;

} else {
max = a;
min = b;

}

The syntax is
⟨stmt⟩ := { ⟨stmt-list⟩ }

⟨stmt-list⟩ :=
| ⟨stmt⟩ ⟨stmt-list⟩

14

Sequencing
What if you want to do more than one thing in an if?

Use a compound statement:

if (a < b) {
max = b;
min = a;

} else {
max = a;
min = b;

}

The syntax is
⟨stmt⟩ := { ⟨stmt-list⟩ }

⟨stmt-list⟩ :=
| ⟨stmt⟩ ⟨stmt-list⟩

14

Sequencing
What if you want to do more than one thing in an if?

Use a compound statement:

if (a < b) {
max = b;
min = a;

} else {
max = a;
min = b;

}

The syntax is
⟨stmt⟩ := { ⟨stmt-list⟩ }

⟨stmt-list⟩ :=
| ⟨stmt⟩ ⟨stmt-list⟩

14

Iteration (while)

int i = 0;

while (i < 100) {
cout << i << '\t' << square(i) << '\n';
++i;

}

The syntax is
⟨stmt⟩ := while (⟨expr⟩) ⟨stmt⟩

15

Iteration (while)

int i = 0;

while (i < 100) {
cout << i << '\t' << square(i) << '\n';
++i;

}

The syntax is
⟨stmt⟩ := while (⟨expr⟩) ⟨stmt⟩

15

Iteration (for)

int i = 0; // initialization

while (i < 100) {
cout << i << '\t' << square(i) << '\n';
++i; // step

}

This pattern—a loop with initialization and step—is so common
that there’s special syntax for it:

for (int i = 0; i < 100; ++i)
cout << i << '\t' << square(i) << '\n';

for loops are the idiomatic way to count in C++

16

Iteration (for)

int i = 0; // initialization

while (i < 100) {
cout << i << '\t' << square(i) << '\n';
++i; // step

}

This pattern—a loop with initialization and step—is so common
that there’s special syntax for it:

for (int i = 0; i < 100; ++i)
cout << i << '\t' << square(i) << '\n';

for loops are the idiomatic way to count in C++

16

Syntax of for

for (init-decl; cond-expr; step-expr)
body-stm

means

init-decl;

while (cond-expr) {
body-stm
step-expr;

}

17

Syntax of for

for (init-decl; cond-expr; step-expr)
body-stm

means

init-decl;

while (cond-expr) {
body-stm
step-expr;

}

17

Functions

But what did square(i) mean?

A call to the function square(int), which might be defined like

int square(int x)
{

return x ∗ x;
}

The syntax is:
⟨fun-decl⟩ := ⟨type⟩ ⟨⟨variable⟩⟩ (⟨args⟩) { ⟨stmt-list⟩ }

⟨args⟩ :=
| ⟨type⟩ ⟨⟨variable⟩⟩ ⟨more-args⟩

⟨more-args⟩ :=
| , ⟨type⟩ ⟨⟨variable⟩⟩ ⟨more-args⟩

18

Functions

But what did square(i) mean?

A call to the function square(int), which might be defined like

int square(int x)
{

return x ∗ x;
}

The syntax is:
⟨fun-decl⟩ := ⟨type⟩ ⟨⟨variable⟩⟩ (⟨args⟩) { ⟨stmt-list⟩ }

⟨args⟩ :=
| ⟨type⟩ ⟨⟨variable⟩⟩ ⟨more-args⟩

⟨more-args⟩ :=
| , ⟨type⟩ ⟨⟨variable⟩⟩ ⟨more-args⟩

18

Functions

But what did square(i) mean?

A call to the function square(int), which might be defined like

int square(int x)
{

return x ∗ x;
}

The syntax is:
⟨fun-decl⟩ := ⟨type⟩ ⟨⟨variable⟩⟩ (⟨args⟩) { ⟨stmt-list⟩ }

⟨args⟩ :=
| ⟨type⟩ ⟨⟨variable⟩⟩ ⟨more-args⟩

⟨more-args⟩ :=
| , ⟨type⟩ ⟨⟨variable⟩⟩ ⟨more-args⟩

18

Why define a function?

We want to separate and name a computation because it…

• …is logically separate.
• …make the program clearer.
• …can be reused.
• …eases testing, distribution of labor, and maintenance.

19

Why define a function?

We want to separate and name a computation because it…

• …is logically separate.

• …make the program clearer.
• …can be reused.
• …eases testing, distribution of labor, and maintenance.

19

Why define a function?

We want to separate and name a computation because it…

• …is logically separate.
• …make the program clearer.

• …can be reused.
• …eases testing, distribution of labor, and maintenance.

19

Why define a function?

We want to separate and name a computation because it…

• …is logically separate.
• …make the program clearer.
• …can be reused.

• …eases testing, distribution of labor, and maintenance.

19

Why define a function?

We want to separate and name a computation because it…

• …is logically separate.
• …make the program clearer.
• …can be reused.
• …eases testing, distribution of labor, and maintenance.

19

A function example

int square(int n) {
return n ∗ n;

}

int main () {
cout << sqrt(square(3) + square(4)) << '\n';

}

20

A function example

int square(int n) {
return n ∗ n;

}

int main () {
double a2 = square(3);
double b2 = square(4);
double c2 = a2 + b2;
double c = sqrt(c2);
cout << c << '\n';

}

21

A function example

int main () {
double a2 = square(3);
double b2 = square(4);
double c2 = a2 + b2;
double c = sqrt(c2);
cout << c << '\n';

}

int square(int n) {
return n ∗ n;

}

22

A function example

int main () {
double a2 = square(3);

double b2 = square(4);

double c2 = a2 + b2;
double c = sqrt(c2);

cout << c << '\n';
}

int square(int n) {
return n ∗ n;

}

int square(int n) {
return n ∗ n;

}

double sqrt(double);

23

