EECS 211 Lab 6

Classes and Abstractation

Winter 2017

In this week’s lab, we will be going over classes, encapsulation,
and abstraction, and why both are important.

If you have any lingering questions during the lab, don’t hesitate
to ask your peer mentor!

Getting the code

Download the zip file from the course site:

http://users.eecs.northwestern.edu/~jesse/course/eecs211/lab/eecs211-lab06.
zip
After you have downloaded the zip file onto your laptop, extract the
zip file into its own folder. Make sure you keep track of which folder
it’s in! Next, open up CLion and Click on File —> Open Project, and
click on the Lab 6 project that you just unzipped.

Once you open the project, try building the lab and then running
the lab6 executable. You should see some output printed in your
output subwindow. If you need a reminder on how to build and
run code in CLion, consult lab 3/4 or ask your TA. Once this works,
you're ready to start the lab!

Encapsulation and Abstraction

You already have seen the idea of encapsulation and abstraction
throughout the quarter. One place that you see it is through structs.
When you create a struct, you are creating a type that encapsulates
data members. Another place you've created abstraction is through
creating libraries, like linked_lib or circle_lib, which allow a con-
sumer to use certain functions about circles or linked lists, and not
have to see every little inner working under the hood.

Classes

So that brings us to classes. Classes allow you to create your own
types, just like structs. Additionally, with classes, we can create
member functions, which allow you to do things that you may have
already noticed from other classes, such as call myObject.area(); for
instance. This is similar to a data member, as the functions would
work on the instances of the classes themselves.


http://users.eecs.northwestern.edu/~jesse/course/eecs211/lab/eecs211-lab06.zip
http://users.eecs.northwestern.edu/~jesse/course/eecs211/lab/eecs211-lab06.zip

Private vs. Public

One key difference between structs and classes is that struct data
members and functions are public by default, but in classes, they
are private by default. But what does that mean? Basically, public
vs private determines what an instance of a class can access. First,
examine a class with a definition something like this:

class Person

{

private:
std::string name_;
int ssn_;
double bank_balance_;

public:
Person(const std::string& n, int s);
Person(const std::string& n, int s, double b);
bool canIBuyThis(double itemCost) const;
bool canIBuyThis(int itemCost) const;
double withdrawFromBank(double amount);
const std::string& name() const;
int ssn() const;
double bank_balance() const;

b

Notice here, that our Person class has a name_, ssn_, and bank_balance_

that are private. This means that if in our main or any other function
creates an instance of a Person, it won’t be able to access the Person’s

name_, ssn_ or bank_balance. For example, this code wouldn’t work,

as you can’t access the ssn_ or bank_balance_.

int main()

{
Person myPerson{"Wyatt", 102349783, 0};
cout << myPerson.name_ << ’'\n’;
cout << myPerson.ssn_ << ’'\n’;

}

However, what you CAN do, is create public functions that use the
private data members or private functions. Let’s say a Person is at
a store, and is trying to buy a soda pop. While you don’t want the
register to be able to see how much money is on the Person’s bank
account, you still want to be able to tell whether or not the Person

EECS 211 LAB 6 2

We usually refer to instances of classes
as objects.



EECS 211 LAB 6 3

has enough money to purchase the soda pop. So, you're able to run
code something like this:

void buySoda(Person& p, double sodaPrice)

{
if (p.canIBuyThis(sodaPrice)) {
p.withdrawFromBank(sodaPrice);
} else {
cerr << "You don’t have enough money!\n";
}
}

Notice, that we are able to compare the Person’s bank_balance_ and
the sodaPrice, without being able to look at the Person’s bank_balance_,
through the use of our public canIBuyThis function. This allows us to
abstract away the bank_balance_, while maintaining its functionality!

Constructors

When you create an instance of a class, you use what’s called a
Constructor, which allows you to do something upon the creation

of an object. Typically, we’ll use a constructor to set the private data
members of your class. For example, let’s look at the definition of the
constructor for Person.

Person::Person(const string& n, int s, double b)
: name_(n), ssn_(s), bank_balance_(b)

{1}
Now, when you create a Person using the following syntax:
Person myPerson("Jesse", 1234567, 100.0);

myPersons’s name_, ssn_, and bank_balance_ are assigned to be
Jesse, 1234567, and 100.0, respectively. Note that the following syntax
would also be acceptable:

Person myPerson = Person("Jesse", 1234567, 100.0);

You probably noticed that this constructor allows for 3 parameters.
You can actually create different constructors for different numbers of
parameters as inputs, allowing you to set default values easier, or do
different things when a class is instantiated with a different number
of arguments. In Person.cpp, we’ve defined another constructor for
Person which only takes in 2 parameters:

Person::Person(const string& n, int s)
: name_(n), ssn_(s), bank_balance_(0.0)

{1}



This constructor will automatically assign bank_balance_ to be
0.0. This is called overloading a constructor. When you call these
constructors, C++ will call the correct constructor by looking at the
number and type of the arguments it’s given.

Another way to write a constructor is to have it delegate to another
constructor:

Person::Person(const string& n, int s)
: Person(n, s, 0.0)

{1}

In this case, the two-argument Person constructor calls the three-
argument Person constructor, passing along its two arguments and
and additional o for the balance.

Overloading Classes

We can also overload functions! This works in the exact same way. In
Person.cpp, note that canlBuyThis has 2 definitions. One of them takes
in an int and the other takes in a double. Each of these definitions
behaves in a slightly different way. Notice that both functions take
in the same number of arguments but they are different types! C++
looks at the parameter supplied and decides which function to call
based on the type of that parameter.

Practicing with classes

To get a little practice with classes, implement the function printPer-
son. In order to do that, you'll need to implement the get functions
for the Person class in Person.cpp. Once you've done that, use the get
functions in the printPerson function in order to print a string with
the following format:

"This Person is named (name_), has Social Security Number (ssn_),
and has (bank_balance_) dollars in their bank account.”

For more practice, go Bank.cpp and implement the function called
stealMoney. Note that a Bank is another class that we’ve created for
you. A bank has a private vector of Person objects called accounts_.
It also has a public constructor and a get function for accounts_ al-
ready implemented. Your job is to write the stealMoney function,
which should iterate through each Person in accounts_ and with-
draw all of their money so that their bank_balance_ is 0. Add up
all of the money you’ve stolen and return that value. The functions
bank_balance and withdrawFromBank in the Person class will be very
helpful for this!

EECS 211 LAB 6 4

The get functions are public functions

that return the values of their respective

private data members.

Hint: All 3 get functions can (and
should) be implemented in one line.



	Getting the code
	Encapsulation and Abstraction
	Classes
	Practicing with classes

