
EECS 211 Lab 5
Linked Lists + Review for the Midterm
Winter 2017

In this week’s lab, we will be going over linked lists. Then, we
will review for the exam. You’ll notice that we have given you more
practice programs than you can probably complete through in your
section. We recommend finishing them outside of discussion as they
are good practice to study for the exam! We’ve included a full set
of test cases so to run - when a function is implemented correctly, it
should pass all of the its tests. We organized the questions by general
topic, so consider jumping around between the types of questions, or
focusing on ones you feel weak at.

If you have any lingering questions during the lab, don’t hesitate
to ask your peer mentor!

Getting the code

Download the zip file from the course site:

http://users.eecs.northwestern.edu/~jesse/course/eecs211/lab/eecs211-lab05.

zip

After you have downloaded the zip file onto your laptop, extract the
zip file into its own folder. Make sure you keep track of which folder
it’s in! Next, open up CLion and Click on File –> Open Project, and
click on the Lab 4 project that you just unzipped.

Once you open the project, try building the lab and then running
the lab5 executable. You should see some output printed in your
output subwindow. If you need a reminder on how to build and
run code in CLion, consult lab 3/4 or ask your TA. Once this works,
you’re ready to start the lab!

Linked Lists

The general idea of a linked list is that there are nodes that have
a data member to contain information about the node, as well as
a pointer to the next node in the linked list. As you know from
the homework, a common linked list implementation would look
something like this:

struct ListNode

{

int data;

shared_ptr<ListNode> next;

};

http://users.eecs.northwestern.edu/~jesse/course/eecs211/lab/eecs211-lab05.zip
http://users.eecs.northwestern.edu/~jesse/course/eecs211/lab/eecs211-lab05.zip


eecs 211 lab 5 2

Note that in our implementation of
linked lists, they have both an int for
data and a Dog

Each node has pointer to the next node in the linked list, until one
node’s pointer is the null pointer, signifying the end of the linked
list. When you write functions using linked lists, you generally are
passed (by reference) in the node that is at the front of the linked list.
From here, since the node is usually passed by reference, when you
edit the front of the tree’s pointers, the changes propagate back to the
arguments to the original function call.

Exam Review

Linked List Practice Questions

Now, let’s write some functions for working on linked lists. Look at
your Dog.h and ListNode.h files for struct definitions. The following
function skeletons have been provided for you. Each function is
described below, give them a try!

findDog

For this function, you are still in charge of a dog sanctuary. In ListN- Hopefully you’ve been feeding them!

ode.cpp, write a function findDog that takes in a pointer to a ListNode,
and looks for the first ListNode that has the desired identification
number. When you find the desired identification number, return the
dog from that ListNode. Just like in the homework, we are

abbreviating writing out a pointer to a
ListNode as just a ListremoveHalf

In ListNode.cpp, write a function called removeHalf that removes every
other element from a linked list. For example, 1 -> 2 -> 3 -> 4 ->
nullptr would become 1 -> 3 -> nullptr. Remember to make sure the
ListNode exists before accessing its data types! This is important, as de-referencing a

nullptr is going to break your program.
squareIDNumbers

In ListNode.cpp, write a function, squareIDNumbers, that squares the
identification number of each node in the linked list.

toVector

In ListNode.cpp, write a function, toVector, that takes in a linked list,
and puts every element of the list into a vector.

Challenge function: swapDogs

In ListNode.cpp, write a function, swapDogs, that takes in a linked list,
and two indices, and swaps the Dogs located at those indices.

Challenge function: reverseList

If you’re up for a challenge, write a function, reverseList that takes
in the front of a linked list (not by reference), and returns a new list,
which is the original list in reversed order. One of the easier strategies could be

modifying your toVector function first
to be for ListNodes as opposed to
Dogs, then using that vector to help
you create a new list that is backwards.
However, there are many viable ways of
creating this function!



eecs 211 lab 5 3

General Practice Questions

meanAge

In Dog.cpp, write the function called meanAge which goes through
a vector of Dogs, and calculates the mean age of the dogs in your
sanctuary.

swapTreats

In Dog.cpp, write the function swapTreats, which swaps the favorite
treats of two dogs which are passed by reference into the function,
after they probably had an altercation.

divisibleByAll

Create a function in lab5.cpp called divisibleByAll where you are
passed two vectors, nums and divisors, where you have to return a
new vector of only the ints in nums that are divisible by all of the
numbers in divisors.

factorial

In lab5.cpp, write a function, factorial that takes an integer, and returns
the factorial of that number using a loop. Remember that factorial(n) means

n * (n-1) * (n-2) * ... * 1, and that the
factorial of 0 is 1Challenge function: vectorizeInt

In lab5.cpp, write a function called vectorizeInt. This function should
take a positive integer, and put it’s digits into a vector, such that
its most significant digits are in the least significant indicies of the
vector.

For example: Given the number 108, your vector you would return Coincidentally the number of years
before the Cubs won the World Series
again this year

would have 1 in the 0th index, it would have 0 in the first index, and
it would have 8 in the second index. Furthermore, this vector would
be equivalent to the vector created from the following:

vector<int> v;

v.push_back(1);

v.push_back(0);

v.push_back(8);

return v;

You need to generalize this for every number.


	Getting the code
	Linked Lists
	Exam Review

