Run-Time Polymorphism

CS 211
Winter 2020



Definition

polymorphism, n. (from poly- + -morphism)

1.
2.

The ability to assume different forms or shapes.

(biology) The coexistence, in the same locality, of two or
more distinct forms independent of sex, not connected by
intermediate gradations, ...

(object-oriented programming) The feature pertaining to
the dynamic treatment of data elements based on their
type, allowing for an instance of a method to have several
definitions.

. (mathematics, type theory) The property of certain typed

formal systems of allowing for the use of type variables and
binders/quantifiers over those type variables; ...

(crystallography) ...
(genetics) ...



Parametric polymorphism (in OCaml)

let mystery xs@ =
let rec loop acc xs =
match xs with
| [] -> acc
| x :: xs' —> loop (x :: acc) xs
in loop [] xs@



ML stands for meta-language

let mystery xs@ =
let rec loop acc xs =
match xs with
| [] -> acc
| x :: xs' —> loop (x :: acc) xs
in loop [] xs@



Ad-hoc polymorphism

bool test(int v, int lo, int hi)
{
return lo <= v && v < hi;

}

bool test(double v, double lo, double hi)
{

return low <= v & v <= hi;

}



Generic = parametric + ad-hoc

template <class T>
void filter(std::vector<T>& v, T lo, T hi)
{

size_t dst = 0;
for (T& x : v)
if (test(x, lo, hi))

vdst++] = x;

v.resize(v.size() - dst);



Bounded parametric polymorphism

trait Testable {
fn test(&self, lo: &Self, hi: &Self) —> bool;
}

impl Testable for f64 {
fn test(&self, lo: &f64, hi: &f64) —> bool
{ lo <= self && self <= hi }

}

fn filter<T: Testable>(
v: &mut Vec<T>, lo: &T, hi: &T) {
let mut dst = 0;
for i in @ .. v.len() {
if v[i].test(lo, hi) {
v.swap(dst, i);
dst += 1;



Message/method polymorphism

Number subclass: Complex [
| realpart imagpart |

"constructor and setter omitted..."

real [ ~realpart 1
imag [ ~imagpart ]

+ other [
~Complex real: (realpart + other real)

imag: (imagpart + other imag)

"etcC...



Subtype polymorphism in theory

A type 7 is a subtype of a type o (notation: 7 is-a o) iff every
value of type 7 is also a value of type o.



Subtype polymorphism in theory

A type 7 is a subtype of a type o (notation: 7 is-a o) iff every
value of type 7 is also a value of type o.

(This is known as the Liskov Substitution Principle. Restated: A
function that accepts an object of type o must work on objects
of type 7.)



Subtype polymorphism in theory

A type 7 is a subtype of a type o (notation: 7 is-a o) iff every
value of type 7 is also a value of type o.

(This is known as the Liskov Substitution Principle. Restated: A
function that accepts an object of type o must work on objects
of type 7.)

Possible examples:

e intis-adouble ?



Subtype polymorphism in theory

A type 7 is a subtype of a type o (notation: 7 is-a o) iff every
value of type 7 is also a value of type o.

(This is known as the Liskov Substitution Principle. Restated: A
function that accepts an object of type o must work on objects
of type 7.)

Possible examples:

e Integeris-aReal



Subtype polymorphism in theory

A type 7 is a subtype of a type o (notation: 7 is-a o) iff every
value of type 7 is also a value of type o.

(This is known as the Liskov Substitution Principle. Restated: A
function that accepts an object of type o must work on objects
of type 7.)

Possible examples:

e Integeris-aReal
e Rectangle is-a Shape ?



Subtype polymorphism in theory

A type 7 is a subtype of a type o (notation: 7 is-a o) iff every
value of type 7 is also a value of type o.

(This is known as the Liskov Substitution Principle. Restated: A
function that accepts an object of type o must work on objects
of type 7.)

Possible examples:
e Integeris-aReal

e Rectangle is-a Shape
e Square is-a Rectangle ?



Subtype polymorphism in theory

A type 7 is a subtype of a type o (notation: 7 is-a o) iff every
value of type 7 is also a value of type o.

(This is known as the Liskov Substitution Principle. Restated: A
function that accepts an object of type o must work on objects
of type 7.)

Possible examples:

e Integeris-aReal
e Rectangle is-a Shape

e Squareis-aRectangle



Subtype polymorphism in theory

A type 7 is a subtype of a type o (notation: 7 is-a o) iff every
value of type 7 is also a value of type o.

(This is known as the Liskov Substitution Principle. Restated: A
function that accepts an object of type o must work on objects
of type 7.)

Possible examples:

e Integeris-aReal
e Rectangle is-a Shape

e Squareis-aRectangle

e vector<Rectangle>is-a vector<Shape> ?



Subtype polymorphism in theory

A type 7 is a subtype of a type o (notation: 7 is-a o) iff every
value of type 7 is also a value of type o.

(This is known as the Liskov Substitution Principle. Restated: A
function that accepts an object of type o must work on objects
of type 7.)

Possible examples:

e Integeris-aReal
e Rectangle is-a Shape

e Squareis-aRectangle
o vector<Reetanglte>is-avector<Shape>



Subtype polymorphism in theory

A type 7 is a subtype of a type o (notation: 7 is-a o) iff every
value of type 7 is also a value of type o.

(This is known as the Liskov Substitution Principle. Restated: A
function that accepts an object of type o must work on objects
of type 7.)

Possible examples:

e Integeris-aReal

e Rectangle is-a Shape

o Squareis-aRectangte

o vector<Rectangte>is-avector<Shape>

e bool (x)(Shape) is-a bool (x)(Rectangle) ?



Subtype polymorphism in theory

A type 7 is a subtype of a type o (notation: 7 is-a o) iff every
value of type 7 is also a value of type o.

(This is known as the Liskov Substitution Principle. Restated: A
function that accepts an object of type o must work on objects
of type 7.)

Possible examples:

e Integeris-aReal

e Rectangle is-a Shape

o Squareis-aRectangte

o vector<Rectangte>is-avector<Shape>

e bool (x)(Rectangle) is-abool (x)(Shape)



Subtype polymorphism in theory

A type 7 is a subtype of a type o (notation: 7 is-a o) iff every
value of type 7 is also a value of type o.

(This is known as the Liskov Substitution Principle. Restated: A
function that accepts an object of type o must work on objects
of type 7.)

Possible examples:

e Integer&is-a Real&

e Rectangle& is-a Shape&

o Squareis-aRectangte

o vector<Rectangte>is-avector<Shape>

e bool (x)(Rectangle) is-abool (x)(Shape)



Subtype polymorphism in C++

struct Base

{}

struct Derived : Base

{}



Subtype polymorphism in C++

struct Base

{}

struct Derived : Base

{}
Then:

e Derivedsx is-a Basicxk,

e Derived& is-a Baseé&, and

e and likewise for const versions, but
e Derivedis-aBase — why not?



Adding “methods”

struct Base
{ int f() { return 0; } };

struct Derived : Base
{ int f() { return 1; } };

10



Adding “methods”

struct Base
{ int f() { return 0; } };

struct Derived : Base
{ int f() { return 1; } };

TEST_CASE("direct")
{
Base b;
Derived d;
CHECK( b.f() ==
CHECK( d.f() ==

= o

10



Adding “methods”

struct Base
{ int f() { return 0; } };

struct Derived : Base
{ int f() { return 1; } };

int g(Base& b) { return b.f(); }

TEST_CASE("via_reference")
{
Base b;
Derived d;
CHECK( g(b) ==
CHECK( g(d) ==

10



Static versus dynamic dispatch

To determine which function to call:

e Static dispatch uses the static type of the variable
e Dynamic dispatch uses the run-time class of the object

11



Static versus dynamic dispatch

To determine which function to call:

e Static dispatch uses the static type of the variable
e Dynamic dispatch uses the run-time class of the object

To get dynamic dispatch in C++, a function must be virtual

11



Introducing virtual functions

struct Base
{ virtual int f() { return 0; } };

struct Derived : Base
{ int f() override { return 1; } };

12



Introducing virtual functions

struct Base
{ virtual int f() { return 0; } };

struct Derived : Base
{ int f() override { return 1; } };

int g(Base& b) { return b.f(); }

TEST_CASE("via,reference")

{
Base b;
Derived d;
CHECK( g(b) == 0 );
CHECK( g(d) == 1 );
+

12



— To CLion! —

13



