
Run-Time Polymorphism
CS 211

Winter 2020

Definition
polymorphism, n. (from poly- + -morphism)

1. The ability to assume different forms or shapes.
2. (biology) The coexistence, in the same locality, of two or

more distinct forms independent of sex, not connected by
intermediate gradations, …

3. (object-oriented programming) The feature pertaining to
the dynamic treatment of data elements based on their
type, allowing for an instance of a method to have several
definitions.

4. (mathematics, type theory) The property of certain typed
formal systems of allowing for the use of type variables and
binders/quantifiers over those type variables; …

5. (crystallography) …
6. (genetics) …

2

Parametric polymorphism (in OCaml)

let mystery xs0 =
let rec loop acc xs =

match xs with
| [] -> acc
| x :: xs' -> loop (x :: acc) xs'

in loop [] xs0

3

ML stands for meta-language

let mystery xs0 =
let rec loop acc xs =

match xs with
| [] -> acc
| x :: xs' -> loop (x :: acc) xs'

in loop [] xs0

3

Ad-hoc polymorphism

bool test(int v, int lo, int hi)
{

return lo <= v && v < hi;
}

bool test(double v, double lo, double hi)
{

return low <= v && v <= hi;
}

4

Generic = parametric + ad-hoc

template <class T>
void filter(std::vector<T>& v, T lo, T hi)
{

size_t dst = 0;

for (T& x : v)
if (test(x, lo, hi))

v[dst++] = x;

v.resize(v.size() - dst);
}

5

Bounded parametric polymorphism
trait Testable {

fn test(&self, lo: &Self, hi: &Self) -> bool;
}

impl Testable for f64 {
fn test(&self, lo: &f64, hi: &f64) -> bool
{ lo <= self && self <= hi }

}

fn filter<T: Testable>(
v: &mut Vec<T>, lo: &T, hi: &T) {

let mut dst = 0;
for i in 0 .. v.len() {

if v[i].test(lo, hi) {
v.swap(dst, i);
dst += 1;

}
}

for _ in dst .. v.len() {
v.pop();

}
}

6

Message/method polymorphism

Number subclass: Complex [
| realpart imagpart |

"constructor and setter omitted..."

real [^realpart]
imag [^imagpart]

+ other [
^Complex real: (realpart + other real)

imag: (imagpart + other imag)
]

"etc..."
]

7

Subtype polymorphism in theory

A type τ is a subtype of a type σ (notation: τ is-a σ) iff every
value of type τ is also a value of type σ.

(This is known as the Liskov Substitution Principle. Restated: A
function that accepts an object of type σ must work on objects
of type τ .)
Possible examples:

• int is-a double ?
• Rectangle is-a Shape ?
• Square is-a Rectangle ?
• vector<Rectangle> is-a vector<Shape> ?
• bool (*)(Shape) is-a bool (*)(Rectangle) ?

8

Subtype polymorphism in theory

A type τ is a subtype of a type σ (notation: τ is-a σ) iff every
value of type τ is also a value of type σ.
(This is known as the Liskov Substitution Principle. Restated: A
function that accepts an object of type σ must work on objects
of type τ .)

Possible examples:

• int is-a double ?
• Rectangle is-a Shape ?
• Square is-a Rectangle ?
• vector<Rectangle> is-a vector<Shape> ?
• bool (*)(Shape) is-a bool (*)(Rectangle) ?

8

Subtype polymorphism in theory

A type τ is a subtype of a type σ (notation: τ is-a σ) iff every
value of type τ is also a value of type σ.
(This is known as the Liskov Substitution Principle. Restated: A
function that accepts an object of type σ must work on objects
of type τ .)
Possible examples:

• int is-a double ?

• Rectangle is-a Shape ?
• Square is-a Rectangle ?
• vector<Rectangle> is-a vector<Shape> ?
• bool (*)(Shape) is-a bool (*)(Rectangle) ?

8

Subtype polymorphism in theory

A type τ is a subtype of a type σ (notation: τ is-a σ) iff every
value of type τ is also a value of type σ.
(This is known as the Liskov Substitution Principle. Restated: A
function that accepts an object of type σ must work on objects
of type τ .)
Possible examples:

• Integer is-a Real

• Rectangle is-a Shape ?
• Square is-a Rectangle ?
• vector<Rectangle> is-a vector<Shape> ?
• bool (*)(Shape) is-a bool (*)(Rectangle) ?

8

Subtype polymorphism in theory

A type τ is a subtype of a type σ (notation: τ is-a σ) iff every
value of type τ is also a value of type σ.
(This is known as the Liskov Substitution Principle. Restated: A
function that accepts an object of type σ must work on objects
of type τ .)
Possible examples:

• Integer is-a Real
• Rectangle is-a Shape ?

• Square is-a Rectangle ?
• vector<Rectangle> is-a vector<Shape> ?
• bool (*)(Shape) is-a bool (*)(Rectangle) ?

8

Subtype polymorphism in theory

A type τ is a subtype of a type σ (notation: τ is-a σ) iff every
value of type τ is also a value of type σ.
(This is known as the Liskov Substitution Principle. Restated: A
function that accepts an object of type σ must work on objects
of type τ .)
Possible examples:

• Integer is-a Real
• Rectangle is-a Shape
• Square is-a Rectangle ?

• vector<Rectangle> is-a vector<Shape> ?
• bool (*)(Shape) is-a bool (*)(Rectangle) ?

8

Subtype polymorphism in theory

A type τ is a subtype of a type σ (notation: τ is-a σ) iff every
value of type τ is also a value of type σ.
(This is known as the Liskov Substitution Principle. Restated: A
function that accepts an object of type σ must work on objects
of type τ .)
Possible examples:

• Integer is-a Real
• Rectangle is-a Shape
• Square is-a Rectangle

• vector<Rectangle> is-a vector<Shape> ?
• bool (*)(Shape) is-a bool (*)(Rectangle) ?

8

Subtype polymorphism in theory

A type τ is a subtype of a type σ (notation: τ is-a σ) iff every
value of type τ is also a value of type σ.
(This is known as the Liskov Substitution Principle. Restated: A
function that accepts an object of type σ must work on objects
of type τ .)
Possible examples:

• Integer is-a Real
• Rectangle is-a Shape
• Square is-a Rectangle
• vector<Rectangle> is-a vector<Shape> ?

• bool (*)(Shape) is-a bool (*)(Rectangle) ?

8

Subtype polymorphism in theory

A type τ is a subtype of a type σ (notation: τ is-a σ) iff every
value of type τ is also a value of type σ.
(This is known as the Liskov Substitution Principle. Restated: A
function that accepts an object of type σ must work on objects
of type τ .)
Possible examples:

• Integer is-a Real
• Rectangle is-a Shape
• Square is-a Rectangle
• vector<Rectangle> is-a vector<Shape>

• bool (*)(Shape) is-a bool (*)(Rectangle) ?

8

Subtype polymorphism in theory

A type τ is a subtype of a type σ (notation: τ is-a σ) iff every
value of type τ is also a value of type σ.
(This is known as the Liskov Substitution Principle. Restated: A
function that accepts an object of type σ must work on objects
of type τ .)
Possible examples:

• Integer is-a Real
• Rectangle is-a Shape
• Square is-a Rectangle
• vector<Rectangle> is-a vector<Shape>
• bool (*)(Shape) is-a bool (*)(Rectangle) ?

8

Subtype polymorphism in theory

A type τ is a subtype of a type σ (notation: τ is-a σ) iff every
value of type τ is also a value of type σ.
(This is known as the Liskov Substitution Principle. Restated: A
function that accepts an object of type σ must work on objects
of type τ .)
Possible examples:

• Integer is-a Real
• Rectangle is-a Shape
• Square is-a Rectangle
• vector<Rectangle> is-a vector<Shape>
• bool (*)(Rectangle) is-a bool (*)(Shape)

8

Subtype polymorphism in theory

A type τ is a subtype of a type σ (notation: τ is-a σ) iff every
value of type τ is also a value of type σ.
(This is known as the Liskov Substitution Principle. Restated: A
function that accepts an object of type σ must work on objects
of type τ .)
Possible examples:

• Integer& is-a Real&
• Rectangle& is-a Shape&
• Square is-a Rectangle
• vector<Rectangle> is-a vector<Shape>
• bool (*)(Rectangle) is-a bool (*)(Shape)

8

Subtype polymorphism in C++

struct Base
{ };

struct Derived : Base
{ };

Then:

• Derived* is-a Basic*,
• Derived& is-a Base&, and
• and likewise for const versions, but
• Derived is-a Base – why not?

9

Subtype polymorphism in C++

struct Base
{ };

struct Derived : Base
{ };

Then:

• Derived* is-a Basic*,
• Derived& is-a Base&, and
• and likewise for const versions, but
• Derived is-a Base – why not?

9

Adding “methods”
struct Base
{ int f() { return 0; } };

struct Derived : Base
{ int f() { return 1; } };

10

Adding “methods”
struct Base
{ int f() { return 0; } };

struct Derived : Base
{ int f() { return 1; } };

TEST_CASE("direct")
{

Base b;
Derived d;
CHECK(b.f() == 0);
CHECK(d.f() == 1);

}

10

Adding “methods”
struct Base
{ int f() { return 0; } };

struct Derived : Base
{ int f() { return 1; } };

int g(Base& b) { return b.f(); }

TEST_CASE("via␣reference")
{

Base b;
Derived d;
CHECK(g(b) == 0);
CHECK(g(d) == 0); // ???

}

10

Static versus dynamic dispatch

To determine which function to call:

• Static dispatch uses the static type of the variable
• Dynamic dispatch uses the run-time class of the object

To get dynamic dispatch in C++, a function must be virtual

11

Static versus dynamic dispatch

To determine which function to call:

• Static dispatch uses the static type of the variable
• Dynamic dispatch uses the run-time class of the object

To get dynamic dispatch in C++, a function must be virtual

11

Introducing virtual functions

struct Base
{ virtual int f() { return 0; } };

struct Derived : Base
{ int f() override { return 1; } };

int g(Base& b) { return b.f(); }

TEST_CASE("via␣reference")
{

Base b;
Derived d;
CHECK(g(b) == 0);
CHECK(g(d) == 1);

}

12

Introducing virtual functions

struct Base
{ virtual int f() { return 0; } };

struct Derived : Base
{ int f() override { return 1; } };

int g(Base& b) { return b.f(); }

TEST_CASE("via␣reference")
{

Base b;
Derived d;
CHECK(g(b) == 0);
CHECK(g(d) == 1);

}

12

– To CLion! –

13

