
From Interpreters and Abstract Machines to
the λ Insight

1 The Mechanical Evaluation of Expressions
@article{ pl:secd,
author={Landin, P. J.},
title={The Mechanical Evaluation of Expressions},
journal={Computer Journal},
volume=6,
issue=4,
pages={308--320},
year=1964

}
Summary: Landin introduces the language of applicative structures as a small

but abstract language that can naturally express various forms of calculations such as
calculations with numbers, booleans and lists. Landin gives meaning to programs in
the language through their evaluation by an abstract and formally defined machine.

Evaluation: This paper introduces numerous novel and important ideas: 1) it
makes an explicit syntactic connection between the λ-calculus and programming lan-
guages; 2) it splits the essence of the notation of a language a set of features that address
the core computational requirements of any language and a set of features that are spe-
cific to the domain of the problem that the language is intended to help with; 3) it sug-
gests the use of abstract applicative structures as a uniform syntactic description of the
core computational requirements of different languages; 4) it coins the term “syntactic
sugar” to explain how we can grow a core language with more programmer-friendly
forms that are in reality compositions of applicative structures; 5) introduces (and coins
the name for) closures as we know them today; 6) it pioneers the formal definition of
programming languages with the innovation of abstract machines that manipulate the
abstract syntax of programs. Overall, this paper has shaped research on formal models
and design of programming languages.

2 The Next 700 Programming Languages
@article{ pl:iswim,

1



author={Landin, P. J.}
title={The Next 700 Programming Languages},
journal={Communications of the ACM},
volume=9,
issue=3,
pages={157--166},
year=1966

}
Summary:Landin builds on his previous work on the language of applicative struc-

tures to suggest a systematic way to design new languages. In particular, the paper
proposes ISWIM, a framework that splits the design of a programming language into
syntactic and semantic concerns. In particular, it suggests that the syntax of seem-
ingly different languages can map, in a structure preserving way, to an abstract syntax
that consists of an applicative core, mechanisms that manage the scope of user-defined
names (names) and domain-specific non-algorithmically specified operations. The ab-
stract syntax can then be translated to applicative structures that can be evaluated on
an abstract machine. Furthermore, the abstract syntax allows the comparison between
different languages whose syntax seems different via the application simple (local and
semantic preserving) transformations. One of those is described with the β axiom
of the lambda calculus adapted to the non-imperative subset of the syntax of abstract
ISWIM.

Evaluation: This paper together with “The Mechanical Evaluation of Expressions”
has had significant impact on the way programming languages researchers analyze and
design languages. First off, it reinforces the message of “The Mechanical Evaluation
of Expressions” and makes it clear that from a semantics perspective many syntactic
details do not matter. As a result it frees the technical aspects of the design of program-
ming languages (in contrast to the human ones) from syntactic details that prevented
the comparison of different languages. Moreover, the axiomatization of the syntactic
transformations of abstract ISWIM (and especially the β axiom) foreshadows Plotkin’s
work. Overall, the analysis and design of programming languages using a formally
specified core model whose “meaning” is defined via syntactic rewritings or abstract
machines is nowadays the norm.

2


	1 The Mechanical Evaluation of Expressions
	2 The Next 700 Programming Languages

