An Optimization Problem in Adaptive Virtual Environments

Department of Computer Science, Northwestern University

1 Dynamic adaptation problem in virtual execution environments

A virtual execution environment consisting of virtual machines (VMs) interconnected with virtual networks provides opportunities to dynamically optimize, at run-time, the performance of existing, unmodified distributed applications without any user or programmer intervention. Along with resource monitoring and inference and application-independent adaptation mechanisms, efficient adaptation algorithms are key to the success of such an effort. Here, we formalize the adaptation problem, prove that it is NP-hard.

1.1 Problem formulation

We formalize the problem as follows:

Problem 1 (Generic Adaptation Problem In Virtual Execution Environments (GAPVEE))

INPUT:

- A directed graph \(G = (H, E) \)
- A function \(bw : E \rightarrow \mathbb{R} \)
- A function \(lat : E \rightarrow \mathbb{R} \)
- A function \(compute : H \rightarrow \mathbb{R} \)
- A function \(size : H \rightarrow \mathbb{R} \)
- A set, \(VM = (vm_1, vm_2, \ldots, vm_n) \), \(n \in \mathbb{N} \)
- A function \(vm_{compute} : VM \rightarrow \mathbb{R} \)
- A function \(vm_{size} : VM \rightarrow \mathbb{R} \)
- A set of ordered 4-tuples \(A = \{(s_i, d_i, b_i, l_i) : s_i, d_i \in VM; b_i, l_i \in \mathbb{R}; i = 1, \ldots, m\} \)
- A set of ordered pairs \(M = \{(vm_i, h_i) : vm_i \in VM, h_i \in H; i = 1, 2, \ldots, r \leq n\} \)
OUTPUT: vmap : VM → H and R : A → 𝒫 such that

- \(\sum_{\text{vmap}(vm) = h} (\text{vm_compute}(vm)) \leq \text{compute}(h), \forall h \in H \)
- \(\sum_{\text{vmap}(vm) = h} (\text{vm_size}(vm)) \leq \text{size}(h), \forall h \in H \)
- \(h_i = \text{vmap}(vm_i), \forall M_i = (vm_i, h_i) \in \mathcal{M} \)
- \((bw_e - \sum_{e \in R(A_i)} b_i) \geq 0, \forall e \in E \)
- \((\sum_{e \in R(A_i)} \text{late}_e) \leq l, \forall e \in E \)
- \(\sum_{i=1}^{m} (\min_{e \in R(A_i)} \{ \text{rc}_e \}), \text{where } \text{rc}_e = (bw_e - \sum_{e \in R(A_i)} b_i), \text{is maximized} \)

2 A special case of the adaptation problem

The generic adaptation problem seeks a mapping, vmap from VMs to hosts and routing, R of VM traffic over the overlay network, G. To establish the hardness of the problem, we consider a special case of the problem wherein all the VM to host mappings are constrained by the ordered pairs \(\mathcal{M} \) and latency demands are dropped, leaving us only with the routing problem.

Since the mappings are pre-defined, we can formulate the problem in terms of only the hosts and exclude all VMs. Also, as the latency demands have been dropped, the application 4-tuple reduces to 3-tuple, \(A_i = (s_i, d_i, b_i) \), \(s_i, d_i \in H; b_i \in \mathbb{R}, i = 1, 2 \ldots m \). Notice that now \(s_i, d_i \in H \) as VM to host mappings are fixed and VMs are synonymous with the hosts that they are mapped to.

2.1 Problem formulation

We formalize the problem as follows:

Problem 2 (Routing Problem In Virtual Execution Environments (RPVVE))

INPUT:

- A directed graph \(G = (H,E) \)
- A function \(\text{bw} : E \rightarrow \mathbb{R} \)
- A set of ordered 3-tuples \(A = \{(s_i, d_i, b_i) | s_i, d_i \in H; b_i \in \mathbb{R}; i = 1, \ldots, m\} \)

OUTPUT: \(R : A \rightarrow \mathcal{P} \) such that

- \((bw_e) - (\sum_{e \in R(A_i)} b_i) \geq 0, \forall e \in E, \)
- \(\sum_{i=1}^{m} (\min_{e \in R(A_i)} \{ \text{rc}_e \}), \text{where } \text{rc}_e = (bw_e - \sum_{e \in R(A_i)} b_i), \text{is maximized} \)
3 Analysis

3.1 Analysis of RPVEE

The NP-hardness for the problem is established by reduction from the Edge Disjoint Path Problem (EDPP) which has been shown to be NP-complete [1]. To prove the NP-hardness of RPVEE we take any arbitrary instance of EDPP and convert it to a particular instance of the decision version of RPVEE, RPVEED. We then show that EDPP will have a “Yes” solution if and only if we have a solution to the RPVEED.

This can also be stated as, we consider an arbitrary instance of EDPP and convert it to a particular instance of of RPVEED. We show that if a polynomial-time solution exists for the RPVEED, then it will solve any arbitrary instance of EDPP. This boils down to proving the following:

- A polynomial-time solution to the particular instance of RPVEED will also be a polynomial-time solution to any arbitrary instance of EDPP.
- If no polynomial-time solution exists to RPVEED then no polynomial-time solution exists for any arbitrary instance of EDPP.

The edge disjoint path problem (EDPP) is specified as:

Problem 3 (Edge Disjoint Path Problem (EDPP))

INPUT:
- A graph $G = (H, E)$, $|H| = p$, $|E| = q$
- A set of 2-tuples $A = \{(s_i, d_i) \mid s_i, d_i \in H; i = 1, \ldots, m\}$

OUTPUT:
- $\forall(s_i, d_i) \in A$ to determine if their exist edge disjoint paths in $G = (H, E)$

The decision version of RPVEE (RPVEED) is specified as:

Problem 4 (Decision version of Routing Problem In Virtual Execution Environments (RPVEED))

INPUT:
- A directed graph $G = (H, E)$
- A function $bw : E \to \mathbb{R}$
- A set of ordered 3-tuples $A = \{(s_i, d_i, b_i) \mid s_i, d_i \in H; b_i \in \mathbb{R}; i = 1, \ldots, m\}$

OUTPUT: $R : A \to \mathcal{P}$ such that
- $(bw_e) - \left(\sum_{e \in R(A_i)} b_i \right) \geq 0, \forall e \in E$,
- $\sum_{i=1}^{m} \left(\min_{e \in R(A_i)} \{rc_e\} \right)$, where $rc_e = (bw_e - \sum_{e \in R(A_i)} b_i), \geq k,k \in \mathbb{R}$
Lemma 1 If a polynomial-time solution exists for RPVEED, then a solution exists for any arbitrary instance of EDPP.

Proof The existence of a polynomial time solution to the routing problem implies that \(\sum_{i=1}^{m} \left(\min_{e \in R(A_i)} \{ r_c \} \right) \), where \(r_c = (bw_e - \sum_{e \in R(A_i)} b_i) \geq k, k \in \mathbb{R} \). Since the contributions from any path can be either 0 or \(\varepsilon \), it is implied that all 3-tuples are mapped such that only edges with weights \((i + \varepsilon)\) are part of the paths, i.e. edges \(\in E \). Further, each of these edges can be part of only a single path since all demands, \(d_i \), are 1 and all the edge weights are \(< 2\). This implies that each of the mapped paths are edge disjoint. This proves that the existence of a polynomial-time solution to the particular instance of our problem implies a solution to any arbitrary instance of the edge disjoint path problem.

Lemma 2 If no polynomial-time solution exists to RPVEED then it implies that no polynomial-time solution exists for any arbitrary instance of EDPP.

Proof We will prove this by contradiction. Let's assume a polynomial-time solution exists for the edge disjoint path problem, while no polynomial-time solution exists for the particular instance of the routing problem.

The capacities for all the edges participating in the paths are \((1 + \varepsilon)\) and each edge participates only in a single path. The residual bottleneck bandwidth for each mapped path will be \(\varepsilon \). Since we would have successfully mapped \(k \) such paths, the sum of the residual bottleneck bandwidths for the paths would be \(k \cdot \varepsilon \). This implies that there exists a polynomial-time solution to the particular instance of the routing problem, thus completing the proof by contradiction.

Theorem 1 RPVEE is NP-hard.

Proof For reducing EDPP to an instance of RPVEED, construct a directed graph \(G' = (V, E') \) where \(bw((u, v)) = 1 + \varepsilon \) if \((u, v) \in E\) and \(bw((u, v)) = 1 \) if \((u, v) \nsubseteq E\). Further for all \((s_i, t_i) \in S\), let \((s_i, d_i, 1) \in A\). It is obvious that this reduction can be done in \(O(n^2) \).

Since we can reduce, in polynomial-time, a NP-complete problem, EDPP, to RPVEED and by Lemma 1 and Lemma 2, we have proved that the transformation works, we have proved RPVEED to be NP-hard. This proves that the optimization version of RPVEED, RPVEE, is NP-hard.

3.2 Analysis of GAPVEE

The NP-hardness for the problem is established by reduction from RPVEED, which has already been shown to be NP-complete. To prove the NP-hardness of GAPVEE we take any arbitrary instance of RPVEED and convert it to a particular instance of the decision version of GAPVEE, GAPVEED. We then show that RPVEED will have a “Yes” solution if and only if we have a solution to the GAPVEED.

The decision version of GAPVEE (GAPVEED) is state as follows
Problem 5 (Decision version of Generic Adaptation Problem In Virtual Execution Environments (GAPVEED))

INPUT:
- A directed graph \(G = (H, E) \)
- A function \(bw : E \rightarrow \mathbb{R} \)
- A function \(lat : E \rightarrow \mathbb{R} \)
- A function \(compute : H \rightarrow \mathbb{R} \)
- A function \(size : H \rightarrow \mathbb{R} \)
- A set, \(VM = (vm_1, vm_2, \ldots, vm_n), n \in \mathbb{N} \)
- A function \(vm_compute : VM \rightarrow \mathbb{R} \)
- A function \(vm_size : VM \rightarrow \mathbb{R} \)
- A set of ordered 4-tuples \(A = \{ (s_i, d_i, b_i, l_i) | s_i, d_i \in VM; b_i, l_i \in \mathbb{R}; i = 1, \ldots, m \} \)
- A set of ordered pairs \(M = \{ (vm_i, h_i) | \text{vm}_i \in VM, h_i \in H; i = 1, 2 \ldots, r \leq n \} \)

OUTPUT: \(\text{vmap} : VM \rightarrow H \) and \(R : A \rightarrow \mathbb{P} \) such that

- \(\sum_{\text{vmap}(vm)=h} (vm_compute(vm)) \leq \text{compute}(h), \forall h \in H \)
- \(\sum_{\text{vmap}(vm)=h} (vm_size(vm)) \leq \text{size}(h), \forall h \in H \)
- \(h_i = \text{vmap}(\text{vm}_i), \forall M_i = (\text{vm}_i, h_i) \in M \)
- \((bw_e - \sum_{e \in R(A)} b_i) \geq 0, \forall e \in E \)
- \((\sum_{e \in R(A)} lat_e) \leq l_i, \forall e \in E \)
- \(\sum_{i=1}^{m} \left(\min_{e \in R(A)} \{rc_e\} \right), \) where \(rc_e = (bw_e - \sum_{e \in R(A)} b_i), \geq k, k \in \mathbb{R} \)

Theorem 2 GAPVEE is NP-hard.

Proof For reducing RPVEED to an instance of GAPVEED, construct a directed graph \(G = (H, E) \) where

- \(\text{lat}((u, v)) = 0 \forall (u, v) \in E \)
- \(\text{compute}(h) = (n + \epsilon) \forall h \in H \)
- \(\text{size}(h) = (n + \epsilon) \forall h \in H \)

Also introduce a set, \(VM = (vm_1, \ldots, vm_m) \), such that \(\forall (s_i, d_i, b_i) \in A \) (RPVEED), \(s_i, d_i \in VM \). This would define the set of ordered pairs.

Further \(\forall \text{vm} \in VM \)
vm_compute(vm) = 1
vm_size(vm) = 1

Finally for all \((s_i, d_i, b_i) \in \mathcal{A} (RPVEED)\), let \((s_i, d_i, b_i, 1) \in \mathcal{A} (GAPVEED)\).
It is obvious that this reduction can be done in \(O(n^2)\).
Since we can reduce, in polynomial-time, a NP-complete problem, RPVEED, to GAPVEED and since it is trivially clear that a polynomial-time solution to RPVEED will exist if and only if a polynomial-time solution to GAPVEED exists, we have proved GAPVEED to be NP-hard. This proves that the optimization version of GAPVEED, GAPVEE is NP-hard.

References