2-4 @ indices, not elements
(1,5) (2,5) (3,5) (4,5) (3,4)

5 \{ n, n-1, \ldots, 1 \}\n\frac{n \cdot (n-1)}{2} \text{ inversions.}

6 \Theta(n+k) \text{ where } n \text{ is \# elements and } k \text{ \# inversions}

C\text{OUNT-INVERSIONS}(A, p, r)
1 \text{ if } p < r
2 \text{ then } q \leftarrow \lfloor (p + r)/2 \rfloor
3 \quad l \leftarrow \text{C\text{OUNT-INVERSIONS}(A, p, q)}
4 \quad r \leftarrow \text{C\text{OUNT-INVERSIONS}(A, q, r)}
5 \quad m \leftarrow \text{M\text{ERGE-C\text{OUNT}(A, p, q, r)}}
6 \quad \text{return } l + r + m
7 \text{ else}
8 \quad \text{return 0}

M\text{ERGE-C\text{OUNT}(A, p, q, r)}
1 \quad n_1 \leftarrow q - p + 1
2 \quad n_2 \leftarrow r - q
3 \quad \text{create arrays } L[1..n_1 + 1] \text{ and } R[1..n_2 + 1]
4 \quad \text{for } i \leftarrow 1 \text{ to } n_1
5 \quad \quad \text{do } L[i] \leftarrow A[p + i - 1]
6 \quad \quad \text{for } j \leftarrow 1 \text{ to } n_2
7 \quad \quad \quad \text{do } R[j] \leftarrow A[q + j]
8 \quad L[n_1 + 1] \leftarrow \infty
9 \quad R[n_2 + 1] \leftarrow \infty
10 \quad i \leftarrow 1
11 \quad j \leftarrow 1
12 \quad l \leftarrow 0 \text{ \(\triangle\) for counting inversions}
13 \quad \text{for } k \leftarrow p \text{ to } r
14 \quad \quad \text{do if } L[i] < R[j]
15 \quad \quad \quad \text{then } A[k] \leftarrow L[i]
16 \quad \quad \quad i \leftarrow i + 1
17 \quad \quad \quad \text{else } A[k] \leftarrow R[j]
18 \quad \quad \quad j \leftarrow j + 1
19 \quad \quad \quad l \leftarrow l + (n_1 - i) \text{ \(\triangle\) increment by \# of elements still in } L
3.3(a)

\[
\begin{align*}
1 & \quad n^{1/\lg n} \\
\lg (\lg^* n) & \\
\lg^* (\lg n) & \\
\lg^* n & \\
\lg^* n & \\
2 & \\
\ln \ln n & \\
\sqrt{\lg n} & \\
\ln n & \\
2 & \\
\sqrt[2]{\lg n} & \\
\lg n & \\
(\sqrt{2}) & \\
n & \\
2 & \\
\lg n & \\
\lg(n!) & \\
n & \\
n^2 & \\
n^3 & \\
n^{\lg \lg n} & \\
(\lg n)! & \\
(\lg n) & \\
(\lg n) & \\
(3/2)^n & \\
2^n & < n < 2^n < e^n < n! < (n!)! & < 2^{2^n} < 2^{2^{2n}}
\end{align*}
\]

3.3(b)

\[f(n) = \begin{cases}
2^{2^n} & \text{if } n \text{ is even} \\
\emptyset & \text{if } n \text{ is odd}
\end{cases}\]
3.6

\[
\begin{align*}
&[n] \\
&[\log^*(n)] \\
&[\log n] \\
&[\log \log n] \\
&[\log_2 \log n] \\
&[\log_{\log n} n] \\
&[1 \times 7 + 2]
\end{align*}
\]
4-1. b) $\Theta(n)$

c) $\Theta(n^2)$

d) $\Theta(\sqrt{n \lg n})$

e) $\Theta(\lg \lg n)$

4-4. b) $\Theta(n \lg \lg n)$

c) $\Theta(n \lg n)$

d) $\Theta(n \lg n)$

e) $\Theta(n)$

f) $\Theta(n \lg n)$

j) $\Theta(n \lg \lg n)$
The if part: If for all \(i = 1, 2, \ldots, m - 1 \) and \(j = 1, 2, \ldots, n - 1 \), we have

\[
\]

(1)

then \(A \) is Monge. That is, for all \(i, j, k, \) and \(l \) such that \(1 \leq i < k \leq m \) and \(1 \leq j < l \leq n \),

\[
\]

(2)

Statement (2) is equivalent to (3), where \(a, b > 0 \):

\[
\]

(3)

If \(a \) and \(b \) are zero, this is obviously true; it amounts to saying that \(2A[i, j] = 2A[i, j] \). If \(a \) and \(b \) are 1, then this is true too, because it is equivalent to the given hypothesis (1).

Now let us assume temporarily that \(b = 1 \), and make the induction hypothesis that for all \(a' < a \), (3) holds with all occurrences of \(a \) replaced by \(a' \). In particular, when \(a' = a - 1 \), the statement holds. Then we can prove (5) by renaming \(i \) to \(i + a' \); we obtain (1), our given hypothesis. Now we can iterate down through all \(a' < a \) using the same idea, until we reach the base case, in which \(a' = 1 \), in which case the statement clearly holds.

Now let us make the induction hypothesis that for all \(b' < b \), (3) holds with all occurrences of \(b \) replaced with \(b' \). In particular, if \(b' = b - 1 \), then for any \(a \),

\[
\]

by the result of the preceding paragraph. Iterating down through all \(b' < b \) until we reach 1, proves the statement for every \(b \) and every \(a \), which is our goal.

The only if part

It is easy to show the only if part; the given hypothesis is a special case of the constraint as viewed in (3), with \(a \) and \(b \) as 1.

\[b. \]

The violation of the constraint

\[
\]

for \(1 \leq i < k \leq m \) and \(1 \leq j < l \leq n \) is violated when \(i = 1, k = 2, j = 2, \) and \(l = 3 \), because \(A[1, 3] = 22, A[2, 2] = 6, A[2, 3] = 7, \) and \(A[1, 2] = 23 \), so

\[
\]

This can be fixed by changing \(A[1, 3] \) to 24. Then \(A[1, 3] + A[2, 2] = 30 \).

We must also make sure that this change doesn’t cause another upset to the Monge array, which can be ensured by making sure that \(A[1, 3] + A[2, 4] \) (32) is less than \(A[1, 4] + A[2, 3] \) (39), which is so.
We would like to prove that if \(f(i) \) is the index of the column containing the leftmost minimum element of row \(i \), then \(f(1) \leq f(2) \leq \ldots f(m) \) for any \(m \times n \) Monge array. Equivalently, \(f(i) \leq f(i+1) \) for all \(i \) between 1 and \(m \).

Assume \(1 \leq i < k \leq m \) and \(1 \leq j < l \leq n \), and \(f(i) = l \). Because of the last assumption, we know also that \(A[i, j] > A[i, l] \). The constraint on Monge arrays tells us that

\[
\]

In order for this equation to be satisfied, \(A[k, l] \) must be less than \(A[k, j] \), by at least the amount that \(A[i, j] \) is larger than \(A[i, l] \). More formally, suppose that \(A[i, j] = A[i, l] + d \), where \(d \) is positive.

\[
\Rightarrow d + A[k, l] \leq A[k, j]
\]

If \(A[k, l] \) were greater than or equal to \(A[k, j] \), the last equation would be contracted, no matter how small \(d \) is, as long as \(d \) is positive. Therefore \(A[k, l] < A[k, j] \), so \(A[k, j] \) could not be the minimum element in row \(k \), i.e. \(f(k) \) could not be \(j \), for any \(j \) less than \(l \).

To summarize, if \(k > i \), then \(f(i) \leq f(k) \). In particular, letting \(k = i + 1 \), we have \(f(i) \leq f(i + 1) \).

d.

Let \(f(0) = 1 \) and \(f(m + 1) = n \), for simplicity. For each odd row \(i \), consider the elements \(A[i, f(i - 1)] \) through \(A[i, f(i + 1)] \), and take the least one. We are guaranteed that the leftmost minimum element for this row lies in this range, because \(f(i - 1) \leq f(i) \leq f(i + 1) \). There are \(f(i + 1) - f(i - 1) + 1 \) many elements in that range, so we can represent the number of elements to consider with the following sum:

\[
\sum_{i=1}^{m} f(i + 1) - f(i - 1) + 1 \\
= \sum_{i=1}^{m} f(i + 1) - f(i - i) + \sum_{i=1}^{m} 1 \\
= f(m + 1) - f(0) + \sum_{i=1}^{m} 1 \\
= f(m + 1) + \lceil m/2 \rceil \\
= n + \lceil m/2 \rceil \\
= O(m + n)
\]

e.

We showed in part \((d)\) that the cost of computing the leftmost minimum element in each of the odd rows for an \(m \times n \) Monge array when the leftmost minimum elements of the even rows were known was \(O(m + n) \).
This is the final stage of computing the leftmost minimum element in each row of an $m \times n$ Monge array; there is an earlier stage in which these elements for the even rows are computed. This is done by taking only the even rows and creating a subarray A', with $\lfloor m/2 \rfloor$ rows and n columns. Hence the recurrence to describe the cost of this algorithm is this:

$$T(m, n) = T\left(\frac{m}{2}, n\right) + O(m + n)$$

To solve this recurrence, I use the telescoping method. Consider the following sequence of equations as a sum, with $O(m + n)$ replaced with $c(m + n)$, c a constant.

$$T(m, n) = T\left(\frac{m}{2}, n\right) + O(m + n)$$
$$T\left(\frac{m}{2}, n\right) = T\left(\frac{m}{2^2}, n\right) + c\left(\frac{m}{2} + n\right)$$
$$T\left(\frac{m}{2^2}, n\right) = T\left(\frac{m}{2^3}, n\right) + c\left(\frac{m}{2^2} + n\right)$$
$$\vdots$$
$$T\left(\frac{m}{2^{k-1}}, n\right) = T\left(\frac{m}{2^k}, n\right) + c\left(\frac{m}{2^{k-1}} + n\right)$$

The first term on the right-hand side of the last equation can be rewritten as $T(1, n)$, which is $O(n)$; it is the cost of finding the leftmost minimum in a matrix with one row of size n. Adding the equations, we have

$$T(m, n) = O(n) + c \sum_{i=1}^{k} 2^{-i}m + n$$
$$= O(n) + cm \sum_{i=1}^{k} 2^{-i}m + n \log m$$

Since $\sum_{i=1}^{k} 2^{-i} = k < 1$, that expression multiplied by m is less than m. So $cm \sum_{i=1}^{k} 2^{-i} = O(m)$

$$T(m, n) = O(n) + O(m) + O(n \log n)$$
$$= O(m) + O(n \log n).$$