Time Dependent Visual Adaptation for Fast, Realistic Image Display

by Sumanta N. Pattanaik, Jack Tumblin (speaker), Hector Yee, and Donald P. Greenberg
Program of Computer Graphics
Cornell University

Tone Mapping Problem

Domain of Human Vision: from ~10^{-6} to ~10^{-2} cd/m^2

Range of Typical Displays: from ~1 to ~100 cd/m^2

Tone Mapping Function

Appearance-Preserving Scene-to-Display map
Adaptation makes it possible Adaptation level: ‘best vision’ level
Previous Work: Static Models

Global Adaptation:
Tumblin & Rushmeier '93, Chiu et al. '93, Ward '94, Schlick '95, Ferwerda et al. '96, Tanaka & Ohnishi '97, ...

Local Adaptation:
Spencer et al. '95, Ward-Larson et al. '97, Pattanaik et al. '97, Jobson & Rahman et al. '97, Tumblin et al. '99, Tumblin & Turk '99, ...

Daylight Scene: Tone Mapped

Display Scene Luminance (log10(cd/m²))

Moonlight Scene: Tone Mapped

Display Scene Luminance (log10(cd/m²))
Our Goal

Time-varying tone-mapping function: recreates *dynamic scene appearance* on ordinary displays (CRTs, printers, etc.)

- Simple, practical, fast, general
- Built from published visual measurements

 Adelson `82, Baker `49, Dowling `87, Graham & Hood `92,
 Hunt `95, Hayhoe *et al.* `87, Hood *et al.* `86,79, Nelson `66,
 Valeton & Van Norren `83, Walraven *et al.* `84, `90, etc.

GOAL:
Time-Dependent Tone Map

- **t=0**: Scene intensities
- **t=15ms**: Scene intensities

Display adaptation level
Scene intensities

Display adaptation level
Scene intensities

Scene intensities
GOAL: Time-Dependent Tone Map

Time

Scene Intensities

adaptation level

Scene Intensities
Background:

Time-course of Adaptation

Two Dominant Mechanisms:

Bleaching & Recovery of Photopigment
- Slow, asymmetric reaction times (~1-1000 sec)
- Separate time courses for rods, cones

Neural Interactions within retina
- Multiple mechanisms
- Fast, ~symmetric reaction times (10 - 3000 mS)

Background:

Bleaching Dynamics

- More time in light

Whole retina (bullfrog)

New: Dynamic Response Model

- Response curve follows scene intensities
 - But slowly, smoothly; lags behind
 - Curve shape changes as it moves
 - Static response = Hunt'95 model
New: Dynamic Response Model

Goal level drives rate equations
(exponential filters) that set curve parameters:
• offset σ set by Neural Interactions, and ...
• height B set by Bleaching

Tone Mapper Construction

MATCHED!
Desktop CRT Response Range

Display the Scene Responses: How?

Find REF_WHT and REF_BLK
“Least Change” Linear Appearance Matching

Results:
Tunnel Video

WITHOUT Entry Lighting
New Dynamic Tone Map
Static Tone Map
Results:

WITHOUT Entry Lighting

WITH Entry Lighting

New Dynamic Tone Map

Results:

Time-Varying Tone Mapper

Dynamic appearance effects:
- Exaggerate Fast Changes *(lights on/off)*
- Minimize Slow Changes *(late afternoon)*
- *(Dark ⇒ Light)* is faster than *(Light ⇒ Dark)*

More accurate animation:
- Useful aid to traditional lighting methods
- Visibility predictions for engineering, safety ...

Conclusions

New Time-varying Tone Mapping Operator
- Models bleaching & neural dynamics
- Improves animation accuracy
- Simple, fast, general

Please use it! free source code:
- see SIGGRAPH 2000 Proceedings CD-ROM, or
- website: www.graphics.cornell.edu/~jet
Future Work

- Better ways to find goal levels
 mouse, eye trackers, HMDs, saliency maps (Yee2000)

- Include more visual properties
 chromatic adaptation, acuity, afterimages, ...

- Local adaptation for high contrast scenes

This work was supported by

- The NSF Science and Technology Center for Computer Graphics and Scientific Visualization (ASC-8920219),
- MRA Parallel Global Illumination Project (ASC-9523483),
- Equipment generously donated by Hewlett-Packard and Intel Corporation, and
- Computer cluster time from Cornell Theory Center.

We also thank:

- SuAnne Fu for creating the 3D tunnel model, and
- Peggy Anderson and Jonathan Conson-Rikert for careful editing and proofreading

Simple Color Model

- Cone response slope S sets ‘colorfulness’
- Find scene color ratios $\log(R/L, G/L, B/L)$
- Scale by S for response $S^*\log(R/L, G/L, B/L)$