Future Directions in Interactive Fiction

CS 395 Computer Game Design
Winter 2002
Ken Forbus
Overview

• Where is interactive fiction now?
• Where is interactive fiction going?
 – Bates’ Oz Project
 – Crawford’s Erasmatazz
 – Hayes-Roth’s Virtual Theater
 – Perlin’s Improv project
Recall our model of game design

- **Story**: How you want the player to think of the game. Its plot and activities, expressed in terms of the imagined world.
- **Model**: The rules and laws of the imagined world as instantiated in the game. What kinds of things there are in it (*ontology*), its physics and sociology.
- **Implementation**: The software that implements the model and whose execution provides the player’s experience.
Sources of Immersion (aka “Time warp factor”)

• Engaging imagined world
 – Exciting/intriguing story line, events

• Engaging modeled world
 – Great descriptions (text or graphics)
 – Charming details (e.g., chain vomiting in Theme Park)

• Avoiding discrepancies between modeled and imagined world
 – Can’t do “obvious” action
 – Actions have unrealistic consequences

• Key design issue: Richness/Discrepancy tradeoff
Text-based interactive fiction

- Driving force: Implementation choice of text descriptions and commands as interface
- Minimal model: Discrete locations, actions, time, and events.
 - Inform provides rich modeling language, but doesn’t have floating point!
- Richer models are possible but rare
 - e.g., Infocom’s Border Zone synched game time to real time
 - Continuous change may be poor match for interface
Evolution in graphics helps drive evolution of interactive fiction

• More 2D graphics
 – Mouse-hunt games

• More video intense
 – More cut scenes
 – Player as steering video stream

• More 3D graphics/animation modeling
 – Exploiting stunning rise in 3D rendering hardware
 – Limitations:
 • Modeling requires substantially more resources
 • NPC actions/movements tightly scripted
New direction: Adding Intelligence

• Graphics will continue to evolve
 – Provides richer canvas for the imagined world
 – Richer canvas ⇒ rapid increase in complexity of authoring

• Revolutionary changes are coming from AI technology
 – Richer models of characters
 – Richer models of social interactions
 – Ability to embed author’s intent into structure of the world
 – Richer world infrastructures ⇒ higher immersion experiences
Oz Project (CMU)

• Goal: Creation of interactive drama
• Requires
 – Believable Agents
 – Drama Managers
Believable Agents

• Things (hardware or software) that act alive
• For stories, serve as other characters in plot
• Also finding uses in
 – Educational software (guides, e.g., Lester’s work at UNC)
 – Computer interfaces more generally
What is needed for storytelling?

• Personality
 – What makes someone unique

• Emotion
 – Exhibiting their own, and responding to others appropriately

• Self-motivation
 – Their own drives and goals help govern their behavior

• Social relationships
 – Consistent and evolving interactions with others over time

• Change
 – They learn and grow, consistent with their personality

• Broadly capable
 – Can carry out a rich variety of behaviors in pursuit of their goals in an interactive environment
Intelligence and believability

• Must be smarter than today’s NPCs
 – avoid brittleness
• Don’t have to be brilliant
• Don’t even have to be human-level intelligence
 – Space of interactions only has to support needs of the story
Example:
Edge of Intention

• Simple, 3D animated world
• The Woggles
 – move by bouncing from place to place.
 – have “body language”, expressing emotions by changing shape
 – have social relationships
 – engage in social behavior
Interaction

• The player’s avatar is also a woggle
• By interacting with woggles, you find out about their social structure.

No plot, but very engaging behaviors
 – Personalities of woggles become quickly clear
 – Threaten one, its friend intervenes to try and scare you off
 – Join or start games of follow the leader
Drama management

• Authoring involves creating a dramatic arc
 – Fixed in traditional fiction
 – Various branching structures possible in interactive fiction

• Problem: How to tell a great story while giving player freedom?
 – Complexity of possible branching in rich worlds quickly makes authoring unmanageable
 – Usual solutions of sharply limiting world or player restrictive
Storytelling as Search

• Consider a story as a sequence of scenes
 – Scene = significant event/turning in the plot
 – Lots of variability in how a scene plays out

• Scenes and relationships between them form a space of possible plots
 – Relationships that must hold between scenes structure the space
 – Some relationships inviolable
 • e.g., establishing prerequisite
 – Some can be varied
 • e.g., establishing motivation for an action before or after the action itself
Drama Manager

• Given:
 – Evaluation function that rates sequences of scenes
 – Methods for affecting the game

• Ensure:
 – The sequence of scenes a player experiences corresponds to a good story

Where player is now

Choice of next scene determined by dramatic potential of possible futures
Drama management as metagaming

• Drama Manager in effect is playing a game
 – Presumably non-adversarial
 – Ideally, the player doesn’t know that it is there

• “Moves” for the Drama Manager
 – Changing behavior of NPCs
 – Random events in the world
 – Acts of God
Crawford’s Erasmatazz

• Interactive storytelling = you interact with characters in an authored world
 – Menu-based interaction
• Player focus is on interacting with NPCs rather than physical actions
• Overall story scripted by author, but no drama manager
• Interesting part is modeling
 – Moods: Anger, arousal, joy, fear
 – 21 personality traits (e.g., integrity, timidity, …)
Hayes-Roth’s Virtual Theater Project

• Uses AI blackboard technology as implementation for characters
• Simple numerical personality models
• Examples
 – Kids tell stories by giving puppets high-level instructions
 – Agents as social facilitators in shared environments (Erin the bartender)
Perlin’s Improv project

- Uses layered architecture inspired by robotics, animal research to provide high-level animation capabilities
- Animator specifies high-level actions and moods, the model of the character does the rest
Ken Perlin’s Responsive Face demo