Classical Problem Solving

EECS 344

Winter, 2008
Overview

• The classical problem space model
• An implementation
 – How not to build it
 – Variations on the theme
• Examples
 – Subway navigation
 – Algebra problem solving
Early view of problem solving

• Problem solving = search in problem space
• Problem space =
 – set of states, representing particular situations/configurations/objects of the domain
 – set of operators, representing ways of generating new states from existing states.
• Problem = problem space + initial state + method for recognizing the goal
How AI would be done

- Some people define domains as problem spaces
- Other people write search routines
CPS architecture

- Define problem space/search routine interface
- Implement some search routines
- Implement some problem spaces
What operations do we need on states?
Operations on states

- Goal detection
- Identity, to detect looping
- Display, to see the answer
- Expand it, by applying operators to it.
Implementation choices

• Define particular format for states, operators and live with it.
• Use CLOS
• Fake OOP by using procedural interface
Search Routines

• Start with breadth-first search
• Then define variations
What’s wrong with this program?

(defun bsolve (initial)
 (bsolve1 (list (list initial initial))))

(defun bsolve1 (queue)
 (if (goal-recognizer (caar queue))
 (values (caar queue) (cdar queue))
 (bsolve1 (append (cdr queue) (bsolve1 (expand-path (car queue)))))))
Problems

• Presumes tail-recursion
• Doesn’t make paths explicit as an entity
• Doesn’t provide appropriate level of debugging information
• Doesn’t provide statistics
Let’s look at the industrial-strength version...
Example: Subway Navigation
Modeling subways

• Stations
 – have the lines they are on
 – x,y map coordinates

• Lines
 – have the stations on them listed
Problem Space

• state = station

• operator: Taking a line to another station
 – Can take the train to any station in one conceptual step (ignoring fares)
Let’s look at the code...
Example: Solving algebraic equations

• $3X = 5X - 2$, what is X?

• Lots of transformations one can use in solving algebra problems

• Significant novice-expert differences

• What do experts know that novices don’t?
Bundy’s claim

- Experts have *control knowledge* (aka metaknowledge) that lets them avoid many false paths
- Search still necessary
- But not very much
Three kinds of laws

• Attraction methods
• Collection methods
• Isolation methods
Attraction methods

- Bring occurrences of the unknown “closer together”
- Examples:
 - $W U + W V \rightarrow W(U + V)$
 - $\log(U,w) + \log(V,w) \rightarrow \log(UV,w)$
Collection methods

• Reduce the number of occurrences of the unknown
• Examples
 - $UW + UY \rightarrow U(W+Y)$
 - $(U + V)(U - V) \rightarrow U^2 - V^2$
Isolation methods

• Reduces the depth of the occurrences of the unknown

• Examples

 - \(U - W = Y \rightarrow U = Y + W \)
 - \(\log(U, w) = Y \rightarrow U = W^Y \)
Implementing Bundy’s idea in CPS

- **State** = equation, in usual Lisp form
- **Operator** = procedure that
 - tests to see if the law is relevant
 - if so, proposes result of applying it.
...plus some intricate details

- An algebraic simplifier to handle “obvious” transformations
- Examples:
 \[
 \ldots + 0 + \ldots \rightarrow \ldots + \\
 \ldots + 3 + \ldots + 5 + \rightarrow \ldots + 8 + \\
 (U + (V + W)) \rightarrow (U + V + W)
 \]
Let’s spelunk...
Moral of the Bundy story

• Knowledge is good. Control knowledge is especially good.
 – Careful analysis of a domain can avoid a whole lot of search
 – More leverage in knowledge than in search techniques
Assignment

• Reading: BPS, chapters 4 & 5
• Homework One: Due by start of class, 1/17/08
 Problem 9, page 65. Turn in just the final system, plus the call you used to invoke it to solve part (c).