Exploration

CS395 GAI
Spring, 2005
Abstract Architecture strategy-game AI

- Decisions to be made
- Decision-Maker
- Decisions
- Model of current game state
- Model of Game World
- Perceptual System
- Motor System
Sensing the World

• Need hooks into the simulator to gather information about game state
 – First step in building world model

• Design issues
 – How much abstraction to introduce?
 • If you’re also the world designer, can align simulation and AI perception quite closely
 – How much to record, over what period?
 • What is needed to support decision-making, learning?
Modeling the world

• Perception tells you what is happening
• Must be assessed in terms of
 – What your goals and plans are
 – What your opponents/allies goals and plans are
• Assessment process identifies
 – Threats
 – Progress
 – Opportunities
• Assessment process provides *situational awareness*
Changing the World

• Need hooks into world simulator
• Design tradeoffs
 – Controlling continuous changes
 • Factored out in turn-based designs
 • Require tight, often autonomous, feedback control
 – Need to report consequences
 • Actions don’t always succeed
Making Decisions

• Some dimensions of decision-making
 – Deliberative versus Reactive
 – Centralized versus Local
 – Hierarchical versus Flat
 – Learned versus Hard-wired

• Mostly orthogonal

• Often used in mixtures

• Trade-offs can be subtle
Deliberative versus Reactive

• Deliberative ➔ Construct a plan, then execute it
 – Plans often involve multiple steps, including sensing, conditional branching
 – Enables optimization, but can be slow

• Reactive ➔ Just do something, based on sensors
 – Provides rapid, reflex action
 – Can lead to silly behaviors if unanticipated situations arise
Centralized versus Local

• Centralized ➔ AI structured as computer player
• Local ➔ AI structured as models for what units should do in the simulated world
• Local often easier to implement
 – Combinatorics of explicit coordination can become nasty
 – Gradient methods used to provide simulation of coordination
Hierarchical versus Flat

• Hierarchical ➔ Use structure of the problem for divide-and-conquer
 – Example: Echelon distinctions in military ➔ different levels of AIs
 • Company, Squad, individual AIs
 – Factors decision-making to make it more manageable
 – Imposes extra overhead of communication between layers
Learned versus Hard-wired

• Hard-wired
 – Fast runtime execution, guaranteed understanding of local behavior
 – Brittle, can be too predictable for player, non-local interactions hard to debug

• Learned
 – Can adapt to player, provide surprises
 – Slower runtime execution, higher memory load, can lead to unpredictable, degenerate behaviors
Strategies for making decisions

• Goals can be achieved in many ways
• Situations often allow many actions
• How to choose?
 – Generate a set of alternatives
 – Compute numerical evaluation of each of them
 – Pick the best
 • Or, for variability in play, pick randomly with bias proportional to perceived quality of choices
Exploration

• Goals of exploration:
 – Find territory to expand into
 – Find your neighbors
 – Find out how soon you need a navy
 – Find exploitable terrain for defense
How does the FAP do it?

• See Phil Houk’s technical report
How to explore the whole world?

- Need to build a navy
 - Find coastal sites for cities
 - Develop technology to build ships
 - Map-making, …
 - Optimize order of technological advances?
 - Strategies for ferrying units
- Build more explorers
 - Manage more explorers
 - Send off in different directions
 - Distribute across land masses
- Build infrastructure
 - Roads, to get explorers to embarkation points
- Get alliances to share maps