Naïve Bayes Classifiers

Doug Downey
Northwestern EECS 395/495 Fall 2014
Naïve Bayes Classifiers

- Combines all ideas we’ve covered
 - Conditional Independence
 - Bayes’ Rule
 - Statistical Estimation
 - Bayes Nets

- …in a simple, yet accurate classifier
 - Classifier: Function \(f(x) \) from \(X = \{<x_1, \ldots, x_d>\} \) to Class
 - E.g., \(X = \{<\text{GRE, GPA, Letters}>\} \), Class = {yes, no, wait}
Classification task
- Learn function $f(x)$ from $X = \{<x_1, \ldots, x_d>\}$ to Class
- Given: Examples $D=\{(x, y)\}$

Probabilistic Approach
- Learn $P(\text{Class} = y \mid X = x)$ from D
- Given x, pick the maximally probable y
Probability => Classification (2 of 2)

• More formally
 ▶ \(f(x) = \text{arg max}_y P(\text{Class} = y \mid X = x, \theta_{\text{MAP}}) \)
 ▶ \(\theta_{\text{MAP}} \): MAP parameters, learned from data
 ▶ That is, parameters of \(P(\text{Class} = y \mid X = x) \)
 ▶ …we’ll focus on using MAP estimate, but can also use ML or Bayesian

• Predict next coin flip? Instance of this problem
 ▶ \(X = \text{null} \)
 ▶ Given \(D= \text{hhht…tht} \), estimate \(P(\theta \mid D) \), find MAP
 ▶ Predict \(\text{Class} = \text{heads} \) iff \(\theta_{\text{MAP}} > \frac{1}{2} \)
Dear Sir/Madam,
We are pleased to inform you of the result of the Lottery Winners International programs held on the 30/8/2004. Your e-mail address attached to ticket number: EL-23133 with serial Number: EL-123542, batch number: 8/163/EL-35, lottery Ref number: EL-9318 and drew lucky numbers 7-1-8-36-4-22 which consequently won in the 1st category, you have therefore been approved for a lump sum pay out of US$1,500,000.00 (One Million, Five Hundred Thousand United States dollars)
Representation

- $X = \text{document}$
- Task: Estimate $P(\text{Class} = \{\text{spam, non-spam}\} \mid X)$
- Question: how to represent X?
 - Lots of possibilities, common choice: “bag of words”

Dear Sir/Madam,
We are pleased to inform you of the result of the Lottery Winners International programs held on the 30/8/2004. Your e-mail address attached to ticket number: EL-23133 with serial Number: EL-123542, batch number: 8/163/EL-35, lottery Ref number: EL-9318 and drew lucky numbers 7-1-8-36-4-22 which consequently won in the 1st category, you have therefore been approved for a lump sum pay out of US$1,500,000.00 (One Million, Five Hundred Thousand United States dollars)
...

<table>
<thead>
<tr>
<th>Sir</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lottery</td>
<td>10</td>
</tr>
<tr>
<td>Dollars</td>
<td>7</td>
</tr>
<tr>
<td>With</td>
<td>38</td>
</tr>
<tr>
<td>...</td>
<td></td>
</tr>
</tbody>
</table>
Bag of Words

- Ignores Word Order, i.e.
 - No emphasis on title
 - No compositional meaning ("Cold War" -> "cold" and "war")
 - Etc.
 - But, massively reduces dimensionality/complexity

- Still and all...
 - Presence or absence of a 100,000-word vocab => $2^{100,000}$ distinct vectors
Naïve Bayes Classifiers

- $P(\text{Class} \mid \mathbf{X})$ for $|\text{Val}(\mathbf{X})| = 2^{100,000}$ requires $2^{100,000}$ parameters
 - Problematic.

- Bayes’ Rule:
 $$P(\text{Class} \mid \mathbf{X}) = \frac{P(\mathbf{X} \mid \text{Class}) \ P(\text{Class})}{P(\mathbf{X})}$$

- Assume presence of word i is independent of all other words given Class:
 $$P(\text{Class} \mid \mathbf{X}) = \prod_i P(X_i \mid \text{Class}) \ P(\text{Class}) / P(\mathbf{X})$$
 - Now only 200,001 parameters for $P(\text{Class} \mid \mathbf{X})$
Naïve Bayes Assumption

- Features are conditionally independent given class
 - \[\text{Not } P(\text{"Republican", "Democrat"}) = P(\text{"Republican"})P(\text{"Democrat"}) \]
 - but instead
 \[P(\text{"Republican", "Democrat"} \mid \text{Class} = \text{Politics}) = P(\text{"Republican"} \mid \text{Class} = \text{Politics})P(\text{"Democrat"} \mid \text{Class} = \text{Politics}) \]

- Still, an absurd assumption
 - (“Lottery” \(\perp\) “Winner” | SPAM)? (“lunch” \(\perp\) “noon” | Not SPAM)?

- But: offers massive tractability advantages and works quite well in practice
 - Lesson: Overly strong independence assumptions sometimes allow you to build an accurate model where you otherwise couldn’t
Getting the parameters from data

- Parameters $\theta = \{ \theta_{ij} = P(w_i | \text{Class} = j) \}$
- Maximum Likelihood: Estimate $P(w_i | \text{Class} = j)$ from D by counting
 - Fraction of documents in class j containing word i
 - But if word i never occurs in class j?
- Commonly used MAP estimate:
 - $(\text{# docs in class } j \text{ with word } i) + 1 \over (\text{# docs in class } j) + |V|$
Caveats

- Naïve Bayes effective as a classifier

- **Not** as effective in producing probability estimates
 - \(\prod_i P(w_i | \text{Class}) \) pushes estimates toward 0 or 1

- In practice, numerical underflow is typical at classification time
 - Compare sum of logs instead of product