Machine Learning
Instructor: Doug Downey
(some slides from Pedro Domingos, University of Washington)
Logistics

- **Instructor:** Doug Downey
 - Email: ddowney@eecs.northwestern.edu
 - Office hours: Mondays 3:30-4:30 (or by appt), Ford 3-345

- **TAs:** Mohammed Alam (Rony), Chen Liang, Nishant Subramani, Hosung Kwon, Jake Samson, Shengxin Zha

- **Web:** (linked from prof. homepage)
 - Also, Canvas and Piazza
Grading and Assignments (1 of 2)

<table>
<thead>
<tr>
<th>Assignment</th>
<th>Due Date</th>
<th>Points</th>
</tr>
</thead>
<tbody>
<tr>
<td>Homework 1</td>
<td>12-Apr-16</td>
<td>10</td>
</tr>
<tr>
<td>Homework 2</td>
<td>29-Apr-16</td>
<td>15</td>
</tr>
<tr>
<td>Project Proposal</td>
<td>7-Apr-15</td>
<td>5+5</td>
</tr>
<tr>
<td>Project Status Report</td>
<td>11-May-16</td>
<td>5+5</td>
</tr>
<tr>
<td>Homework 3</td>
<td>16-May-16</td>
<td>10</td>
</tr>
<tr>
<td>Homework 4</td>
<td>31-May-16</td>
<td>10</td>
</tr>
<tr>
<td>Project Website</td>
<td>8-Jun-15</td>
<td>25+5</td>
</tr>
<tr>
<td>Quizzes</td>
<td>Every Friday (Wk2-Wk9)</td>
<td>8</td>
</tr>
<tr>
<td>TOTAL POINTS</td>
<td></td>
<td>103</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Grade</th>
<th>A-</th>
<th>B+</th>
<th>B</th>
<th>B-</th>
<th>C+</th>
<th>C</th>
<th>C-</th>
<th>Etc...</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>93+</td>
<td>92-90</td>
<td>89-87</td>
<td>86-83</td>
<td>82-80</td>
<td>79-77</td>
<td>76-73</td>
<td>72-70</td>
</tr>
</tbody>
</table>
Grading and Assignments (2 of 2)

- Four homeworks (45 pts)
 - Submitted via e-mail according to hmwk instructions
 - Late penalty 10% per day – must be within 1 week of original deadline
 - Significant programming, some exercises
- Quizzes (8 pts) – Each Friday weeks 2-9
 - Bring a device to access Canvas. Practice quiz this week
- Project (35 pts + 15 peer review)
 - Teams of \(k \)
 - Define a task, create/acquire data for the task, train ML algorithm(s), evaluate & report
Prerequisites

- **Significant Programming Experience**
 - EECS 214, 325 or the equivalent
 - Example: implement decision trees (covered starting Wednesday)
- **Python** is the language we’ll use
 - But you’ll have skeleton code to help you through
 - (also, I don’t really know Python.)
- **Basics of probability**
 - E.g. independence
- **Basics of logic**
 - E.g. DeMorgan’s laws
Source Materials

- (“required”)
- Papers & Web pages
- Reading for this week:
 - Alpaydin, Ch 1, Ch 2 (skip 2.2, 2.3), Ch 9
 - Optional:
 - [When to Hold Out for a Lower Airfare](#)
 - [Thinking Big about the Industrial Internet of Things](#)
Why study Machine Learning?
Think/Pair/Share

Why study Machine Learning?

<table>
<thead>
<tr>
<th>Think</th>
</tr>
</thead>
<tbody>
<tr>
<td>Start</td>
</tr>
</tbody>
</table>

<p>| |</p>
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>End</td>
</tr>
</tbody>
</table>
Think/Pair/Share

Why study Machine Learning?

Start

End
Think/Pair/Share

Why study Machine Learning?

Share
What is Machine Learning?

- “The study of computer programs that improve automatically with experience”
 T. Mitchell *Machine Learning*

- Automating automation
- Getting computers to program themselves
- Writing software is the bottleneck
- Let the data do the work instead!
Traditional Programming

Input → Computer → Output

Program → Computer → Output

Machine Learning

Input → Computer → Program

Output → Computer → Program
Magic?

No, more like gardening

- **Seeds** = Algorithms
- **Nutrients** = Data
- **Gardener** = You
- **Plants** = Programs
Case Study: Farecast

Search Flights Find cheap flights and free airfare predictions

- Round Trip
- One Way
- Multi-City

Please enter a To city

From: Chicago, IL (CHI) - All airports

To: Seattle, WA (SEA) - Seattle/Tacoma

Include Nearby Airports

Include Nearby

7-Day Low Fare Prediction

Tip: Buy

Fares Rising $42
Confidence: 66%

Details

Daily Low Fare History

$420
$390
$305
$220
$135

69 Days Ago
Now
Sample Applications

- Web search
- Computational biology
- Finance
- E-commerce
- Space exploration

- Robotics
- Information extraction
- Social networks
- Finance
- Debugging
- [Your favorite area]

Input → Computer → Program

Output
Relationship of Machine Learning to...

- Statistics
- Analytics / Data Science
- Data Mining
- Artificial Intelligence
Why study Machine Learning? (1 of 5)

- “A breakthrough in machine learning would be worth ten Microsofts” (Bill Gates, Chairman, Microsoft)
- “Machine learning is the next Internet” (Tony Tether, former Director, DARPA)

These quotes are ~10 years old (e.g. Gates is from the NYT, 2004)

More recent:
“Artificial intelligence is one of the great opportunities for improving the world today,” (Reid Hoffman, co-founder of $1B deep learning research center)
Why study Machine Learning? (2 of 5)

Why study Machine Learning? (3 of 5)

- **One example, proportion of physicians using EMRs**
 - 2001: 18%
 - 2011: 57%
 - 2013: 78%

- ...what will be able to learn from these?
Why study Machine Learning? (4 of 5)

Gartner: 6.4B connected “things” in 2016…21B in 2020
Intel: 200B connected things by 2020!

http://www.gartner.com/newsroom/id/3165317
Stuttering

- Transistors per chip, '000
- Clock speed (max), MHz
- Thermal design power*, w

Transistors bought per $, m

Sources: Intel; press reports; Bob Colwell; Linley Group; IB Consulting; The Economist

*Maximum safe power consumption

http://www.economist.com/technology-quarterly/2016-03-12/after-moores-law
ML in Practice

- Understanding domain, prior knowledge, and goals
- Data integration, selection, cleaning, pre-processing, etc.
- Learning models
- Interpreting results
- Consolidating and deploying discovered knowledge
- Loop
What You’ll Learn in this Class

- How do ML algorithms work?
 - Learn by implementing, using

- For a real problem, how do I:
 - Express my problem as an ML task
 - Choose the right ML algorithm
 - Evaluate the results
Tens of thousands of machine learning algorithms
Hundreds new every year
Every machine learning algorithm has three components:
 - Representation
 - Evaluation
 - Optimization
Representation

- How do we represent the function from input to output?
 - Decision trees
 - Sets of rules / Logic programs
 - Instances
 - Graphical models (Bayes/Markov nets)
 - Neural networks
 - Support vector machines
 - Model ensembles
 - Etc.
Evaluation

- *Given some data, how can we tell if a function is “good”?*
 - Accuracy
 - Precision and recall
 - Squared error
 - Likelihood
 - Posterior probability
 - Cost / Utility
 - Margin
 - Entropy
 - K-L divergence
 - Etc.
Optimization

Given some data, how do we **find** the “best” function?

- Combinatorial optimization
 - E.g.: Greedy search
- Convex optimization
 - E.g.: Gradient descent
- Constrained optimization
 - E.g.: Linear programming
Types of Learning

- **Supervised (inductive) learning**
 - Training data includes desired outputs

- **Unsupervised learning**
 - Training data does not include desired outputs

- **Semi-supervised learning**
 - Training data includes a few desired outputs

- **Reinforcement learning**
 - Rewards from sequence of actions
Inductive Learning

- **Given** examples of a function \((x, f(x))\)
- **Predict** function \(f(x)\) for new instances \(x\)
 - Discrete \(f(x)\): Classification
 - Continuous \(f(x)\): Regression
 - \(f(x) = \text{Probability}(x)\): Probability estimation

Example:
- \(x = <\text{Flight}=\text{United 102}, \text{FlightDate}=\text{May 26}, \text{Today}=\text{May 7}>\)
- \(f(x) = +1 \text{ if flight price will increase in the next week, or} -1 \text{ otherwise}\)
What We’ll Cover

- **Inductive learning**
 - Decision tree induction
 - Instance-based learning
 - Linear Regression and Classification
 - Neural networks
 - Genetic Algorithms
 - Support vector machines
 - Bayesian Learning
 - Learning theory
 - Reinforcement Learning

- **Unsupervised learning**
 - Clustering
 - Dimensionality reduction
Parting Notes

- Bring a device to access Canvas for quiz on Friday