Informed search algorithms

(Based on slides by Oren Etzioni, Stuart Russell)
The problem

<table>
<thead>
<tr>
<th># Unique board configurations in search space</th>
</tr>
</thead>
<tbody>
<tr>
<td>8-puzzle</td>
</tr>
<tr>
<td>9! = 362880</td>
</tr>
<tr>
<td>15-puzzle</td>
</tr>
<tr>
<td>$16! = 20922789888000 \approx 10^{13}$</td>
</tr>
<tr>
<td>24-puzzle</td>
</tr>
<tr>
<td>$25! \approx 10^{25}$</td>
</tr>
<tr>
<td>35-puzzle</td>
</tr>
<tr>
<td>$36! \approx 10^{41}$</td>
</tr>
<tr>
<td>48-puzzle</td>
</tr>
<tr>
<td>$49! \approx 10^{63}$</td>
</tr>
<tr>
<td>63-puzzle</td>
</tr>
<tr>
<td>$64! \approx 10^{89}$</td>
</tr>
</tbody>
</table>

- Number of atoms in known universe $\approx 10^{80}$
Outline

- Greedy best-first search
- A* search
- Heuristics
- Local search algorithms
- Hill-climbing search
- Simulated annealing search
- Local beam search
- Genetic algorithms
Best-first search

• A search strategy is defined by picking the order of node expansion
• Idea: use an evaluation function $f(n)$ for each node
 – estimate of "desirability"

→ Expand most desirable unexpanded node

• Implementation:
Order the nodes in fringe in decreasing order of desirability

• Special cases:
 – greedy best-first search
 – A^* search
Greedy best-first search

• Evaluation function $f(n) = h(n)$ (heuristic) = estimate of cost from n to goal

• e.g., $h_{SLD}(n) = \text{straight-line distance from } n \text{ to Bucharest}$

• Greedy best-first search expands the node that appears to be closest to goal
Properties of greedy best-first search

- **Complete?**
- No – can get stuck in loops, e.g., Iasi → Neamt → Iasi → Neamt →

- **Time?**
- $O(b^m)$, but a good heuristic can give dramatic improvement

- **Space?**
- $O(b^m)$ -- keeps all nodes in memory

- **Optimal?**
- No
A* search

- Idea: avoid expanding paths that are already expensive
- Evaluation function \(f(n) = g(n) + h(n) \)
 \(g(n) \) = cost so far to reach \(n \)
 \(h(n) \) = estimated cost from \(n \) to goal
 \(f(n) \) = estimated total cost of path through \(n \) to goal
(a) The initial state

Arad

366 = 0 + 366
(b) After expanding Arad

- **Sibiu**: 393 = 140 + 253
- **Timisoara**: 447 = 118 + 329
- **Zerind**: 449 = 75 + 374
c) After expanding Sibiu

- Arad
- Fagaras
- Oradea
- Rimnicu Vilcea

- Timisoara: 447 = 118 + 329
- Zerind: 449 = 75 + 374

646 = 280 + 366
415 = 239 + 176
671 = 291 + 380
413 = 220 + 193
d) After expanding Rimnicu Vilcea

- Arad
 - Fagaras
 - Oradea
 - Rimnicu Vilcea
 - Craiova
 - Pitesti
 - Sibiu

- Sibiu
- Timisoara
- Zerind

Distances:
- Arad to Fagaras: 646 = 280 + 366
- Arad to Oradea: 415 = 239 + 176
- Arad to Rimnicu Vilcea: 671 = 291 + 380
- Timisoara: 447 = 118 + 329
- Zerind: 449 = 75 + 374
- Craiova: 526 = 366 + 160
- Pitesti: 417 = 317 + 100
- Sibiu: 553 = 300 + 253
e) After expanding Fagaras

- Arad
 - Fagaras
 - Sibiu
 - Bucharest
 - Oradea
 - Rimnicu Vilcea
 - Craiova
 - Pitesti
 - Sibiu
- Timisoara
 - 447 = 118 + 329
- Zerind
 - 449 = 75 + 374

- Arad: 646 = 280 + 366
- Sibiu: 591 = 338 + 253
- Bucharest: 450 = 450 + 0
- Oradea: 671 = 291 + 380
- Rimnicu Vilcea: 526 = 366 + 160
- Craiova: 417 = 317 + 100
- Pitesti: 553 = 300 + 253
(f) After expanding Pitesti

```
    Arad
   /   \
 Sibiu   Timisoara
 |
 Arad  Fagaras  Oradea  Rmnicu Vilcea
 |
 Sibiu   Bucharest  671=291+380
 |
 591=338+253

447=118+329
```

```
    Arad
   /   \
 Sibiu   Timisoara
 |
 Arad  Fagaras  Oradea  Rmnicu Vilcea
 |
 Sibiu   Bucharest  671=291+380
 |
 591=338+253

449=75+374
```
Admissible heuristics

• A heuristic $h(n)$ is admissible if for every node n
 $h(n) \leq h^*(n)$, where $h^*(n)$ is the true cost to reach the goal state from n.

• An admissible heuristic never overestimates the cost to reach the goal, i.e., it is optimistic

• Example: $h_{SLD}(n)$ (never overestimates the actual road distance)

• **Theorem**: If $h(n)$ is admissible, A* using TREE-SEARCH is optimal
Properties of A*

- **Complete?**
 Yes (unless there are infinitely many nodes with \(f \leq f(G) \))

- **Time?** \(O(b^m) \), but a good heuristic can give dramatic improvement

- **Space?** \(O(b^m) \), Keeps all nodes in memory

- **Optimal?**
 Yes
Why optimal? By contradiction

Suppose some suboptimal goal G_2 has been generated and is in the queue. Let n be an unexpanded node on a shortest path to an optimal goal G_1.

Since $f(G_2) = g(G_2)$ since $h(G_2) = 0$

$> g(G_1)$ since G_2 is suboptimal

$\geq f(n)$ since h is admissible

Since $f(G_2) > f(n)$, A* will never select G_2 for expansion
A* is “optimally efficient”

• With an admissible heuristic,
 – A* expands all nodes with $f(n) < C$
 – A* expands some nodes with $f(n) = C$
 – A* expands no nodes with $f(n) > C$

• So, except for the variable (usually small) number of nodes with $f(n) = C$,
 – No optimal algorithm using h expands fewer nodes than A*
Admissible heuristics
Admissible heuristics

E.g., for the 8-puzzle:

- $h_1(n) = \text{number of misplaced tiles}$
- $h_2(n) = \text{total Manhattan distance}$
 (i.e., no. of squares from desired location of each tile)

\[h_1(S) = ? \]
\[h_2(S) = ? \]
Admissible heuristics

E.g., for the 8-puzzle:

- $h_1(n) = \text{number of misplaced tiles}$
- $h_2(n) = \text{total Manhattan distance}$
 (i.e., no. of squares from desired location of each tile)

- $h_1(S) = ? \quad 8$
- $h_2(S) = ? \quad 3+1+2+2+2+3+3+2 = 18$
Dominance

• If $h_2(n) \geq h_1(n)$ for all n (both admissible) then h_2 dominates h_1

• h_2 is at least as good as h_1 for search, and likely better
 – Why?
<table>
<thead>
<tr>
<th>d</th>
<th>Search Cost (nodes)</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>IDS</td>
<td>A*(h1)</td>
<td>A*(h2)</td>
</tr>
<tr>
<td>2</td>
<td>10</td>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>4</td>
<td>112</td>
<td>13</td>
<td>12</td>
</tr>
<tr>
<td>6</td>
<td>680</td>
<td>20</td>
<td>18</td>
</tr>
<tr>
<td>8</td>
<td>6386</td>
<td>39</td>
<td>25</td>
</tr>
<tr>
<td>10</td>
<td>47127</td>
<td>93</td>
<td>39</td>
</tr>
<tr>
<td>12</td>
<td>3644035</td>
<td>227</td>
<td>73</td>
</tr>
<tr>
<td>14</td>
<td>-</td>
<td>539</td>
<td>113</td>
</tr>
<tr>
<td>16</td>
<td>-</td>
<td>1301</td>
<td>211</td>
</tr>
<tr>
<td>18</td>
<td>-</td>
<td>3056</td>
<td>363</td>
</tr>
</tbody>
</table>
Summary

• A* search
 – Expand nodes in increasing order of:
 \[f(n) = g(n) + h(n) \]
 = cost so far + estimated cost to goal
 – Optimal for *admissible* heuristics
 • Admissible = “optimistic”
 – Designing heuristics is key for performance
 • More next time
Good Heuristics

• Efficient to compute

• Approximate true cost well

• Admissible
Relaxed problems

• A problem with fewer restrictions on the actions is called a **relaxed problem**

• The cost of an optimal solution to a relaxed problem is an admissible heuristic for the original problem

• If the rules of the 8-puzzle are relaxed so that a tile can move **anywhere**, then $h_1(n)$ gives the shortest solution

• If the rules are relaxed so that a tile can move to **any adjacent square**, then $h_2(n)$ gives the shortest solution
Traveling Salesman Problem

- Goal: find the least-cost cycle in the graph that visits each node exactly once
TSP Relaxed Problem Heuristic

- Relaxed problem: find least-cost tree that connects all nodes (minimum spanning tree).
 - \(\text{Cost(MST)} \leq \text{Cost(Best Tour – 1 edge)} < \text{Cost(Best Tour)} \)
Combining Heuristics

• Say we have two heuristics, h1 and h2, and neither dominates the other.
 – What can we do?

• \(h_3(n) = \max(h_1(n), h_2(n)) \)
 – \(h_3 \) dominates \(h_1, h_2 \)
Pattern Databases

• $h(n) = \text{cost to get } \{1,2,3,4\} \text{ in right place}$
 – Compute once for all possible configurations and store
• Can use multiple sub-problems (e.g., $\{5,6,7,8\}$) and combine with max
 – Or, ignore * moves and add disjoint subproblems
Summary of A* Search

• Expands node n with minimum \(f(n) = g(n) + h(n) \)
 \(= \) path cost so far + heuristic estimate

• Optimal for *admissible* heuristic \(h(n) \)
 – I.e. \(h \) that underestimates true path cost

• Designing good heuristics is crucial for performance
 – One method: Relaxed problems

• Combining heuristics
 – Take max or add “disjoint” heuristics
Outline

• Greedy best-first search
• A* search
• Heuristics
• Local search algorithms
• Hill-climbing search
• Simulated annealing search
• Local beam search
• Genetic algorithms
Local search algorithms

• In many optimization problems, the path to the goal is irrelevant
 – the goal state itself is the solution

• State space = set of "complete" configurations
• Find configuration satisfying constraints, e.g., n-queens

• In such cases, we can use local search algorithms
• keep a single "current" state, try to improve it
Example: n-queens

- Put n queens on an $n \times n$ board with no two queens on the same row, column, or diagonal
Hill-climbing search

• "Like climbing Everest in thick fog with amnesia"

```plaintext
function HILL-CLIMBING(problem) returns a state that is a local maximum
inputs: problem, a problem
local variables: current, a node
              neighbor, a node

current ← MAKE-NODE(INITIAL-STATE[problem])
loop do
    neighbor ← a highest-valued successor of current
    if VALUE[neighbor] ≤ VALUE[current] then return STATE[current]
    current ← neighbor
```
Hill-climbing search

- Problem: depending on initial state, can get stuck in local maxima
Hill-climbing search: 8-queens problem

- $h = \text{number of pairs of queens that are attacking each other, either directly or indirectly}$
- $h = 17$ for the above state
Hill-climbing search: 8-queens problem

- A local minimum with $h = 1$
Simulated annealing search

- Idea: escape local maxima by allowing some "bad" moves but gradually decrease their frequency

```plaintext
function SIMULATED-ANNEALING(problem, schedule) returns a solution state
inputs: problem, a problem
         schedule, a mapping from time to "temperature"
local variables: current, a node
                next, a node
                \( T \), a "temperature" controlling prob. of downward steps

\( current \leftarrow \text{MAKE-NODE}(	ext{INITIAL-STATE}[\text{problem}]) \)
for \( t \leftarrow 1 \) to \( \infty \) do
  \( T \leftarrow \text{schedule}[t] \)
  if \( T = 0 \) then return current
  next \leftarrow \text{a randomly selected successor of } current
  \( \Delta E \leftarrow \text{VALUE}[next] - \text{VALUE}[current] \)
  if \( \Delta E > 0 \) then current \leftarrow next
  else current \leftarrow next only with probability \( e^{\Delta E/T} \)
```
Properties of simulated annealing search

- One can prove: If T decreases slowly enough, then simulated annealing search will find a global optimum with probability approaching 1.

- Widely used in VLSI layout, airline scheduling, etc.
Local beam search

- Keep track of k states rather than just one
- Start with k randomly generated states
- At each iteration, all the successors of all k states are generated
- If any one is a goal state, stop; else select the k best successors from the complete list and repeat.
Genetic algorithms

- A successor state is generated by combining two parent states

- Start with k randomly generated states (population)

- A state is represented as a string over a finite alphabet (often a string of 0s and 1s)

- Evaluation function (fitness function). Higher values for better states.

- Produce the next generation of states by selection, crossover, and mutation
Genetic algorithms

- Fitness function: number of non-attacking pairs of queens (min = 0, max = $8 \times \frac{7}{2} = 28$)
 - $24 / (24 + 23 + 20 + 11) = 31\%$
 - $23 / (24 + 23 + 20 + 11) = 29\%$ etc
Genetic algorithms

- Genetic algorithm is “stochastic beam search”
 - Key difference: combine multiple parents

For which problems is this helpful?
Continuous Optimization

• Many AI problems require optimizing a function $f(x)$, which takes continuous values for input vector x

• Huge research area

• Examples:
 – Machine Learning
 – Signal/Image Processing
 – Computational biology
 – Finance
 – Weather forecasting
 – Etc., etc.
Gradient Ascent

- Idea: move in direction of steepest ascent (gradient)

- $\mathbf{x}_k = \mathbf{x}_{k-1} + \eta \nabla f(\mathbf{x}_{k-1})$
Types of Optimization

• Linear vs. non-linear

• Analytic vs. Empirical Gradient

• Convex vs. non-convex

• Constrained vs. unconstrained
Continuous Optimization in Practice

• *Lots* of previous work on this

• Use packages