Constraint Satisfaction

Chapter 6
Sections 1 – 4
(based on slides by Oren Etzioni, Stuart Russell)
Outline

- Constraint Satisfaction Problems (CSP)
- Backtracking search for CSPs
- Local search for CSPs
Constraint satisfaction problems (CSPs)

- Standard search problem:
 - state is a "black box" – any data structure that supports successor function, heuristic function, and goal test

- CSP:
 - state is defined by variables X_i with values from domain D_i
 - goal test is a set of constraints specifying allowable combinations of values for subsets of variables

- Simple example of a formal representation language

- Allows useful general-purpose algorithms with more power than standard search algorithms
Example: Map-Coloring

- **Variables**: WA, NT, Q, NSW, V, SA, T
- **Domains**: $D_i = \{\text{red, green, blue}\}$
- **Constraints**: adjacent regions must have different colors
 - e.g., $WA \neq NT$, i.e.
 $(WA,NT) \in\{(\text{red,green}), (\text{red,blue}), (\text{green,red}), (\text{green,blue}), (\text{blue,red}), (\text{blue,green})\}$
Example: Map-Coloring

- **Solutions** are complete and consistent assignments, e.g., WA = red, NT = green, Q = red, NSW = green, V = red, SA = blue, T = green
Varieties of CSPs

- **Discrete variables**
 - finite domains:
 - \(n \) variables, domain size \(d \): there are \(d^n \) complete assignments
 - Boolean CSPs, (NP-complete)
 - infinite domains:
 - integers, strings, etc.
 - e.g., job scheduling, variables are start/end days for each job
 - need a constraint language, e.g., \(\text{StartJob}_1 + 5 \leq \text{StartJob}_3 \)

- **Continuous variables**
 - e.g., start/end times for Hubble Space Telescope observations
 - linear constraints solvable in polynomial time by linear programming
Varieties of constraints

- **Unary** constraints involve a single variable,
 - e.g., \(SA \neq \text{green} \)

- **Binary** constraints involve pairs of variables,
 - e.g., \(SA \neq WA \)

- **Higher-order** constraints involve 3 or more variables,
 - e.g., cryptarithmetic column constraints
Constraint graph

- **Binary CSP**: each constraint relates two variables
- **Constraint graph**: nodes are variables, arcs are constraints
Higher-order: Cryptarithmetic

- **Variables:** $F, T, U, W, R, O, X_1, X_2, X_3$
- **Domains:** $\{0, 1, 2, 3, 4, 5, 6, 7, 8, 9\}$
- **Constraints:** $\text{Alldiff} (F, T, U, W, R, O)$
 - $O + O = R + 10 \cdot X_1$
 - $X_1 + W + W = U + 10 \cdot X_2$
 - $X_2 + T + T = O + 10 \cdot X_3$
 - $X_3 = F, \ T \neq 0, \ F \neq 0$
What is the arity of each constraint?
Real-world CSPs

- Assignment problems
 - e.g., who teaches what class
- Timetabling problems
 - e.g., which class is offered when and where?
- Transportation scheduling
- Factory scheduling

- Notice that many real-world problems involve real-valued variables
Standard search formulation (incremental)

States are defined by the values assigned so far

- **Initial state**: the empty assignment \{\}
- **Successor function**: assign a value to an unassigned variable that does not conflict with current assignment
 - \(\rightarrow\) fail if no legal assignments
- **Goal test?**
 - the current assignment is complete

1. Every solution appears at depth \(n\) with \(n\) variables
2. \(n > 20\), What search strategy to use?
3. \(\rightarrow\) use depth-first search
Backtracking search

1. What is the branching factor?
 \[b = (n - k)d \text{ at depth } k, \text{ hence } n! \cdot d^n \text{ leaves} \]

- Observation: Variable assignments are commutative, i.e.,
 \[[\text{WA = red then NT = green}] \text{ same as } [\text{NT = green then WA = red}] \]

- Only need to consider assignments to a single variable at each node
 \[b = d \text{ and there are } d^n \text{ leaves} \]

- Depth-first search for CSPs with single-variable assignments is called backtracking search

- Backtracking search is the basic uninformed algorithm for CSPs

- Can solve \(n \)-queens for \(n \approx 25 \)
function BACKTRACKING-SEARCH(csp) returns a solution, or failure
 return RECURSIVE-BACKTRACKING({}, csp)

function RECURSIVE-BACKTRACKING(assignment, csp) returns a solution, or failure
 if assignment is complete then return assignment
 var ← SELECT-UNASSIGNED-VARIABLE(Variables[csp], assignment, csp)
 for each value in ORDER-DOMAIN-VALUES(var, assignment, csp) do
 if value is consistent with assignment according to Constraints[csp] then
 add { var = value } to assignment
 result ← RECURSIVE-BACKTRACKING(assignment, csp)
 if result ≠ failure then return result
 remove { var = value } from assignment
 return failure
Backtracking example
Backtracking example
Backtracking example
Backtracking example
Improving backtracking efficiency

- General-purpose methods can give huge gains in speed: How?
 - Which variable should be assigned next?
 - In what order should its values be tried?
 - Can we detect inevitable failure early?
Most constrained variable

- Most constrained variable: choose the variable with the fewest legal values
- a.k.a. minimum remaining values (MRV) heuristic
Most constraining variable

- Tie-breaker among most constrained variables
- Most constraining variable:
 - choose the variable with the most constraints on remaining variables
Least constraining value

- Given a variable, choose the least constraining value:
 - the one that rules out the fewest values in the remaining variables

- Combining these heuristics makes 1000 queens feasible
Forward checking

- Idea:
 - Keep track of remaining legal values for unassigned variables
 - Terminate search when any variable has no legal values
Forward checking

- **Idea:**
 - Keep track of remaining legal values for unassigned variables
 - Terminate search when any variable has no legal values
Forward checking

- **Idea:**
 - Keep track of remaining legal values for unassigned variables
 - Terminate search when any variable has no legal values
Forward checking

- **Idea:**
 - Keep track of remaining legal values for unassigned variables
 - Terminate search when any variable has no legal values
Constraint propagation

- Forward checking propagates information from assigned to unassigned variables, but doesn't provide early detection for all failures:

- NT and SA cannot both be blue!
- **Constraint propagation** repeatedly enforces constraints locally
Arc consistency

- Simplest form of propagation makes each arc consistent
- $X \rightarrow Y$ is consistent iff

 for every value x of X there is some allowed y for Y
Arc consistency

- Simplest form of propagation makes each arc consistent
- $X \rightarrow Y$ is consistent iff
 - for every value x of X there is some allowed y
Arc consistency

- Simplest form of propagation makes each arc **consistent**
- $X \rightarrow Y$ is consistent iff

 for every value x of X there is some allowed y

- If X loses a value, neighbors of X need to be rechecked
Arc consistency

- Simplest form of propagation makes each arc consistent
- $X \rightarrow Y$ is consistent iff for every value x of X there is some allowed y
- If X loses a value, neighbors of X need to be rechecked
- Arc consistency detects failure earlier than forward checking
 - Can be run as a preprocessor or after each assignment
Arc consistency algorithm AC-3

```
function AC-3(csp) returns the CSP, possibly with reduced domains
inputs: csp, a binary CSP with variables \{X_1, X_2, \ldots, X_n\}
local variables: queue, a queue of arcs, initially all the arcs in csp
while queue is not empty do
    (X_i, X_j) ← REMOVE-FIRST(queue)
    if RM-INCONSISTENT-VALUES(X_i, X_j) then
        for each X_k in NEIGHBORS[X_i] do
            add (X_k, X_i) to queue

function RM-INCONSISTENT-VALUES(X_i, X_j) returns true iff remove a value
removed ← false
for each x in DOMAIN[X_i] do
    if no value y in DOMAIN[X_j] allows (x,y) to satisfy constraint(X_i, X_j)
    then delete x from DOMAIN[X_i]; removed ← true
return removed
```

- Time complexity: O(n^2d^3)
Local search for CSPs

- Hill-climbing, simulated annealing typically work with "complete" states, i.e., all variables assigned

- To apply to CSPs:
 - allow states with unsatisfied constraints
 - operators *reassign* variable values

- Variable selection: randomly select any conflicted variable

- Value selection by *min-conflicts* heuristic:
 - choose value that violates the fewest constraints
 - i.e., hill-climb with $h(n) =$ total number of violated constraints
Example: 4-Queens

- **States**: 4 queens in 4 columns ($4^4 = 256$ states)
- **Actions**: move queen in column
- **Goal test**: no attacks
- **Evaluation**: $h(n) = \text{number of attacks}$

Given random initial state, can solve n-queens in almost constant time for arbitrary n with high probability (e.g., $n = 10,000,000$)
Local Search: Analysis

- Solves 1,000,000 queens in an average of 50 steps. (!)

- Makes small changes to initial state

- Drawbacks?
Summary

- **Constraint Satisfaction Problems**
 - Assign *values to variables* subject to *constraints*
 - Broadly applicable
 - Admits general-purpose heuristics (more next time!)

- **Announcements**
 - Homework #2 assigned, due Tuesday 4/23
 - Can work in pairs
 - C++ and Python (3.x) starter code posted
 - Only 34 lecture ratings Wednesday (!)
 - Google Code Jam starts today
Summary

- CSPs are a special kind of problem:
 - states defined by values of a fixed set of variables
 - goal test defined by constraints on variable values
- Backtracking = depth-first search with one variable assigned per node
- Variable ordering and value selection heuristics help significantly
- Forward checking prevents assignments that guarantee later failure
- Constraint propagation (e.g., arc consistency) does additional work to constrain values and detect inconsistencies
- Iterative min-conflicts is often effective in practice