Integers

Today

- Numeric Encodings
- Programming Implications
- Basic operations
- Programming Implications

Next time

- Floats
Checkpoint
Encoding integers in binary

- Positive integers, easy

$$B2U(X) = \sum_{i=0}^{w-1} x_i \times 2^i$$

- What about negative integers?
Encoding integers in binary

- **Idea #1: sign bit**
 - use 1 in the most significant (leftmost) bit like a minus sign
 - $3 = 0011$, $-3 = 1011$
 - intuitive, but simple arithmetic is complicated
 - $5 + -3 = 0101 + 1011 = a \text{miracle occurs} = 0010$

- **Idea #2: ones' complement**
 - flip all bits for negatives
 - $3 = 0011$, $-3 = 1100$
 - addition not too bad (just add and then add carry bit if any)
 - $5 + -3 = 0101 + 1100 = 0001 + 1 (\text{carry}) = 0010$
Encoding integers

• Both ideas lead to two representations of zero, positive and negative:
 – sign bit: 0000 and 1000
 – ones' complement: 0000 1111
 – 5 + -5 = 0101 + 1010 = 1111 = -0
Encoding integers

• Idea #3: Two’s complement
 – Informal encoding view:
 – To encode \(-N \), encode \(N \), flip all bits, add 1
 • \(5 = 0101 \),
 • \(-5 = 1010 + 1 = 1011 \)
 – More formally, given \(w \) bits \([x_{w-1}, x_{w-2}, \ldots, x_1, x_0]\),
 • \(N = -(2^{w-1})*x_{w-1} + \sum 2^i * x_i \) for \(i \) from 0 to \(w-2 \)
 • \(1011 = -2^3 + 3 = -8 + 3 = -5 \)

• Addition is now simple: always add, ignore overflow
 – \(5 + -5 = 0101 + 1011 = 0000 \)

• Only one zero (why?)
• Significant bit still serves as sign bit
Encoding integers

Unsigned

\[B2U(X) = \sum_{i=0}^{w-1} x_i \times 2^i \]

Two’s Complement

\[B2T(X) = -x_{w-1} \times 2^{w-1} + \sum_{i=0}^{w-2} x_i \times 2^i \]

C short 2 bytes long

```c
short int x = 15213;
short int y = -15213;
```

<table>
<thead>
<tr>
<th>Decimal</th>
<th>Hex</th>
<th>Binary</th>
</tr>
</thead>
<tbody>
<tr>
<td>x</td>
<td>15213</td>
<td>3B 6D 00111011 01101101</td>
</tr>
<tr>
<td>y</td>
<td>-15213</td>
<td>C4 93 11000100 10010011</td>
</tr>
</tbody>
</table>
Encoding example

\[x = 15213: \quad 00111011 \quad 01101101 \]
\[y = -15213: \quad 11000100 \quad 10010011 \]

<table>
<thead>
<tr>
<th>Weight</th>
<th>15213</th>
<th>-15213</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>4</td>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td>8</td>
<td>1</td>
<td>8</td>
</tr>
<tr>
<td>16</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>32</td>
<td>1</td>
<td>32</td>
</tr>
<tr>
<td>64</td>
<td>1</td>
<td>64</td>
</tr>
<tr>
<td>128</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>256</td>
<td>1</td>
<td>256</td>
</tr>
<tr>
<td>512</td>
<td>1</td>
<td>512</td>
</tr>
<tr>
<td>1024</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>2048</td>
<td>1</td>
<td>2048</td>
</tr>
<tr>
<td>4096</td>
<td>1</td>
<td>4096</td>
</tr>
<tr>
<td>8192</td>
<td>1</td>
<td>8192</td>
</tr>
<tr>
<td>16384</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>-32768</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>

Sum | **15213** | **-15213**

EECS 213 Introduction to Computer Systems
Northwestern University

Tuesday, September 27, 2011
Numeric ranges

- **Unsigned Values**
 - **Umin = 0**
 - 000...0
 - **UMax = 2^w-1**
 - 111...1

- **Two’s Complement Values**
 - **Tmin = –2^{w-1}**
 - 100...0
 - **TMax = 2^{w-1} – 1**
 - 011...1

Values for $W = 16$

<table>
<thead>
<tr>
<th></th>
<th>Decimal</th>
<th>Hex</th>
<th>Binary</th>
</tr>
</thead>
<tbody>
<tr>
<td>UMax</td>
<td>65535</td>
<td>FF FF</td>
<td>11111111 11111111</td>
</tr>
<tr>
<td>Tmax</td>
<td>32767</td>
<td>7F FF</td>
<td>01111111 11111111</td>
</tr>
<tr>
<td>Tmin</td>
<td>-32768</td>
<td>80 00</td>
<td>10000000 00000000</td>
</tr>
<tr>
<td>-1</td>
<td>-1</td>
<td>FF FF</td>
<td>11111111 11111111</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>00 00</td>
<td>00000000 00000000</td>
</tr>
</tbody>
</table>
Values for other word sizes

<table>
<thead>
<tr>
<th></th>
<th>W</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>8</td>
</tr>
<tr>
<td>UMax</td>
<td>255</td>
</tr>
<tr>
<td>Tmax</td>
<td>127</td>
</tr>
<tr>
<td>Tmin</td>
<td>-128</td>
</tr>
</tbody>
</table>

- Observations
 - $|TMin| = |TMax| + 1$
 - Asymmetric range
 - $UMax = 2 \cdot TMax + 1$

- C constants
 - `#include <limits.h>`
 - Declares
 - `ULONG_MAX`
 - `INT_MAX, INT_MIN`
 - `LONG_MAX, LONG_MIN`
 - Values platform-specific
Unsigned & signed numeric values

- Equivalence
 - Same encodings for nonnegative values

- Uniqueness (bijections)
 - Every bit pattern represents unique integer value
 - Each representable integer has unique bit encoding

- Can invert mappings
 - $U2B(x) = B2U^{-1}(x)$
 - Bit pattern for unsigned integer
 - $T2B(x) = B2T^{-1}(x)$
 - Bit pattern for two’s comp integer

<table>
<thead>
<tr>
<th>X</th>
<th>B2U(X)</th>
<th>B2T(X)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0000</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0001</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>0010</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>0011</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>0100</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>0101</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>0110</td>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>0111</td>
<td>7</td>
<td>7</td>
</tr>
<tr>
<td>1000</td>
<td>8</td>
<td>-8</td>
</tr>
<tr>
<td>1001</td>
<td>9</td>
<td>-7</td>
</tr>
<tr>
<td>1010</td>
<td>10</td>
<td>-6</td>
</tr>
<tr>
<td>1011</td>
<td>11</td>
<td>-5</td>
</tr>
<tr>
<td>1100</td>
<td>12</td>
<td>-4</td>
</tr>
<tr>
<td>1101</td>
<td>13</td>
<td>-3</td>
</tr>
<tr>
<td>1110</td>
<td>14</td>
<td>-2</td>
</tr>
<tr>
<td>1111</td>
<td>15</td>
<td>-1</td>
</tr>
</tbody>
</table>
C allows conversions from signed to unsigned

```
short int       x =  15213;
unsigned short int ux = (unsigned short) x;
short int       y = -15213;
unsigned short int uy = (unsigned short) y;
```

Resulting value

- No change in bit representation
- Non-negative values unchanged
 - $ux = 15213$
- Negative values change into (large) positive values
 - $uy = 50323$
Relation between signed & unsigned

Casting from signed to unsigned

Two’s Complement

\[x \rightarrow T2B \rightarrow B2U \rightarrow u_x \]

Maintain same bit pattern

Consider B2U and B2T equations

\[
B2U(X) = \sum_{i=0}^{w-1} x_i \times 2^i,
B2T(X) = -x_{w-1} \times 2^{w-1} + \sum_{i=0}^{w-2} x_i \times 2^i
\]

and a bit pattern \(X \); compute \(B2U(X) - B2T(X) \)

weighted sum of for bits from 0 to \(w - 2 \) cancel each other

\[
B2U(X) - B2T(X) = x_{w-1}(2^{w-1} - -2^{w-1}) = x_{w-1}2^w
\]

\[
B2U(X) = x_{w-1}2^w + B2T(X)
\]

If we let \(B2T(X) = x \)

\[
B2U(T2B(x)) = T2U(x) = x_{w-1}2^w + x
\]

\[
u_x = \begin{cases} x & x \geq 0 \\ x + 2^w & x < 0 \end{cases}
\]
Relation between signed & unsigned

\[
T2U(x) = x_{w-1} 2^w + x
\]

<table>
<thead>
<tr>
<th>Weight</th>
<th>-15213</th>
<th>50323</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>4</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>8</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>16</td>
<td>1</td>
<td>16</td>
</tr>
<tr>
<td>32</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>64</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>128</td>
<td>1</td>
<td>128</td>
</tr>
<tr>
<td>256</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>512</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1024</td>
<td>1</td>
<td>1024</td>
</tr>
<tr>
<td>2048</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>4096</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>8192</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>16384</td>
<td>1</td>
<td>16384</td>
</tr>
<tr>
<td>32768</td>
<td>-1</td>
<td>32768</td>
</tr>
</tbody>
</table>

Sum

\[
u x = x + 2^{16} = -15213 + 65536
\]
Conversion - graphically

- 2’s Comp. → Unsigned
 - Ordering inversion
 - Negative → Big positive
Signed and unsigned in C

- **Constants**
 - By default are considered to be signed integers
 - Unsigned if have “U” as suffix
 - 0U, 4294967259U

- **Casting**
 - Explicit casting bet/ signed & unsigned same as U2T and T2U
 - int tx, ty;
 - unsigned ux, uy;
 - tx = (int) ux;
 - uy = (unsigned) ty;
 - Implicit casting
 - tx = ux;
 - uy = ty;
 - Mixed expressions – cast to *unsigned* first
 - tx + ux;
 - uy < ty;
Sign extension

- **Task:**
 - Given w-bit signed integer \(x \)
 - Convert it to \(w+k \)-bit integer with same value

- **Rule:**
 - Make \(k \) copies of sign bit:
 - \(X' = x_{w-1}, \ldots, x_{w-1}, x_{w-1}, x_{w-2}, \ldots, x_0 \)

\[\begin{array}{c}
\text{k copies of MSB} \\
\hline
\end{array} \]

\[X \rightarrow X' \]

\[\begin{array}{c}
k \quad w \\
\hline
\end{array} \]
Sign extension example

- Converting from smaller to larger integer data type
- C automatically performs sign extension

```c
short int x = 15213;
int      ix = (int) x;
short int y = -15213;
int      iy = (int) y;
```

<table>
<thead>
<tr>
<th>Decimal</th>
<th>Hex</th>
<th>Binary</th>
</tr>
</thead>
<tbody>
<tr>
<td>x</td>
<td>15213</td>
<td>00111011 01101101</td>
</tr>
<tr>
<td>ix</td>
<td>15213</td>
<td>00000000 00000000 00111011 01101101</td>
</tr>
<tr>
<td>y</td>
<td>-15213</td>
<td>11000100 10010011</td>
</tr>
<tr>
<td>iy</td>
<td>-15213</td>
<td>11111111 11111111 11000100 10010011</td>
</tr>
</tbody>
</table>
Justification for sign extension

- Prove correctness by induction on k
 - Induction Step: extending by single bit maintains value

\[B2T(X) = -x_{w-1} \times 2^{w-1} + \sum_{i=0}^{w-2} x_i \times 2^i \]

- Key observation:
 \[-2^w + 2^{w-1} = -2^{w-1} = \]

- Look at weight of upper bits:
 - X \[-2^{w-1} x_{w-1} \]
 - X' \[-2^w x_{w-1} + 2^{w-1} x_{w-1} = -2^{w-1} x_{w-1} \]
Why should I use unsigned?

- Don’t use just because number nonzero
 - C compilers on some machines generate less efficient code
 - Easy to make mistakes (e.g., casting)
 - Few languages other than C supports unsigned integers

- Do use when need extra bit’s worth of range
 - Working right up to limit of word size
Checkpoint
Negating with complement & increment

- **Claim:** Following holds for 2’s complement
 - \(\sim x + 1 == -x \)

- **Complement**
 - **Observation:** \(\sim x + x == 1111\ldots11_2 == -1 \)

- **Increment**
 - \(-1 \)
 - \(\sim x + x + (-x + 1) == -1 + (-x + 1) \)
 - \(\sim x + 1 == -x \)
Comp. & incr. examples

\[x = 15213 \]

<table>
<thead>
<tr>
<th></th>
<th>Decimal</th>
<th>Hex</th>
<th>Binary</th>
</tr>
</thead>
<tbody>
<tr>
<td>(x)</td>
<td>15213</td>
<td>3B 6D</td>
<td>00111011 01101101</td>
</tr>
<tr>
<td>(\sim x)</td>
<td>-15214</td>
<td>C4 92</td>
<td>11000100 10010010</td>
</tr>
<tr>
<td>(\sim x + 1)</td>
<td>-15213</td>
<td>C4 93</td>
<td>11000100 10010011</td>
</tr>
<tr>
<td>(y)</td>
<td>-15213</td>
<td>C4 93</td>
<td>11000100 10010011</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Decimal</th>
<th>Hex</th>
<th>Binary</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(\sim 0)</td>
<td>-1</td>
<td>FF FF</td>
<td>11111111 11111111</td>
</tr>
<tr>
<td>(\sim 0 + 1)</td>
<td>0</td>
<td>00 00</td>
<td>00000000 00000000</td>
</tr>
</tbody>
</table>
Unsigned addition

- **Standard addition function**
 - Ignores carry output

- **Implements modular arithmetic**
 - \(s = \text{UAdd}_w(u, v) = u + v \mod 2^w \)

Operands: \(w \) bits

True Sum: \(w+1 \) bits

Discard Carry: \(w \) bits

\[
\text{UAdd}_w(u, v) = \begin{cases}
 u + v, & u + v < 2^w \\
 u + w - 2^w, & 2^w \leq x + y < 2^{w+1}
\end{cases}
\]
Visualizing integer addition

- Integer addition
 - 4-bit integers u, v
 - Compute true sum $\text{Add}_4(u, v)$
 - Values increase linearly with u and v
 - Forms planar surface
Visualizing unsigned addition

- Wraps around
 - If true sum $\geq 2^w$
 - At most once

True Sum

\[0 \rightarrow 2^w \rightarrow 2^{w+1} \]

Modular Sum

Overflow

\[\text{Overflow} \]

\[\text{UAdd}_4(u, v) \]

\[u \rightarrow v \]

\[0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15 \]
Two’s complement addition

- TAdd and UAdd have identical Bit-level behavior
 - Signed vs. unsigned addition in C:
 - int s, t, u, v;
 - s = (int) ((unsigned) u + (unsigned) v);
 - t = u + v
 - Will give s == t

Operands: \(w \) bits

True Sum: \(w + 1 \) bits

Discard Carry: \(w \) bits

\[
\begin{array}{c}
u \\
+ \\
v \\
= u + v
\end{array}
\]

\[
\text{TAdd}_w(u, v)
\]
Characterizing TAdd

- **Functionality**
 - True sum requires \(w+1 \) bits
 - Drop off MSB
 - Treat remaining bits as 2’s comp. integer

\[
TAdd_w(u,v) = \begin{cases}
 u + v + 2^{w-1} & u + v < Tmin_w \\
 u + v & Tmin_w \leq u + v \leq Tmax_w \\
 u + v - 2^{w-1} & Tmax_w < u + v
\end{cases}
\]
Visualizing 2’s comp. addition

- **Values**
 - 4-bit two’s comp.
 - Range from -8 to +7

- **Wraps Around**
 - If $\text{sum} \geq 2^{w-1}$
 - Becomes negative
 - At most once
 - If $\text{sum} < -2^{w-1}$
 - Becomes positive
 - At most once
Detecting 2’s comp. overflow

- **Task**
 - Given \(s = \text{TAddw}(u, v) \)
 - Determine if \(s = \text{Addw}(u, v) \)
 - Example
 - \(\text{int } s, u, v; \)
 - \(s = u + v; \)

- **Claim**
 - Overflow iff either:
 - \(u, v < 0, s \geq 0 \) (NegOver)
 - \(u, v \geq 0, s < 0 \) (PosOver)

\[\text{ovf} = (u < 0 == v < 0) \&\& (u < 0 != s < 0); \]
Checkpoint
Multiplication

- Computing exact product of \(w\)-bit numbers \(x, y\)
 - Either signed or unsigned
- Ranges
 - Unsigned: \(0 \leq x \times y \leq (2^w - 1)^2 = 2^{2w} - 2^{w+1} + 1\)
 - May need up to \(2w\) bits to represent
 - Two’s complement min: \(x \times y \geq (-2^{w-1}) \times (2^{w-1}-1) = -2^{2w-2} + 2^{w-1}\)
 - Up to \(2^{w-1}\) bits
 - Two’s complement max: \(x \times y \leq (-2^{w-1})^2 = 2^{2w-2}\)
 - Up to \(2w\) bits
- Maintaining exact results
 - Would need to keep expanding word size with each product computed
 - Done in software by “arbitrary precision” arithmetic packages
Unsigned multiplication in C

- Standard multiplication function
 - Ignores high order \(w \) bits
- Implements modular arithmetic
 \[\text{UMult}_w(u, v) = u \cdot v \mod 2^w \]
Unsigned vs. signed multiplication

- **Unsigned multiplication**

  ```
  unsigned ux = (unsigned) x;
  unsigned uy = (unsigned) y;
  unsigned up = ux * uy
  ```

 - Truncates product to w-bit number \(up = \text{UMult}_w(ux, uy) \)
 - Modular arithmetic: \(up = ux \times uy \mod 2^w \)

- **Two’s complement multiplication**

  ```
  int x, y;
  int p = x * y;
  ```

 - Compute exact product of two w-bit numbers \(x, y \)
 - Truncate result to w-bit number \(p = \text{TMult}_w(x, y) \)
Unsigned vs. signed multiplication

- **Unsigned multiplication**

 \[
 \text{unsigned } \text{ux} = (\text{unsigned}) \ x;
 \]

 \[
 \text{unsigned } \text{uy} = (\text{unsigned}) \ y;
 \]

 \[
 \text{unsigned } \text{up} = \text{ux} \times \text{uy}
 \]

- **Two’s complement multiplication**

 \[
 \text{int } x, y;
 \]

 \[
 \text{int } p = x \times y;
 \]

- **Relation**

 – Signed multiplication gives same bit-level result as unsigned

 – \(\text{up} == (\text{unsigned}) \ p \)
Power-of-2 multiply with shift

- **Operation**
 - \(u << k \) gives \(u \times 2^k \)
 - Both signed and unsigned

 Operands: \(w \) bits

 True Product: \(w+k \) bits

 Discard \(k \) bits: \(w \) bits

- **Examples**
 - \(3 \times a = a << 1 + a \)
 - Most machines shift and add much faster than multiply (1 to +12 cycles)
 - Compiler generates this code automatically
Unsigned power-of-2 divide with shift

- Quotient of unsigned by power of 2
 - \(u >> k \) gives \(\lfloor u / 2^k \rfloor \)
 - Uses logical shift

<table>
<thead>
<tr>
<th>Division</th>
<th>Computed</th>
<th>Hex</th>
<th>Binary</th>
</tr>
</thead>
<tbody>
<tr>
<td>(x)</td>
<td>15213</td>
<td>15213</td>
<td>3B 6D</td>
</tr>
<tr>
<td>(x \ >> 1)</td>
<td>7606.5</td>
<td>7606</td>
<td>1D B6</td>
</tr>
<tr>
<td>(x \ >> 4)</td>
<td>950.8125</td>
<td>950</td>
<td>03 B6</td>
</tr>
<tr>
<td>(x \ >> 8)</td>
<td>59.4257813</td>
<td>59</td>
<td>00 3B</td>
</tr>
</tbody>
</table>
Arithmetic Right Shift = Division by 2?

- Compare right-shifting 3-bit negative numbers to dividing by 2

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>100</td>
<td>-4</td>
</tr>
<tr>
<td>101</td>
<td>-3</td>
</tr>
<tr>
<td>110</td>
<td>-2</td>
</tr>
<tr>
<td>111</td>
<td>-1</td>
</tr>
<tr>
<td>000</td>
<td>0</td>
</tr>
<tr>
<td>001</td>
<td>1</td>
</tr>
<tr>
<td>010</td>
<td>2</td>
</tr>
<tr>
<td>011</td>
<td>3</td>
</tr>
</tbody>
</table>
Signed power-of-2 divide with shift

- Quotient of signed by power of 2
 - \(x \gg k \) gives \(\lfloor x / 2^k \rfloor \)
 - Uses arithmetic shift
 - Rounds wrong direction when \(u < 0 \)

Division:

Operands:

\[
x
\]

\[
/ 2^k
\]

Division:

\[
x / 2^k
\]

Result:

\[
\text{RoundDown}(x / 2^k)
\]

<table>
<thead>
<tr>
<th>Division</th>
<th>Computed</th>
<th>Hex</th>
<th>Binary</th>
</tr>
</thead>
<tbody>
<tr>
<td>(y)</td>
<td>-15213</td>
<td>C4 93</td>
<td>11000100 10010011</td>
</tr>
<tr>
<td>(y \gg 1)</td>
<td>-7606.5</td>
<td>E2 49</td>
<td>11100010 01001001</td>
</tr>
<tr>
<td>(y \gg 4)</td>
<td>-950.8125</td>
<td>FC 49</td>
<td>11111100 01001001</td>
</tr>
<tr>
<td>(y \gg 8)</td>
<td>-59.4257813</td>
<td>FF C4</td>
<td>11111111 11000100</td>
</tr>
</tbody>
</table>
Correct power-of-2 divide

- Quotient of negative number by power of 2
 - Want $\lfloor x / 2^k \rfloor$ (Round Toward 0)
 - Compute as $\lfloor (x + 2^k - 1) / 2^k \rfloor$
 - In C: $(x<0 ? (x + (1<<k) - 1) : x) >> k$
 - Biases dividend toward 0

- Case 1: No rounding

\[
\begin{array}{c|c}
\text{Dividend:} & 1 \cdots 0 \cdots 0 0 \\
\hline
\text{+2}^k \cdots 1 & 0 \cdots 0 0 1 \cdots 1 1 \\
\hline
\text{Divisor:} & 1 \cdots 1 1 1 \\
\hline
\text{u} / 2^k & 0 \cdots 0 \underline{1} 0 \cdots 0 0 \\
\hline
\text{[u / 2^k]} & 1 \cdots 1 1 1 \cdots 1 1 \\
\end{array}
\]

Biasing has no effect
Correct power-of-2 divide (Cont.)

Case 2: Rounding

Dividend:

\[\frac{x + 2^k + 1}{2^k} \]

Divisor:

\[\left\lfloor \frac{x}{2^k} \right\rfloor \]

Biasing adds 1 to final result

Incremented by 1