Music/Voice Separation using the Similarity Matrix

Zafar Rafii & Bryan Pardo

Introduction

 Musical pieces are often characterized by an underlying repeating structure over which varying elements are superimposed

Introduction

• The **REpeating Pattern Extraction Technique** (**REPET**) was proposed to extract the repeating structure from the non-repeating structure

REPET

Adaptive REPET

Limitations

• Both the original and the adaptive REPET assume **periodically repeating patterns**

Limitations

 Repetitions can also happen intermittently or without a global (or local) period

Limitations

• Instead of looking for periodicities, we can look for **similarities**, using a similarity matrix

Similarity Matrix

 The similarity matrix is a matrix where each bin measures the (dis)similarity between any two elements of a sequence given a metric

Similarity Matrix

 In audio, the SM can help to visualize the time structure and find repeating/similar patterns

Assumptions

- Given a mixture of music + voice:
 - The repeating background is dense & low-ranked
 - The non-repeating foreground is sparse & varied

Assumptions

• The SM of a mixture is then likely to reveal the structure of the **repeating background**

REPET-SIM

- **REPET with Similarity Matrix!**
 - 1. Identify the repeating/similar elements
 - 2. Derive a repeating model
 - 3. Extract the repeating structure

Repeating Structure

REPET-SIM

- Advantages compared with REPET:
 - Can handle intermittent repeating elements
 - Can handle fast-varying repeating structures
 - Can handle full-track songs Mixture Signal REPET-SIM Non-repeating Structure

Interests

Practical Interests

- Audio post processing
- Melody extraction
- Karaoke gaming

Intellectual Interests

- Music perception
- Music understanding
- Simply based on self-similarity!

REPET-SIM

• We take the cosine similarity between any two pairs of columns and get a **similarity matrix**

 The SM reveals for every frame i, the frames j_k that are the most similar to frame i

 For every frame i, we take the median of its most similar frames j_k found using the SM

 We obtain an initial repeating spectrogram model

• We take the element-wise **minimum** between the repeating and mixture spectrograms

 We obtain a refined repeating spectrogram model for the repeating background

 The repeating spectrogram cannot have values higher than the mixture spectrogram

• We **divide** the repeating spectrogram by the mixture spectrogram, element-wise

• We obtain a **soft time-frequency** mask (with values in [0,1])

 We apply the t-f mask to the mixture STFT and obtain the repeating background

• The **non-repeating foreground** is obtained by subtracting the background from the mixture

Music/Voice Separation

- Repeating background ≈ **music component**
- Non-repeating foreground ≈ voice component

Evaluation

- Competitive method 1 [Liutkus et al., 2012]
 - Adaptive REPET with automatic periods finder and soft time-frequency masking
- Competitive method 2 [FitzGerald et al., 2010]
 - Median filtering of the spectrogram at different frequency resolutions to extract the vocals
- Data set
 - 14 full-track real-world songs (Beach Boys)
 - 3 voice-to-music mixing ratios (-6, 0, and 6 dB)

Examples

• REPET-SIM vs. FitzGerald et al.

Examples

REPET-SIM

Blackalicious - Alphabet Aerobics

Examples

• Adaptive REPET

Blackalicious - Alphabet Aerobics

Conclusion

• The analysis of the repetitions/similarities in music can be used for **source separation**

Questions?

- D. FitzGerald and M. Gainza, "Single Channel Vocal Separation using Median Filtering and Factorisation Techniques," *ISAST Transactions on Electronic and Signal Processing*, vol. 4, no. 1, pp. 62-73, 2010.
- J. Foote, "Visualizing Music and Audio using Self-Similarity," ACM International Conference on Multimedia, Orlando, FL, USA, October 30-November 5, 1999.
- A. Liutkus, Z. Rafii, R. Badeau, B. Pardo, and G. Richard, "Adaptive Filtering for Music/Voice Separation exploiting the Repeating Musical Structure," *IEEE International Conference on Acoustics, Speech and Signal Processing*, Kyoto, Japan, March 25-30, 2012.
- Z. Rafii and B. Pardo, "A Simple Music/Voice Separation Method based on the Extraction of the Repeating Musical Structure," *IEEE International Conference on Acoustics, Speech and Signal Processing*, Prague, Czech Republic, May 22-27, 2011.