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Application context

- Mist Technologies develops system for single sensor source separation : Upmix for
professionals (DVD reissues, Movies:La Vie en Rose) and general public applications
(www.songcooker.com).

- Prior information on mixture components allows to obtain good performance but requires
musical instruments identification. This task is handmade and very costly.

- As instrument detection in polyphonic recordings appears to be a very difficult task, we first
focus on close set instruments identification : Given a close set of musical instruments,
is it possible to automatically identify some components in polyphonic music ?

- This system could also be used as a general front-end to any high level information retrieval
systems (genre detection, transcription, ...)

Figure 1: General Single Sensor Source Separation System Overview

Scientific context

- Investigation of the use of Non-negative Matrix Factorization (NMF) to model audio sig-
nals.

. Virtanen takes advantage of NMF for sound source separation [Vir06]

. Smaragdis proposes a modified version of the NMF algorithm which is able to identify
components with temporal structure [Sma04].

. Cont [CD07] applies NMF on modulation spectrum, but also on spectrogram for pitch
estimation and instrument recognition.

. Benetos, Kotti and Kotropoulos use NMF on matrix of nonnegative feature vectors
extracted from audio files for instrument classification [BKK06].
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Figure 2: NMF on a spectrogram computed from a polyphonic musical excerpt with
r = 3 components

- NMF factorizes a nonnegative matrix V into two nonnegative matrices W & H seeking
to minimize a specific cost function F .

- NMF being not unique, appropriate additional constraints can lead to different solutions,
with different properties of the representation (e.g sparsness, smoothness).

- NMF is an unsupervised learning algorithm, therefore we propose a discriminant approach
to enforce an enhanced part-based decomposition more adapted to instrument detection.

Enhancements

NMF is not unique: the factorization depends not only on the update rules but also on the
starting point.

Initialization

Initializations for W & H :

- Random positive matrices

- Spherical K-means clustering

- Nonnegative Double Singular Value Decomposition (NNDSVD) [BG07]
Experimental results show that NNDSVD :

. leads to rapid reduction of the approximation error

. leads to better results than other methods: less redundancy, better sparseness and more
localized parts within the extracted components

Sparseness/Smoothness Constraints

Additional constraints can also be included in the update rules to enforce a convergence.
Favoring components whose gains are sparse and slowly varying [Vir06].

Number of Components

There is no reliable method for the automatic estimation of the number of components r.
We determine r by applying a first coarse NMF, using a large number of components. To
that end, Virtanen’s NMF, initialized with a NNDSVD, with a strong sparseness criteria
helps to keep only the components with relevant energy. Those components are then filtered
from their null values and used as an initialization for a second standard NMF.
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Figure 3: Enhanced NMF System Overview for Musical Component Separation

Forced Discriminant NMF

We use our enhanced NMF algorithm described above to extract the fixed magnitude spec-
trum components from a training database formed of K=5 instrument classes Ck (Bass,
Drums, Piano, Saxophone,Trumpet), and stored them in dictionaries.
However, NMF is an unsupervised algorithm, namely singly applied on solo instrument ex-
cerpts, it would not take into account the class-specific information. Therefore, some NMF
methods including discriminant constraints have been proposed, basically based on the Fisher
Linear Discriminant Analysis (FLDA).
Likewise, we propose our own discriminant method, the Forced Discriminant NMF (FD-
NMF) extending our enhanced NMF algorithm to the whole database in the same time, in-
cluding a discriminant approach into the process to enhance the separability between classes.

Wpiano’(i) = [ Wpiano(i), Wbass(i), Wdrums(i) ]

Wdrums’(i) = [ Wdrums(i), Wpiano(i), Wbass(i) ] 

Wbass’(i) = [ Wbass(i), Wpiano(i), Wdrums(i) ]
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Figure 4: one Forced Discriminant NMF iteration
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Figure 5: Error approximation & Between-class Scatter for NMF & FDNMF

Evaluation & Conclusions

System overview
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Figure 6: Musical Components Recognition Training phase (NMF & FDNMF)
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Figure 7: Musical Components Recognition Test phase

Evaluation

The test set consists of 150 musical excerpts from the RWC database. Evaluation is done
using 5 target instruments : Bass, Drums, Piano, Saxophone & Trumpet:

Enhanced NMF FDNMF
PFA PMiss PFA PMiss

All instruments 39% 43% 33% 42%

Conclusion

- A NMF based system for Musical Component Recognition has been proposed

- A discriminant approach has been added to the standard NMF system which provides a
slight performance enhancement

- Moreover, test database contains extra unknown components which bias the results (a
reject option should be included)

- Future works should also include the use of gain coefficients for better analysis
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