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Credit 

• Most of the content was stolen… I mean 
borrowed from: 

– Meinard Müller and Joan Serrà, “Audio Content- 
Based Music Retrieval (tutorial),” 12th 
International Society for Music Information 
Retrieval, Miami, FL, USA, October 24-28, 2011 

– http://ismir2011.ismir.net/tutorials/2011_Mueller
Serra_MusicRetrieval_Tutorial-ISMIR_handouts-
2.pdf  
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Problem 

• You are at home, in your car, in a café, etc. 

– You hear an audio signal (e.g., a song) 

– You want to quickly know more about it (e.g., title) 

– You have a smart device (e.g., a smartphone) 
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Solution 

• You use an audio identification system 

– You record an excerpt of the audio signal 

– It is compared against a database for a match 

– You get information about the audio signal 
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Principle 

• Audio identification works as follows: 

– Convert the audio signal into an audio fingerprint 

– Generate a database of known references 

– Match an unknown query against the database 
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Requirements 

• Audio fingerprints have to be: 

– Compact (= small storage and fast search) 

– Discriminative (= less false positives) 

– Robust (= invariance to audio degradations) 
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Literature 

• Haitsma et al., 2002 (Philips) 

– Sign of energy differences in time and frequency 

• Burges et al., 2003 (Microsoft) 

– Two-level Principal Component Analysis (PCA) 

• Wang et al., 2003 (Shazam) 

– Pairs of time-frequency peaks from spectrogram 

• Baluja et al., 2007 (Google) 

– Sign of wavelets from spectrogram 
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Shazam 

• Background 

– Based on the work of Avery Wang 

– Founded in 1999, commercialized in 2002 

– Database of more than 11 millions of songs 
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www.shazam.com 

http://www.shazam.com/


Fingerprinting 

• The audio signal (e.g., a song) is first 
transformed into a spectrogram 
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Fingerprinting 

• Peak locations in the spectrogram are 
identified given some criteria (e.g., density) 
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Fingerprinting 

• This leads to an audio fingerprint that is both 
compact and robust to audio degradations 
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Fingerprinting 

• In the presence of noise or distortion, most 
peaks should survive as they have high energy 
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Peaks of interest  
Spurious peaks 

Spectrogram 



Matching 

• A fingerprint is extracted from the query and 
compared to the fingerprints of the references 
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Fingerprint of a reference Fingerprint of the query 



Matching 

• The query fingerprint is shifted along time 
against every reference fingerprint 
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Matching 

• The number of peaks that are matching is 
counted and saved for every possible shift 
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Matching 

• A high count indicates a match, and the 
corresponding reference is identified 
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Indexing 

• In practice, the fingerprints are encoded by 
using pairs of peaks to speed up the matching 
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Indexing 

• For every peak, pairs of peaks are formed by 
choosing an anchor point and a target zone 
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Fingerprint 
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Indexing 

• For every pair of peaks, a hash is formed using 
two frequency values and a time difference 
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Indexing 

• Hashes from a query are compared to hashes 
from every reference, given their offset times 
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Philips 

• Background 

– Based on the work of Jaap Haitsma and Ton Kalker 

– Technology sold to Gracenote, Inc. in 2005 

– Not (really) commercialized (yet) 
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www.gracenote.com 

http://www.gracenote.com/


Fingerprinting 

• The audio signal (e.g., a song) is first 
transformed into a spectrogram 
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Fingerprinting 

• A perceptually relevant frequency range is 
selected from the spectrogram (300-2000 Hz) 
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Spectrogram (cropped) 

300-2000 Hz 



Fingerprinting 

• 33 logarithmically-spaced frequency bands are 
extracted from that frequency range 
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Spectrogram (log-scaled) 

33 log-spaced  
frequency bands 



Fingerprinting 

• The sign of the energy difference together 
along time and frequency is computed 
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Spectrogram (binarized) 

First, difference in time; 
then, difference in frequency. 
If result higher than 0, bin is 1; 
otherwise, bin is 0. 
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Fingerprinting 

• This leads to a sub-fingerprint of 32 bits for 
every time frame in the spectrogram 
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Sub-fingerprints 

Sub-fingerprint  
of 32 bits 



Fingerprinting 

• A fingerprint-block is derived by grouping 256 
successive sub-fingerprints (= 3 seconds) 
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Fingerprint-block 



Matching 

• A fingerprint is extracted from the query and 
compared to the fingerprints of the references 
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Fingerprint of a reference Fingerprint of the query 



Matching 

• The query fingerprint-block is shifted along 
time against every reference fingerprint-block 
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Matching 

• The Bit Error Rate (BER) (% non-matching bits) 
is computed and saved for every possible shift 
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Matching 

• The Bit Error Rate (BER) (% non-matching bits) 
is computed and saved for every possible shift 
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Matching 

• A low BER indicates a match, and the 
corresponding reference is identified 
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Indexing 

• In practice sub-fingerprints are encoded using 
hashing to speed up the matching 
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Fingerprint of a reference Fingerprint of the query 



Indexing 

• Exact sub-fingerprint matches are used to 
identify candidate reference fingerprint-blocks 
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Fingerprint-block of a reference Fingerprint-block of the query 



Indexing 

• BER is computed only for the candidate 
reference fingerprint-blocks 
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Fingerprint-block of a reference Fingerprint-block of the query 



Indexing 

• A match is identified when BER falls below a 
certain threshold 
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Advantages 

• Audio identification systems 

– Robust to distortion and noise 

– Short queries (3-10 seconds) 

– Fast matching (3-10 seconds) 
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Limitations 

• Needs exact same rendition! 

– No live version (different key or tempo) 

– No cover version (different instruments) 

– No hummed version (single melody) 
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Solutions 

• Fingerprints robust to key or tempo deviations 

– Log-frequency spectrogram for pitch shifting 

– Fingerprint invariant to time-scaling 

– Etc. 
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Solutions 

• Cover identification 

– Chromagram to handle key/instrument variations 

– Sequence alignment to handle tempo variations 

– Etc. 
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Solutions 

• Query-by-humming 

– Relative pitch intervals to handle key deviations 

– Relative length ratios to handle tempo deviations 

– Etc. 
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