An Audio Fingerprinting System for Live Version Identification using Image Processing Techniques (Dr.?) Zafar Rafii **Northwestern University EECS** department

Acknowledgments

• Work done during internship at Gracenote, a company doing audio and video identification, with co-authors Bob Coover and Jinyu Han.

 Work presented at the 39th IEEE International Conference on Acoustics, Speech and Signal Processing, Florence, Italy, May 4-9, 2014.

Context

- You are at a concert
 - You know the artist who is playing
 - You want to know about the song being played
 - You have a smart device (e.g., an iPhone)

Idea

- You can use a music identification system
 - You record an excerpt using your smart device
 - It is processed and compared against a database
 - You get information about the song (e.g., title)

Principle

- Audio fingerprinting systems
 - Transform the audio into a compact fingerprint
 - Compare the query against a database for a match
 - Typically index fingerprints to speed up matching

Limitations

- Does not work with cover versions (e.g., live)
 - Variations in tempo (e.g., faster renditions)
 - Variations in key (e.g., higher pitch)
 - Variations in instrumentations, etc.

Solution

- A novel system that can handle
 - Short excerpt quickly (i.e., less than 10 seconds)
 - Audio degradations (e.g., noise, encoding, etc.)
 - Audio variations (e.g., different tempo, key, etc.)

Approach

- Fingerprinting stage
 - Constant Q Transform
 - Adaptive thresholding

- Hamming similarity
- Hough Transform

- Constant Q Transform (CQT)
 - We first transform the audio signal into a timefrequency representation using the CQT

- Constant Q Transform (CQT)
 - The CQT has a log-frequency resolution, matching the notes of the chromatic scale (i.e., C, C#, etc.)

- Constant Q Transform (CQT)
 - Unlike the FT, the CQT is more compact and better adapted to music (vertical shift = pitch shift)

Three notes played at different pitches in the FT-spectrogram (left) and the CQT-spectrogram (right)

- Adaptive thresholding
 - We transform the CQT-spectrogram into a binary image using an adaptive thresholding method

- Adaptive thresholding
 - For each bin in the spectrogram, we assign 1 if the bin is higher than the median of the neighborhood

- Adaptive thresholding
 - We get a fingerprint that reduces the spectrogram into 2 components, of locally low and high energy

Approach

- Fingerprinting stage
 - Constant Q Transform
 - Adaptive thresholding

- Hamming similarity
- Hough Transform

- Hamming similarity
 - We then compute a similarity matrix between the fingerprints of a query and each of the references

match

- Hamming similarity
 - We use the Hamming similarity between all pairs of time frames (= percentage of bins that match)

• Hamming similarity

- We compute the similarity matrix for different pitch shifts between the query and the references

- Hough Transform (HT)
 - We binarize the similarity matrix via a threshold to have pairs of time frames that match (1) or not (0)

no match

Method

- Hough Transform (HT)
 - We use the HT to identify the best alignment between the query and the reference fingerprints

• Hough Transform (HT)

Query fingerprint

 The HT helps to take into account potential tempo deviations, by trying different angles for a line

Evaluation

- References
 - 10 different artists of varied genres
 - 389 full tracks from studio albums
 - Durations from 01'04" to 11'06"
- Queries
 - 87 full tracks from live albums (experiment 1)
 - 87 audio tracks from smart devices (experiment 2)
 - 10 queries per tracks, 6 and 9 second length

Data set

artist	genre	#references	#queries
AC/DC	hard rock	36	60
Arcade Fire	indie rock	33	100
Bonobo	electronic	42	100
Eagles	rock	32	90
Foreigner	rock	29	100
Jefferson Airplane	psychedelic rock	65	40
Led Zeppelin	rock	40	80
Phoenix	alternative rock	38	100
Portishead	electronic	33	100
Suprême NTM	French hip hop	41	100
all	-	389	870

Live albums (9 seconds)

Top-k matches	k=1	k=2	k=3	k=4	k=5
AC/DC	0.92	0.95	0.97	0.97	0.97
Arcade Fire	0.84	0.92	0.94	0.96	0.97
Bonobo	0.83	0.89	0.92	0.92	0.96
Eagles	0.93	0.97	0.98	0.99	0.99
Foreigner	0.88	0.93	0.93	0.95	0.97
Jefferson Airplane	0.60	0.68	0.78	0.78	0.80
Led Zeppelin	0.74	0.81	0.84	0.85	0.90
Phoenix	0.88	0.92	0.93	0.97	0.98
Portishead	0.92	0.93	0.93	0.93	0.93
Suprême NTM	0.87	0.95	0.96	0.97	0.97
all	0.86	0.91	0.92	0.94	0.95

Smart devices (9 seconds)

Top-k matches	k=1	k=2	k=3	k=4	k=5
AC/DC	0.70	0.83	0.85	0.87	0.93
Arcade Fire	0.79	0.86	0.89	0.91	0.93
Bonobo	0.60	0.75	0.83	0.89	0.93
Eagles	0.70	0.77	0.88	0.91	0.91
Foreigner	0.68	0.83	0.86	0.86	0.88
Jefferson Airplane	0.40	0.53	0.55	0.60	0.63
Led Zeppelin	0.28	0.39	0.48	0.53	0.54
Phoenix	0.67	0.76	0.82	0.86	0.87
Portishead	0.80	0.86	0.87	0.87	0.87
Suprême NTM	0.30	0.42	0.45	0.51	0.55
all	0.61	0.71	0.76	0.79	0.81