CS395/495_20 Computer Security Project #3
Winter 2005

Important Dates

Out: 2/21/05
Due: 3/8/05 11:59pm
Project Overview

The goal of this assignment is to gain hands-on experience with the effect of buffer overflow bugs and format string bugs. All work in this project must be done on a system called boxes (implemented using User-Mode Linux [1]) available on the course web site and Tlab machines (/home/zli109/uml).

You are given the source code for several exploitable programs (/tmp/target1, ... , /tmp/target4, /tmp/bonus1, …). These programs should be all installed as setuid root in the boxes system. Your goal is to write exploit programs (sploit1, ..., sploit4, …). Program exploit[i] will execute program /tmp/target[i] giving it certain input that should result in a root shell on the boxes system.

The skeletons for sploit1, ..., sploit4, … are provided in the sploits/ directory. Note that the exploit programs are very short, so there is no need to write a lot of code here. You should finish the programs so that we run every sploit[i], it will simply come out a root shell cracking from target[i]
Note: the tarball of target[i] and exploit[i] is available at /home/zli109/cs395-prj3.tar.gz
Environment

You will test your exploit programs within a system called Boxes. Boxes, based on User-Mode Linux, allows you to boot a fully-functional Linux system as a userland process on another Linux machine.

Boxes is available at the Tlab machine. Moreover, boxes can run on any x86 GNU/Linux machines running a recent 2.4-series kernel, you also may want to install it on your own machine.

Please refer to the README file in the Boxes distribution or the README.uml and FAQ.uml we provided to you. Note, you need to boot the boxes within Xwindows, try use VNC to connect the Xwindows on the Tlab machines.
It is recommended that you test your exploits in a virtual machine booted with a "closedbox" kernel, so that you cannot accidentally damage your host account.

You can mount a directory on the host machine to openbox, and copy the files you need to the openboxes (the file will store in the cow image). Then, you can use closebox to boot the same cow image and access the files you copied.
It is recommended that you develop your code on the host machine, or at least keep frequent backups. The User-Mode Linux kernel is mostly stable, but can occasionally crash.
Hint: for your convenience we have provided a setupenv.sh to you to setup the environment variables. Make sure use

. ./setupenv.sh
to run it, every time before you run the box systems. For details of running box system please refer the Readme file we provided to you.
The Targets

The targets/ directory in the assignment tarball contains the source code for the targets, along with a Makefile specifying how they are to be built. (read the Readme file in the target directory, if you are not sure about how to make)
Your exploits should assume that the compiled target programs are installed setuid-root in /tmp {/tmp/target1, /tmp/target2, etc.}
The Exploits

The sploits/ directory in the assignment tarball contains skeleton source for the exploits which you are to write, along with a Makefile for building them. Also included is shellcode.h, which gives Aleph One's shellcode.
The Assignment

You are to write exploits, one per target. Each exploit, when run in the Boxes environment with its target installed setuid-root in /tmp, should yield a root shell (/bin/sh).
Hints
Read Aleph One's "Smashing the Stack for Fun and Profit" [1][2] carefully for the project. If you want to do bonus-sploit2.c, you also need to read scut's "Exploiting Format String Vulnerabilities." [1][3]. Note that it may take you considerable amount of time for the string format vulnerability exploration.
To understand what's going on, it is helpful to run code through gdb. In particular, notice the "disassemble" and "stepi" commands. You can instrument your code with arbitrary assembly using the __asm__ () pseudofunction.

Make sure that your exploits work within the Boxes environment.
Warnings
The code from Aleph One calculates addresses on the target's stack, based on addresses on the exploit's stack. Addresses on the exploit's stack can change under different conditions when the exploit is executed (working directory, arguments, environment, etc.); in our testing, we do not guarantee to execute your exploits as bash does.

You must therefore hard-code target stack locations in your exploits. You should *not* use a function such as get_sp() in the exploits you hand in.
Evaluation
There are 4 exploit programs you need to implement, with another 2 for bonus points.
· sploit1.c (for target1) (25)
· sploit2.c (for target2) (25)

· sploit3.c (for target3) (25)

· sploit4.c (for target4) (25)

· bonus-sploit1.c (for bonus1) (bonus point 25)

· bonus-sploit2.c (for bonus2) (bonus point 25)

Note: if any program we cannot compile, you will lose that portion of score; e.g. we cannot compile sploit1.c, you may lose 25 points. Also, each warning message the C program generates will lose you 1 point.
Moreover, please notice that the bonus programs are much harder than the normal ones, so please finish the normal ones first!
We will test your codes on a clean closedbox system. We just simply boot up the closedbox, install the targets, and run your codes. Each of your sploits is expected to get a root shell. If we fail to do so, you cannot get points from that sploit[i].
Deliverables and hand-in Instructions
You only need to hand in the files in sploits/ directory. You are to provide a tarball (i.e., a .tar.gz file) containing the source files and Makefile for building your exploits. All the exploits should build if the "make" command is issued.

Please first modify the NETID and VERSION variable in Makefile (in sploits/) and use make handin to generate such a tarball.

Along with your exploits, you must include a file called ID.txt which contains, on a single line, the following: your NUID number, and your name, in the format last name, comma, first name. An example:

$ cat ./ID.txt
3133757 Jackson, Mike
$

You may want to include a Readme file with comments about your experiences or suggestions for improving the assignment. Submission will be done through the dedicated webpage (which you can reach from the course site). You can re-submit the project as many times as you want before the deadline; simply follow the same procedure.
Reference
[1] http://user-mode-linux.sourceforge.net/
[2] http://www.shmoo.com/phrack/Phrack49/p49-14
[3] http://www.cs.northwestern.edu/~ychen/classes/cs395/lectures/formatstring-1.2.pdf
