NetShield: Towards High Performance Network-based Vulnerability Signature Matching

Zhichun Li, Gao Xia, Yi Tang, Yan Chen, and Bin Liu
Northwestern University and Tsinghua University (China)

Problems
Currently, the regular expressions used by NIDS for signature matching have low accuracy because fundamentally regex cannot capture the vulnerability condition well. On the other hand, vulnerability signatures are much more accurate, but may have performance problems.

Goal: Build a high speed vulnerability signature matching engine!

Our approach

High speed parsing

Lightweight parsing state machine

Problem formulation
• Using a n x k table to keep track of whether signature i depend on matching dimension (matcher) j
• Matching dimension is a two tuple (field, operator), e.g., $(\text{rpc}_\text{vers}, ==)$

Candidate Selection Idea
• Pre-computation decides the rule order and matcher order. Given that usually most matchers are good rule filters, we only keep track of a few matching candidates for one connection. Group
• For each matcher, match rules in parallel.
• Iteratively combine the candidate sets for multiple matchers.

Evaluation
• High speed parsing: 2.9~15 Gbps for different protocols (HTTP, WINRPC, DNS)
• High speed matching: HTTP, 791 vulnerability signatures at ~1Gbps
• Applicability: in Snort ruleset (6,735 signatures) 86.7% can be improved to vulnerability signatures
• Prototype has been deployed on live-network environment and faster than Snort.