Protecting Web-based Single Sign-on Protocols against Relying Party Impersonation Attacks through a Dedicated Bi-directional Authenticated Channel

Yinzhi Cao
Yan Shoshitaishvili
Kevin Borgolte
Christopher Kruegel
Giovanni Vigna
Yan Chen

University of California, Santa Barbara
Northwestern University

September 17th, 2014

RAID 2014 — Authentication & Privacy
Roadmap

- Single Sign-on
- Threat Model
- Problems with Existing Designs
- Our Design
- Evaluation
Single Sign-on (SSO) (1)

- Idea: log in to a website with your Facebook, Google, etc. account
Single Sign-on (SSO) (1)

• Idea: log in to a website with your Facebook, Google, etc. account
Single Sign-on (SSO) (1)

- Idea: log in to a website with your Facebook, Google, etc. account
Single Sign-on (SSO) (1)

- Idea: log in to a website with your Facebook, Google, etc. account
Single Sign-on (SSO) (1)

- Idea: log in to a website with your Facebook, Google, etc. account
OAuth 2.0 Flow

Problems

- SSO vulnerabilities mean
 - User impersonation
 - Data/privacy leaks
Problems

- SSO vulnerabilities mean
 - User impersonation
 - Data/privacy leaks

- Vulnerabilities are prolific
 - Wang et al. identified five vulnerabilities in which an attacker can impersonate a user [Oakland ’12].
 - Sun et al. show that 6.5% of relying parties are vulnerable to impersonation attacks [CCS ’12].
Threat Model - Concepts

- Identity provider (IdP)
 - A centralized identification service
 - Trusted and benign

- Relying party (RP)
 - A third party using the IdP to authenticate users
 - Potentially malicious

- User
 - Wants to use the RP’s service
 - Trusted and benign
Threat Model - Attacks (1)

- In-scope
 - Benign RP initiates request, malicious RP receives response
Threat Model - Attacks (1)

- In-scope
 - Benign RP initiates request, malicious RP receives response

GET https://www.idp.com/login?
app_id=****&redirection_url=https://www.idp.com/granter?
next_url=https://www.rp.com/login

Host: www.idp.com

Referer: https://www.rp.com/login

Cookie: ****
Threat Model - Attacks (1)

- In-scope
 - Benign RP initiates request, malicious RP receives response

GET https://www.idp.com/login?
app_id=****&redirection_url=https://www.idp.com/granter?
next_url=https://www.rp.com/login

Host: www.idp.com

Referer: https://www.rp.com/login

Cookie: ****
Threat Model - Attacks (1)

- In-scope
 - Benign RP initiates request, malicious RP receives response
 - Malicious RP initiates the attack

GET https://www.idp.com/login?
app_id=****&redirection_url=https://www.idp.com/granter?
next_url=https://www.rp.com/login

Host: www.idp.com

Referer: https://www.rp.com/login

Cookie: ****
• In-scope
 • Benign RP initiates request, malicious RP receives response
 • Malicious RP initiates the attack

⇒ Information leakage or user impersonation!
Threat Model - Attacks (2)

- Out-of-scope
 - Social engineering
 - Compromised or vulnerable RP
 - Malicious user (browser)
 - Implementation issues
 - Privacy leaks
• Existing identities

 • IdP, usually web origin (<scheme, host, port>)

 • RP, unique identifier, depending on protocol, app_id or AppName

 • User, unique identifier like username or email address
Revisit - Identities

- Existing identities
 - IdP, usually web origin (<scheme, host, port>)
 - RP, unique identifier, depending on protocol, app_id or AppName
 - User, unique identifier like username or email address

Main issue: RP identifier can be forged.
• Communication between RP and IdP
Revisit - Communication

- Communication between RP and IdP
 - HTTP(s) redirection to 3rd party server (1-way channel)
Revisit - Communication

• Communication between RP and IdP
 • HTTP(s) redirection to 3rd party server (1-way channel)
 • In-browser communication channel (no authentication)
• Clean-slate design, replaces existing protocols
 • Identity
 • Web origin for RP and IdP: <scheme, host, port>
 • Communication channel
 • Dedicated
 • Bi-directional
 • Authenticated
 • Secure
Establishing the channel: handshake

1. \(PK_{RP} \)
2. Identity Check
3. \(PK_{RP}(SK, N_{IdP}) \)
4. \(SK(N_{RP}) \)
5. \(N_{IdP}, N_{RP}, SK(CB, msg) \)

PK\(_{RP}\): Public Key of RP
SK: Session Key
\(N_{IdP}\): Channel Number of IdP
\(N_{RP}\): Channel Number of RP
CB: Control Byte
Identity Provider Deployment (2)

- Establishing the channel: handshake
- Sending messages
• Establishing the channel: handshake
• Sending messages
• Receiving messages
Identity Provider Deployment (2)

- Establishing the channel: handshake
- Sending messages
- Receiving messages
- Terminating the connection: releasing resources
Relying Party / Proxy Deployment

- Allows smooth transition to more secure protocol
 - Does not require you to replace existing protocol
- Proxy communicates with legacy IdP
- RPs communicate with proxy
• Allows smooth transition to more secure protocol
• Does not require you to replace existing protocol
• Proxy communicates with legacy IdP
• RPs communicate with proxy
Implementation

• Prototype implementation
 • Clean-slate / IdP deployment
 • Two protocols: OpenID-like and OAuth-like
 • 252 LOC JavaScript, 264 LOC HTML, 243 LOC PHP
 • External libraries: JavaScript Cryptography Toolkit + Stanford JavaScript Crypto Library
 • Proxy / RP deployment
 • Based on a Facebook application
Evaluation - Formal Verification

- Formally verified design with ProVerif
 - Channel verification
 - Attacker: passive (sniffing), active (sending messages)
 - Result: an attacker cannot obtain the plain text message
 - Protocol verification
 - Attacker: network (passive) and web attackers (active)
 - Result: an attacker cannot obtain any useful information
 - Proxy verification
 - Attacker: passive (sniffing), active (sending messages)
 - Result: an attacker can obtain and modify the messages sent over the insecure communication channel between proxy and legacy IdP
Evaluation - Security Analysis

• Our protocol prevents all impersonation attacks identified by Wang et al. [Oakland ’12]:
 • Facebook and New York Times
 • Facebook and Zoho
 • Facebook Legacy Canvas Auth
 • JanRain wrapping GoogleID
 • JanRain wrapping Facebook
Channel operation

<table>
<thead>
<tr>
<th>Operation</th>
<th>Delay [ms]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Establishing the channel</td>
<td>164±12</td>
</tr>
<tr>
<td>Sending a message</td>
<td>32±2</td>
</tr>
<tr>
<td>Destroying a channel</td>
<td>70±3</td>
</tr>
</tbody>
</table>
Evaluation - Performance

Channel operation

<table>
<thead>
<tr>
<th>Operation</th>
<th>Delay [ms]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Establishing the channel</td>
<td>164±12</td>
</tr>
<tr>
<td>Sending a message</td>
<td>32±2</td>
</tr>
<tr>
<td>Destroying a channel</td>
<td>70±3</td>
</tr>
</tbody>
</table>

Establishing the channel

<table>
<thead>
<tr>
<th>Operation</th>
<th>Delay [ms]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Message #1: PK_RP</td>
<td>92±9</td>
</tr>
<tr>
<td>Message #2: PK_RP(SK, N_IdP)</td>
<td>29±2</td>
</tr>
<tr>
<td>Message #3: SK(N_RP)</td>
<td>43±3</td>
</tr>
</tbody>
</table>
Detailed breakdown of the protocol

<table>
<thead>
<tr>
<th>Operation</th>
<th>Delay [ms]</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1) Creating the channel between RP and IdP</td>
<td>164±11</td>
</tr>
<tr>
<td>(2) Creating the IdP inline frame</td>
<td>57±3</td>
</tr>
<tr>
<td>(3) Sending the first message from RP to IdP</td>
<td>32±2</td>
</tr>
<tr>
<td>(4) Creating the IdP inline frame for authentication</td>
<td>57±3</td>
</tr>
<tr>
<td>(5) Creating the second channel inside the IdP</td>
<td>165±11</td>
</tr>
<tr>
<td>(6) Authenticating the user</td>
<td>56±4</td>
</tr>
<tr>
<td>(7) Requesting the user’s permissions</td>
<td>57±3</td>
</tr>
<tr>
<td>(8) Sending the token inside the IdP’s inline frame</td>
<td>32±2</td>
</tr>
<tr>
<td>(9) Sending the token to the RP</td>
<td>33±2</td>
</tr>
</tbody>
</table>

Total 653±21

(2), (4), (6), and (7) are dominated by network latency, which is 50ms here.
Conclusion

- Pointed out root cause why RPI attacks exist: non-dedicated, insecure, one-way channel between RP and IdP
Conclusion

• Pointed out root cause why RPI attacks exist: non-dedicated, insecure, one-way channel between RP and IdP

• Proposed a dedicated bi-directional secure channel to remedy existing short-comings
• Pointed out root cause why RPI attacks exist: non-dedicated, insecure, one-way channel between RP and IdP

• Proposed a dedicated bi-directional secure channel to remedy existing short-comings

• Designed SSO protocol on top of channel design
Conclusion

• Pointed out root cause why RPI attacks exist: non-dedicated, insecure, one-way channel between RP and IdP
• Proposed a dedicated bi-directional secure channel to remedy existing short-comings
• Designed SSO protocol on top of channel design
• Presented a proxy design for easy adoptability
• Pointed out root cause why RPI attacks exist: non-dedicated, insecure, one-way channel between RP and IdP
• Proposed a dedicated bi-directional secure channel to remedy existing short-comings
• Designed SSO protocol on top of channel design
• Presented a proxy design for easy adoptability
• Formally verified security of the SSO protocol
Conclusion

• Pointed out root cause why RPI attacks exist: non-dedicated, insecure, one-way channel between RP and IdP

• Proposed a dedicated bi-directional secure channel to remedy existing short-comings

• Designed SSO protocol on top of channel design

• Presented a proxy design for easy adoptability

• Formally verified security of the SSO protocol

• Evaluated protocol performance / overhead
Thank you for your attention!

Questions?
Related Work

<table>
<thead>
<tr>
<th>Deployment</th>
<th>Protection Crowd</th>
<th>Preventing Impersonation Attacks</th>
<th>Proactive Deployment</th>
</tr>
</thead>
<tbody>
<tr>
<td>InteGuard: IdP, Gateway</td>
<td>IdP Users, physical machines</td>
<td>✔️</td>
<td>❌</td>
</tr>
<tr>
<td>AuthScan: IdP</td>
<td>IdP Users</td>
<td>✔️</td>
<td>❌</td>
</tr>
<tr>
<td>Explicating SDKs: IdP</td>
<td>IdP Users</td>
<td>✔️</td>
<td>❌</td>
</tr>
<tr>
<td>Defensive JavaScript: IdP, RP</td>
<td>IdP Users, RP Users</td>
<td>❌</td>
<td>✔️</td>
</tr>
<tr>
<td>WebSSO (our work): IdP, RP</td>
<td>IdP Users, RP Users</td>
<td>✔️</td>
<td>✔️</td>
</tr>
</tbody>
</table>